Skip to main content
Erschienen in: Molecular Cancer 1/2020

Open Access 01.12.2020 | Research

The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer

verfasst von: Lei Zhang, Yidong Li, Qianchao Wang, Zhuo Chen, Xiaoyun Li, Zhuoxun Wu, Chaohua Hu, Dan Liao, Wei Zhang, Zhe-Sheng Chen

Erschienen in: Molecular Cancer | Ausgabe 1/2020

insite
INHALT
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

PI3K/AKT is a vital signaling pathway in humans. Recently, several PI3K/AKT inhibitors were reported to have the ability to reverse cancer multidrug resistance (MDR); however, specific targets in the PI3K/AKT pathways and the mechanisms associated with MDR have not been found because many of the inhibitors have multiple targets within a large candidate protein pool. AKT activation is one presumed mechanism by which MDR develops during cancer treatment.

Methods

The effects of inhibiting PI3K 110α and 110β by BAY-1082439 treatment and CRISPR/Cas9 knockout were examined to determine the possible functions of BAY-1082439 and the roles of PI3K 110α and 110β in the reversal of MDR that is mediated by the downregulation of P-gp and BCRP. Inhibition of AKT with GSK-2110183 showed that the downregulation of P-gp and BCRP is independent of generalized AKT inactivation. Immunofluorescence, immunoprecipitation, MTT, flow cytometry and JC-1 staining analyses were conducted to study the reversal of MDR that is mediated by P-gp and BCRP in cancer cells. An ATPase assay and a structural analysis were also used to analyze the potential mechanisms by which BAY-1082439 specifically targets PI3K 110α and 110β and nonspecifically influences P-gp and BCRP.

Results

By inhibiting the activation of the PI3K 110α and 110β catalytic subunits through both the administration of BAY-1082439 and the CRISPR/Cas9 deletion of Pik3ca and Pik3cb, the ATP-binding cassette transporters P-gp/ABCB1 and BCRP/ABCG2 were downregulated, thereby reestablishing the drug sensitivity of human epidermoid carcinoma and non-small cell lung cancer (NSCLC) MDR cells. Inhibition of AKT did not reverse the MDR mediated by P-gp or BCRP. The ABC family proteins and AKT may play MDR-enhancing roles independently.

Conclusions

The reversal of the dual functions of ABC-transporter-mediated and AKT-activation-enhanced MDR through the inhibition or knockout of PI3K 110α or 110β promises to improve current strategies based on combined drug treatments to overcome MDR challenges.
Begleitmaterial
Additional file 1: Figure S1 Model complex structure showing the interactions stabilizing BAY1082439/PIK3CA (A-C) and BAY-1082439/PIK3CB (D-F) complexes. (A) Domains and positions of BCRP binding with BAY-1082439. The region for binding to BAY-1082439 covers three functional domains of P110α, including Pro159-Tyr167 helix on the RAS binding domain (RBD), Cys257-Asp300 on the helical domain, Asn660-Ser673 helix and Met697-Leu761 helix-helix-turn structures on the C-terminal bilobal kinase domain, resulting in strong and specific inhibition on P110α catalytic subunit. (B) Polar interaction between BAY-1082439 and PIK3CA. Strong polar contact was unveiled between BAY-1082439 and Pro298 of P110α. (C) Spatial structure showing surface and residue groups for PIK3CA to dock with BAY-1082439. For the selective binding between BAY-1082439 and PI3K 110α (PIK3CA), the position for docking is possibly formed by a group of amino residues (Arg-162, Val-166, Tyr-167, Asp-258, Glu-259, Gln-296, Pro-298, ASP-300, MET-697, Tyr-698, His-701, Leu-752, Gln-760, etc.) with surface charges and cavity sizes that match BAY-1082439. (D) Domains and positions of PIK3CB binding with BAY-1082439. The site for docking of BAY-082439 and P110β involves residues Ala19-Arg114 on the adaptor-binding domain (ABD), Glu120-Ile130 helix on RBD, and Val703-Lys732 helix on N-lobe of the kinase domain. (E) Cavity structure and polar interaction between BAY-1082439 and PIK3CB. Besides shape complementarity, polar contacts exist between BAY-1082439 and Thr86, and between BAY-1082439 and Arg97. (F) Spatial structure showing surface and residue groups for PIK3CB to dock with BAY-1082439.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12943-019-1112-1.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ABD
Adaptor-binding domain
BCRP/ABCG2
Breast cancer resistance protein
CRISPR
Clustered regularly interspaced short palindromic repeats
DMSO
Dimethyl sulfoxide
DSB
Double-strand break
EGFR
Epithelial growth factor receptor
Em
Emission wavelength
Ex
Excitation wavelength
FBS
Fetal bovine serum
FITC
Fluoresceine isothiocyanate
FoXO3a
Forkhead box O3
GSK3β
Glycogen synthase kinase 3 beta
HR
Homologous recombination
IF
Immune-fluorescence
MDR
Multi-drug resistance
MMEJ
Microhomology-mediated end joining
mTOR
Mammalian Target of Rapamycin
MTT
3-(4,5-Dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide
NHEJ
Non-homologous end joining
NSCLC
Non-small cell lung cancer
P-gp/ABCB1
P-glycoprotein
PI
Propidium iodide
PI3K
Phosphoinositide 3-kinase, PI 3-kinase
PIK3CA
PI3K 110α catalytic subunit
PIK3CB
PI3K 110 β catalytic subunit
PKB/AKT
Protein kinase B
PS
Posphatidylserine
PTEN
Phosphatase and tensin homologue deleted on chromosome ten
RBD
RAS binding domain
TKI
Tyrosine kinase inhibitor

Introduction

In human tissues, the phosphoinositide 3-kinase (PI 3-kinase, also known as PI3K) signaling pathway is a vital regulatory component involved in balancing metabolism, regulating a series of factors, and influencing cell survival and neuronal functions [110]. Among the four categories that constitute the PI3K family, class I PI3Ks are major members capable of activating protein kinase B (PKB/AKT), which is important for a series of pivotal functions involved in cell survival, proliferation, and differentiation and in intracellular trafficking [11]. Each class IA PI3K is composed of one P110 catalytic subunit (P110α/PIK3CA, P110β/PIK3CB or P110δ/PIK3CD) and one p85 regulatory subunit (p85α, p55α, p50α, p85β or p55γ). The P110α and P110β subunits are expressed in all cells [12]. In many cancers, Pik3ca, the gene encoding P110α, is often mutated, which increases kinase activity and leads to varying PTEN and EGFR expression [12, 13].
PI3Ks are vital components of the PI3K/AKT/mTOR pathways and are regulated by many factors (enhancers such as EGF, shh, IGF-1, insulin and CaM, and antagonists such as PTEN, GSK3β and HB9). They are critical to many functions related to AKT activation, such as cancer, chemoresistance, and longevity [1418].
ABC membrane transporters can induce the release of various substrates, including antitumor drugs, from cells. In many MDR cancer cells, P-glycoprotein (P-gp, also known as ABCB1 and MDR1) and breast cancer resistance protein (BCRP, also known as ABCG2, ABCP and MXR), two vital ABC members, are overexpressed. P-gp mediates the extracellular release of colchicine, antibiotics, and a number of chemotherapy drugs, such as taxanes, anthracyclines, epipodophyllotoxins, and vinca alkaloids [19]. BCRP is critical for the efflux of methotrexate, anthracyclines, flavopiridol, tyrosine kinase inhibitors (TKIs), nucleoside analogs, etc. [19]. To date, no direct evidence for the regulation of an ABC transporter by a specific protein of the PI3K signaling pathway has been confirmed [20], mainly because most of the known inhibitors have multiple binding sites, and not all PI3K inhibitors show the ability to reverse MDR. AKT activation has only been hypothesized to influence ABC-mediated cancer MDR [21, 22]. In this study, we studied specific targets, the 110α and 110β subunits of PI3K, and the functions of these proteins with respect to the regulation of P-gp- and BCRP-mediated MDR during cancer treatment. Specifically, we used BAY-1082439, a highly selective PI3K inhibitor of the PI3K 110α and 110β isoforms and which is currently undergoing phase I clinical trials in patients with advanced cancer (ClinicalTrials.​gov Identifier NCT01728311), in conjunction with Pik3ca or Pik3cb knockout in two MDR cancer cell lines, KB-C2 and H460/MX80, which overexpress the transporters P-gp and BCRP, respectively.

Materials and methods

Cells, plasmids and chemicals

Human epidermoid carcinoma KB-3-1 cell line was used as the parental drug-sensitive cell line. The MDR cell line, KB-C2, over-expressing P-gp, was induced from KB-3-1 with colchicine. Both cell lines were kindly provided by Dr. Shinichi Akiyama (Kagoshima University, Japan). Non-small cell lung cancer (NSCLC) NCl-H460 cell line and its resistant subline H460/MX20 were kindly provided by Drs. Susan E. Bates and Robert W. Robey (NIH, Bethesda, MD). H460/MX80 cells with enhanced drug-resistant ability were generated by inducing H460/MX20 cells with mitoxantrone at increasing concentrations up to 80 μM. KB-3-1 and its derivative cell subline KB-C2 and its knocked-out sublines without the PI3K 110α and 110β subunits were cultured with DMEM supplemented with 10% FBS and 1% penicillin/streptomycin in a humidified incubator containing 5% CO2 at 37 °C. H460, H460/MX20, H460/MX80 and the derivative gene deficient cells were cultured with RPMI1640 medium under the same conditions. CRISPR/Cas9 all-in-one plasmids encoding SgRNA and Cas9 for knock-out were purchased from GeneCopoeia Inc. (Rockville, MD). KB-C2 and H460/MX80 showing high MDR were used for evaluation of the intensive reversal of MDR after P110α or P110β subunit was knocked out in vitro by using the CRISPR/Cas9 technique.
BAY-1082439, the PI3K 110α/β inhibitor, and GSK-2110183 (afuresertib), the inhibitor of AKT (AKT1, AKT2 or AKT3), were purchased from ChemieTek (Indianapolis, IN). Paclitaxel, mitoxantrone, doxorubicin and 3-(4,5-Dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT), dimethyl sulfoxide (DMSO) were purchased form Sigma Chemical Co. (St. Louis, MO, USA). Mouse originated anti-P-gp and anti-BCRP, HRP ligated or fluorescent secondary rabbit or goat-anti mouse antibodies were purchased from Invitrogen, Thermo Fisher (Carlsbad, CA). Mouse-anti-PIK3CA antibodies were purchased from BD Biosciences (San Jose, CA) and anti-PIK3CB and anti-AKT Pan antibodies were purchased from R&D systems (Minneapolis, MN). Rabbit-anti-GSK3β, mouse-anti-P53, rabbit-anti-phospho-FOXO3a (Ser253) and rabbit-anti-Caspase-9 were purchased form Beyotime Institute of Biotechnology (Shanghai, China). Other reagents were purchased from VWR International (West Chester, PA, USA).

MTT assay

MTT assay was used to determine the non-toxic concentrations of the inhibitors (generating a viability of over 80%). Exponentially growing cells were treated with trypsin and seeded into 96 well plates at 5 × 103 cells/well. After 72 h of cell culture, 20 μL of MTT (5 mg/mL) was added to each well and incubated for 4 h. The medium containing MTT was removed carefully and 150 μL of DMSO was added to each well. The plates were agitated until the dark blue crystal dissolved completely. The absorbance was measured using an ELx 800 Universal Microplate Reader (Bio-Tek, Inc. Winooski, Vermont) at wavelength of 490 nm. All MTT assays were performed with three repeated treatments and independently repeated three times. The survival rate was statistically analyzed by SPSS 20.0 (SPSS, Chicago, IL, USA), and the curves were generated by Origin 9.0. The data are expressed as the mean ± standard error of the mean (SEM). Student’s t-test was used for analyzing the differences between groups. Differences were statistically significant at P < 0.05. IC50 was analyzed according to the survival rate-concentration curve.

Evaluating the efficacy of P110α/β-specific inhibition by BAY-1082439 in reversing MDR in cancer cells

Cells were seeded into 96-well plates at a density of 5 × 103 cells per well and cultured for 8 h. The cell cultures were treated with BAY-1082439 or GSK-2110183 for 1 or 2 h, followed by gradient concentrations of the anti-cancer drugs, starting from 0.001 μM as a non-toxic concentration. Decrease in the viability of MDR cells and in the IC50 of the anti-cancer drugs, together indicating MDR reversal efficacy, were evaluated by the MTT assay. Two specific drug substrates of P-gp and BCRP, colchicine and mitoxantrone, were used as antitumor drugs to induce high level of P-gp in KB-C2 or BCRP in H460/MX20 and H460/MX80, respectively.

Examining P-gp and BCRP expression by Western blotting and immune-fluorescence

Parental drug-sensitive cells and drug-induced MDR cells were treated with inhibitor at the same conditions set for MTT assay. After 24 to 72 h of culture, Western blot and immune-fluorescence (IF) were conducted to determine the levels of P-gp and BCRP protein expression.
For the Western blot, the cells were lysed with SDS lysate reagents and boiled with 5× SDS-PAGE sample loading buffer. The proteins were then separated by electrophoresis, followed by regular protocols for the Western blot (refer to product instructions of the antibodies).
For IF analysis, KB-C2 and H460/MX80 cells were washed with PBS buffer, fixed with formaldehyde for 10 min at RT, followed by standard protocols for binding with primary and fluorescent antibodies provided by the manufacturers, and observed with Thorlabs (Newton, New Jersey) fluorescent microscope systems. The experiment was repeated independently for three times.

Examining the efflux of doxorubicin by fluorescence microscopy and fluorescence quantification following BAY-1082439 treatment

Because doxorubicin is an fluorescent substrate of both P-gp and BCRP and can be pumped out from the cells by both ABC transporters, it was used at low concentration that can keep cells healthy and report whether BAY-1082439 can interact directly with these two transporters and inhibit the accumulation of doxorubicin within the cells. The parental and MDR cells were seeded into 96-well plates at a density of 5 × 103 cells per well and cultured for 8 h. The cells were co-incubated with 10 μM of BAY-1082439 for 1 h. Doxorubicin (0.2 μM) was then used to supplement the cell cultures and co-incubated with the cells for 2 h. This short period of time and relatively low concentration of drug were applied to keep cells alive. After gently washing with PBS buffer thrice, the cells were lysed with 100 μL lysis buffer, quantified with BCA Protein Assay Kit and diluted with lysis buffer to constant concentration. Fluorescent intensity indicating doxorubicin accumulation within the attached cells was determined in a Synergy™ 4 Multi-Mode Microplate Reader (Bio Tek Instruments, Inc. Vermont, USA) (Ex/Em: 450/550 nm. Plate type: Corning 96 Flat Bottom black, clear bottom Polystyrene). The experiment was repeated three times, and the results were analyzed with SPSS 20.0 using Student’s t-test.
For the long-term consequence of the weakened efflux ability, cells were seeded at 3 × 103 cells per well, cultured for 8 h, and treated with BAY-1082439 (10 μM) and doxorubicin (1 μM for the MDR cells and 0.1 μM for drug-sensitive cells to provide drug pressure and typical cell viability not less than 60%) for 72 h. Because of the inaccuracy of quantification of doxorubicin due to membrane injury of the dead or severely apoptotic cells, only fluorescent images showing distribution of doxorubicin were recorded as supplementary figures. This experiment was independently repeated three times to have statistical significance.

ATPase activity assay

The ATPase activity of P-gp and BCRP in crude membranes of High-Five insect cells was measured in the presence of BAY-1082439 (0 to 40 μM) by PREDEASY ATPase Kits with modified protocols, as previously described [23, 24].

Structural analysis with protein-ligand docking experiment

Structure information of the interactions between BAY-1082439 and target proteins was calculated on PatchDock Server based on molecular docking and simulation of stable structures of the complexes. PyMOL (version 1.8.x) was used to analyze the data and present the results that indicate the most stable structures, binding forces and positions, and residues or chemical groups.

Analysis of cell apoptosis and necrosis by flow cytometry

The cells were seeded into a 6-well plate at 1.2 × 106 cells per mL and cultured with respective anti-tumor drugs and the P110α/P110β inhibitor BAY-1082439 at non-cytotoxic concentration (10 μM) for 48 h. Untreated cells were used as a control. Cell apoptosis and necrosis were determined with an Annexin V-FITC Apoptosis Detection Kit (Beijing Solarbio Science & Technology Co., Ltd., Beijing) in a CytoFLEX flow cytometer (Beckman Coulter, Brea, CA). To slow down the growth rate of the cells set as control (MDR cells treated with drug only, or the drug-sensitive cells that were not influenced by BAY-1082439), we used 5% FBS as substitution for the 10% FBS in the media. And before the samples were tested in the flow cytometer, trypsin was used to treat the cells for better dispersity. The cells were dispersed with 2 mL of detection buffer provided with the detection Kit. The experiments were independently repeated three times. Results from a representative experiment were presented.

CRISPR/Cas9 knockout and characterization for targeting gene deficiency

For the study of the regulatory functions of PI3K-110α or PI3K-110β on ABC transporters (P-gp and BCRP), the CRISPR/Cas9 knockout system was introduced for specific deletion of Pik3ca or Pik3cb gene. KB-C2 or H460/MX80 cells were detached with trypsin, washed with PBS and seeded to 48-well plates with serum-free DMEM or RPMI1640 media, respectively. To avoid the potential risk of un-specified chromosomal recombination during transfection mediated by viral vectors, polymer-based GenePORTER transfection reagents for gene delivery were mixed with plasmids HCP213150-CG01–1-10 and HCP213151-CG01–1-10, developed as sgRNA/Cas9 all-in-one expression clones respectively targeting PIK3CA (NM_006218.2) and PIK3CB (NM_006219.1) (GeneCopoeia Inc., Rockville, MD). This was then incubated at RT for 20 min, and added to the cell cultures. After incubation for 4 h, FBS was added to the cells at 10% of the volume. The cells were transfected again using the same method after 48 h of culture to achieve high transfection efficiency. During transfection and cell stabilization, anti-tumor drugs were not applied in order to maintain survival of the cells with Pik3ca or Pik3cb deletion that may attenuate the expression of ABC transporters and reverse MDR capability. Transcription and expression of target genes were determined by RT-PCR and Western blot after culturing the gene deficient cells for 1 month. Healthy and stable cell populations with deficiency of P110α or P110β were obtained by adequate culture.
To determine transcription of PI3K 110α subunits, Primers (5′) CCTCCACGACCATCAT (3′) and (5′) TGCCTACTGGTTCAAT (3′) were used for RT-PCR, and for PI3K 110β subunits, primers (5′) TGCTTCAGTTTCATAA (3′) and (5′) GAAGAAAAGGTCTGAC (3′) were used.

Analysis of P110α and P110β to regulate P-gp and BCRP expression and drug mediated anti-cancer efficacy

In addition to the MTT assay, a JC-1 mitochondrial membrane potential analysis was performed to compare drug sensitivity of the cells before and after knock-out of the target genes Pik3ca and Pik3cb [25]. The protein expression of P-gp and BCRP in the knockout cell lines were analyzed with Western blot.

Analysis of the ability of AKT-specific inhibitor GSK-2110183 to reverse P-gp- or BCRP-mediated MDR of cancer cells

MTT assay of the drug-sensitive and the drug-resistant cells was performed as mentioned previously, to evaluate whether GSK-2110183, an inhibitor specific for AKT, can reverse MDR of the cancer cells over-expressing P-gp and BCRP.

Statistical calculation of protein expression levels by IF-Cytell analysis

Fluorescent immunoblotting analysis for protein levels was performed with Cytell™ Image Cytometer (GE Healthcare, Washington) based on 9–11 fields per well and at least three repeated experiments. Briefly, the cells were seeded into 96-well plates at a density of 5 × 103 cells per well and cultured for required time with corresponding treatment in each experiment. Before analyzing, the cells were fixed with formaldehyde (4%), followed by a 10-min treatment with 0.1% of Triton-100 and then 6% of BSA. The cells were co-incubated with target-specific primary antibodies for 1 h at 37 ̊C, followed by adequate wash with PBS (pH 8.0) and a 30-min co-incubation with the Cy3 labeled secondary antibodies. After four times of wash with PBS, 0.5 μg mL− 1 of DAPi in PBS was applied to staining of the living cells and characterization. Average fluorescent intensity of the markers (Cy3) per cell was automatically calculated by dividing total Cy3 fluorescent intensity by total nuclei area (indicated by DAPi) in correspondence with the cell counts.

Statistical analysis

All experiments based on statistical analysis were performed with at least three independent repeats. The data were statistically analyzed by SPSS 20.0 (SPSS, Chicago, IL, USA), expressed as the mean ± standard error of the mean (SEM). Student’s t-test was used for analyzing the differences between groups. Differences were statistically significant at P < 0.05.

Results

BAY-1082439 reversed the drug resistance mediated by overexpressed P-gp and BCRP in the MDR cancer cells

BAY-1082439 is a small-molecule that specifically inhibits PI3K class I P110α, P110β, and mutated forms of P110α (Fig. 1a). The survival rate of the KB-C2 and H460/MX20 MDR cells was greatly reduced in the presence of mid-to-high concentrations of the respective antitumor drugs and increasing concentrations of BAY-1082439, indicating greatly enhanced sensitivity of the cells to these anticancer drugs (Fig. 1a). The cell viability of the parental KB-3-1 and H460 cells was not apparently changed upon treatment with BAY-1082439 and the antitumor drugs. Compared to that of the parental cells, the cell viability of the KB-C2 and H460/MX20 cells was decreased, which indicated that inhibiting the PI3K 110α and 110β subunits with nontoxic or minimally toxic concentrations of BAY-1082439 can potentially reverse the P-gp- or BCRP- mediated MDR in these cells, which express the drug-efflux transporters P-gp or BCRP, a primary characteristic that distinguishes them from their parent cells.

BAY-1082439 downregulated P-gp and BCRP expression

P-gp was downregulated in KB-C2 cells cotreated with colchicine and BAY-1082439 for only 24 h. After the dual treatment, the amount of P-gp did not exceed 18% of the P-gp in the cells treated with only colchicine (Fig. 1b). In the H460/MX20 cells, the BCRP was downregulated to approximately 20% that of the cells cotreated with mitoxantrone and BAY-1082439 after 48 h of coculture (Fig. 1b). Immunofluorescence microscopy showing the variations in the P-gp and BCRP levels and the distributions of each on the cell surface and within the cells also indicated that both P-gp and BCRP expressed by the drug-treated MDR cancer cells were downregulated by BAY-1082439 (Fig. 1c). Therefore, inhibition of PI3K 110α and/or 110β by BAY-1082439 may directly reduce the MDR protection induced by ABC transporters by downregulating their expression. These results indicated that P-gp and BCRP may have at least one common regulation factor, i.e., the P110α and/or P110β subunits in the PI3K signaling pathway.

Protein docking analysis and ATPase assay results indicated molecular interactions between BAY-1082439 and the P-gp and BCRP transporters

Model complex structure showed the interactions stabilizing BAY1082439/PIK3CA and BAY-1082439/PIK3CB complexes (Additional file 1: Figure S1). The binding information of BAY-1082439 with P-gp and of BAY-1082439 with BCRP was also delineated through structural analysis in a statistical prediction framework, which was used because no information has yet been reported. The results revealed interactions between BAY-1082439 and human P-gp and BCRP, as shown in Fig. 2.
P-gp comprises two symmetrical transmembrane domains (TMDs) and two cytoplasmic nucleotide-binding domains (NBDs). The NBDs form a dimer that occludes two ATPs [26]. A docking analysis generated the top 10 models showing the likely interaction between BAY-1082439 and P-gp and the localization of BAY-1082439 within P-gp. The number 1 model indicated that BAY-1082439 has the highest likelihood of binding to the central space of the TM cavity in the human P-gp that is in an outward-facing state (Fig. 2). A polar interaction was revealed between the BAY-1082439 molecule and the Val-835 residue of P-gp. These results indicated that BAY-1082439 has the ability to bind to human P-gp and may influence its ATPase activity.
The BAY-1082439/BCRP complex was predicted to have a stable structure when BAY-1082439 was bound to the internal membrane side of the BCRP dimer (Fig. 2). The BCRP dimer occluded BAY-1082439 at the near-surface cavity. In addition to surface adaptability, BAY-1082439 can dock at BCRP through the unsaturated nitrogen in the 2-pyridine interacting with Arg-193; the oxygen on the carbonyl group and the aldimine interacting with Glu-317; and -CH (adjacent to -O-C-) at 1-benzene interacting with ILE-318. Compared with a recently reported series of drug/BCRP crystal structures, this predicted binding location for BAY-1082439/BCRP was not typical. The predicted complex structure of BAY-1082439/BCRP indicated that BAY-1082439 has the ability to bind to human BCRP and may also influence its ATPase activity.
Although ATP binding to P-gp, but not ATP hydrolysis, has recently been reported to promote the release of various substrates [26], ATPase alterations can theoretically provide evidence for the induced interactions between small inhibitors/activators and ABC transporters. The results showed that the vanadate-sensitive ATPase activity of P-gp or BCRP was positively correlated with the amount of BAY-1082439 at the tested concentrations; in general, they had a fold increase of 3.3- or 1.9-fold, respectively, compared to the basal activity levels (Additional file 2: Figure S2A), indicating a stimulation of ATPase activity by BAY-1082439 in a concentration-dependent manner. The stimulation of ATPase activity may accelerate the efflux of substances under specific circumstances; however, binding of BAY-1082439 to P-gp or BCRP might also lead to P-gp or BCRP transporter mediated efflux of BAY-1082439 such that it is in competition with the antitumor drugs and results in the increase in drug accumulation within the cells. In general, our studies indicated that, upon binding to P-gp and BCRP, BAY-1082439 enhanced the ATPase activity of both P-gp and BCRP, and this finding implies the potential of BAY-1082439 to increase drug accumulation by blocking the efflux activity of both P-gp and BCRP.

BAY-1082439 reversed drug efflux in the MDR cancer cells

As indicated by the data analyzed in Additional file 2: Figure S2B, the fluorescent intensity of KB-C2 treated with Dox (0.2 μM) was 45,407 URL mg− 1 protein. Co-culture with BAY-1082439 (10 μM) elevated the fluorescent intensity to 76,036 URL mg− 1 protein. The fluorescent intensity of KB-3-1 treated and not treated with BAY-1082439 was 211,462.7 URL mg− 1 and 196,077 URL mg− 1 protein, respectively. The fluorescent intensity of the H460/MX20 cells was elevated from 110,496.8 to 177,531.1 URL mg− 1 protein when the cells were treated with BAY-1082439. The fluorescent intensity of H460 with and without treatment of BAY-1082439 was 242,648.8 and 208,913.3 URL mg− 1 protein, respectively. The results indicated that BAY-1082439 had less inhibitory impact on the P-gp and BCRP transporters to prompt an increase of doxorubicin accumulation.
Amazingly, downregulation of P-gp and BCRP that causes long-term reversal of drug efflux behavior may have an impact on the increased drug sensitivity of KB-C2 and H460/MX80 cells in the presence of BAY-1082439, as BAY-1082439 is highly specific only for the PI3K 110α and 110β subunits (Additional file 2: Figures S2C, Additional file 3: Figure S3). Although doxorubicin is a potent intercalator of DNA, no apparent accumulation of doxorubicin appeared in the DOX (+)/BAY-1082439 (−) treatment groups even though 1 μM doxorubicin (which is a physiological concentration) was used. This outcome could have been caused by the highly efficient efflux of the doxorubicin by the KB-C2 and H460/MX80 cells with highly expressed levels of P-gp and BCRP, respectively, which endowed them with remarkably strong MDR ability. Interestingly, the florescence intensity of the sensitive cell lines was several-fold higher than that of the DOX (+)/BAY-1082439 (-)-treated MDR cells; this could be caused by the rapid increase in the accumulation of doxorubicin due to the lack of expressed P-gp or BCRP, which can efflux doxorubicin from MDR cells. According to the concentrations of doxorubicin, the drug-sensitive cells treated with 0.1 μM doxorubicin internalized lower amounts of drugs than the MDR cells treated with 1 μM doxorubicin and BAY-1082439, which inhibited P-gp and BCRP expression and reversed drug resistance.

BAY-1082439 reversed the apoptosis resistance of the KB-C2 and H460/MX80 cells

Both the KB-C2 and H460/MX80 cells showed a remarkable decrease in apoptosis resistance in the presence of BAY-1082439 in addition to the antitumor drugs specific to P-gp or BCRP, as indicated by flow cytometry. The ratio of apoptotic to necrotic KB-C2 cells cotreated with BAY-1082439 and colchicine was increased to approximately 42%, compared with 33% in the cells treated with colchicine only, with the major contribution made by the change in cell apoptosis, which was increased to 22% from 14% (Fig. 3a). The H460/MX80 cells treated with additional BAY-1082439 at a noncytotoxic concentration showed a two-fold rate of apoptosis compared with the control cells, of which 16% underwent apoptosis (Fig. 3b). The KB-3-1 and H460 cells did not undergo reversed antiapoptosis when treated with the same dose of BAY-1082439 in addition to the antitumor drugs.

CRISPR/Cas9 knockout of the PI3K 110α and 110β subunits in the MDR cancer cell populations

The inhibition of P110α or P110β by BAY-1082439, which in turn downregulates the P-gp and BCRP transporters, requires validation, since some PI3K inhibitors, such as CUDC-907 and afatinib, can nonspecifically inhibit other targets, such as histone deacetylase and P-gp [27, 28]. In addition, P-gp or BCRP may not be completely downregulated because of inadequate BAY-1082439 inhibition of the P110α or P110β subunit. Two cycles of gene transfection led to the successful delivery of CRISPR/Cas9 plasmids to nearly 100% of the receptor cells (Fig. 4a-c). The deletion of target genes (~ 66 kDa P110α with mutation or 110 kDa P110β in both the KB-C2 and H460/MX80 cells) in the vast majority of derivative cells and the truncation of the N′-terminus of PIK3CB in the 110β subunit-k.o. MX80 cells via gene recombination were detected at both the translational level (Fig. 4b) and the transcriptional level (Fig. 4c). Immunofluorescence also showed the knockout of target genes in most 110α subunit-k.o. and 110β subunit-k.o. KB-C2 cells and showed weak signals in the 110β subunit-k.o. H460/MX80 cells due to the N′-terminal truncation of P110β (Additional file 4: Figure S4). In comparison, nontargeted P110β in the P110α-deficient cell (110α subunit-k.o. KB-C2 or 110α subunit-k.o. H460/MX80) populations and P110α in the P110β-deficient cell (110β subunit-k.o. KB-C2 or 110β subunit-k.o. H460/MX80) populations were detected with positive fluorescence signals, indicating successful knockout of the targeted P110α or P110β subunits only. The P110α- and P110β-deficient KB-C2 cells were named KB-C2-k.o.110α and KB-C2-k.o.110β; the P110α- and P110β-deficient H460/MX80 were named MX80-k.o.110α and MX80-k.o.110β, respectively.

Reversal of P-gp or BCRP-mediated MDR in the cells with P110α or P110 β deficiency

KB-C2 cells with either Pik3ca or Pik3cb gene deficiency were sensitive to both colchicine and paclitaxel. The IC50 values indicated that 110α subunit-k.o. KB-C2 cells were only 2.36-fold more sensitive to colchicine than the drug-sensitive KB-3-1 cells (Fig. 4d). Approximately 26.3% of the IC50 level of paclitaxel remained in the 110α subunit-k.o. KB-C2 cells compared with that of the parental cell line, KB-C2. 110β subunit-k.o. KB-C2 cells treated with colchicine and paclitaxel maintained 13.7% and 19.4% of the respective IC50 level in the KB-C2 cells (Fig. 4e).
The drug resistance of the 110α subunit-k.o. H460/MX80 cells was reduced to a low level, approaching that of the drug-sensitive parental H460 cells, and the IC50 value of the remaining 110α subunit-k.o. H460/MX80 cells was only 5–6-fold greater than that of the parental H460 cells (Fig. 4f). The MDR ability of 110β subunit-k.o. H460/MX80 cells compared with that of 110α subunit-k.o. H460/MX80 cells was relatively unchanged. Deletion of P110α in the KB-C2 cells also led to a more substantial reversal of P-gp-mediated drug resistance compared to that caused by the deletion of P110β. These results suggest that PI3K 110α could have more important function in the regulation of MDR mediated by ABC transporters, including P-gp and BCRP.
P110β deficiency in the KB-C2 and H460/MX80 cells generated differences in cell viability in the presence of respective antitumor drugs. Results from the JC-1 analysis showed severe depolarization of the mitochondrial membrane, indicating cell apoptosis of 110β subunit-k.o. KB-C2 cells after 1 μM paclitaxel treatment (Additional file 5: Figure S5). Although the MTT assay results indicated no apparent evidence for increased apoptosis of the 110β subunit-k.o. H460/MX80 cells, compared with the number of the H460/MX80 cells undergoing apoptosis, when both were treated with mitoxantrone at 10 μM, the weak green fluorescence of the JC-1 monomers indicated slightly elevated apoptosis of the 110β subunit-k.o. H460/MX80 cells.

P-gp and BCRP but not AKT are downregulated in the P110α- or P110β-deficient cells

Deficiency in P110α and P110β was associated with the downregulation of the two main MDR-relevant transporters, P-gp and BCRP, in both the KB-C2 and H460/MX80 cells, as indicated by Western blot and IF-Cytell analyses (Fig. 5a-c). As indicted by the fluorescent marker intensity value, determined by IF in combination with statistical analysis completed with a Cytell™ image cytometer, the representative expressed marker intensity was 649, 647.5, and 635.5 in the KB-C2, 110α subunit-k.o. KB-C2 and 110β subunit-k.o. KB-C2 cell populations, respectively, and was 770, 749 and 726 in the H460/MX80 and the P110α- or P110β-knockout cell populations, respectively. The expression of AKT was not altered significantly in the P110-knockout cell populations. This finding challenges a formerly presented supposition that AKT expression might be directly associated with mutated P110α subunits, a premise based on a tumor sample analysis instead of gene knockouts [29]. This phenomenon could further support the hypothesis that MDR reversal caused by P110-knockout may not be dependent on AKT expression levels.
As some researchers have previously suggested, AKT activated by PI3K might be associated with the MDR of cancer cells [30, 31]. Our studies proposed that the AKT-mediated MDR-enhancing pathway might be independent of the regulation of ABC transporter-mediated MDR and may be activated during crisis conditions, such as when the ABC transporters fail to efficiently pump toxins out of the cells.

P-gp- or BCRP-mediated MDR effects may be independent of AKT activation

Although several studies have sought to determine whether PI3K catalytic subunits are related to ABC transporter-mediated MDR through the PI3K/AKT pathways, a direct regulatory target has not been confirmed. In this part of our study, we found contradictory results when we cotreated MDR cells with GSK-2110183 (an ATP-competitive inhibitor specific for AKT) and antitumor drugs specifically pumped out by each overexpressed ABC transporter.
None of the examined cancer cells exhibited changes in sensitivity to the antitumor drugs after being cultured with GSK-2110183; however, the cells not treated with antitumor drugs showed the inhibitory effects of GSK-2110183 treatment (Fig. 5d and e). Considering the evidence from the studies described above, we suggest that the inhibition of AKT activity does not have a regulatory effect on P-gp- or BCRP-mediated MDR in these cells.
GSK-2110183 administered alone to inhibit AKT (without antitumor drugs) inhibited the cell viability of the tested cell lines, except for the KB-C2 cells, in a dose-dependent manner (Fig. 5f). This finding may indicate that inhibition of AKT in the H460/MX80 cells generates a greater influence on cell viability than it does in the KB-C2 cells. On the basis of the combined observation that the AKT levels did not significantly change in the P110-deficient KB-C2 or H460/MX80 cells, we deemed that AKT may have a greater influence on enhancing H460/MX80 cell survival and proliferation and/or antiapoptosis, which could be independent of the MDR mediated by P-gp or BCRP.
To demonstrate that the downregulation of P-gp or BCRP mediated by the inhibition of P110α and P110β with BAY-1082439 was independent of AKT expression, Western blot analysis was performed, and the results showed minimally enhanced expression of AKT in the cells treated with BAY-1082439 (Fig. 6). We then studied the effect of BAY-1082439 on the MDR and the parental cells on the basis of the expression levels of AKT and five pivotal proteins downstream of AKT in the PI3K/AKT pathways. In addition to Western blot analysis, a Cytell™ image cytometer was used for the quantitative analysis and comparison of the Cy3 signal intensity, which indicated the amounts of the protein targets that had bound to the antibodies (Cy3-labeled). The five other proteins are 1. glycogen synthase kinase 3 beta (GSK3β), which has multiple functions in the regulation of multiple downstream pathways (such as GYS metabolism, Myc cell cycle progression and CCND1 cell cycle progression); 2. P53 (also known as a proapoptotic protein), which regulates cell survival; 3. phosphorylated Forkhead box O3 (phospho-FOXO3a or phospho-FOXO3), which has multiple functions in the regulation of multiple factors and pathways (such as DNA-PEPCK/G6Pace metabolism, DNA-CCNDY cell cycle progression, DNA-P27KIP1/RBL2 cell cycle progression, and DNA-FasL/Bim cell survival); 4. caspase-9 (also an important apoptosis factor that regulates multiple apoptosis pathways) regulates cell survival; and 5. Bcl-xL, which is intimately related to cell survival. The results showed that, compared with the cells treated with antitumor drug alone, the MDR KB-C2 cells treated with BAY-1082439 in addition to colchicine expressed increased levels of AKT, GSK3β, phospho-FOXO3a and caspase-9 and equal levels of P53 and Bcl-xL, indicating there was no negative influence from the inhibition that P110α or P110β induced on the expression level of AKT or that of its downstream factors, indicating the ability of BAY-1082439 to induce magnified caspase-9-induced apoptosis signals and possible cell adaptation induced by other factors/pathways in addition to P110α or P110β (Fig. 6). The H460/MX80 or H460/MX20 cells treated with BAY-1082439 in addition to mitoxantrone expressed increased levels of AKT and caspase-9 and unchanged levels of the GSK3β, phospho-FOXO3a and P53 proteins, showing little negative influence from the inhibition of P110α or P110β on the level of AKT expression and that of its pivotal downstream factors, but it indicated severe apoptotic effects caused by BAY-1082439.
The drug-sensitive parental KB-3-1 cells were unaltered when the expression of AKT was changed, and all the examined factors, including caspase-9, showed little influence of BAY-1082439 on the PI3K/AKT pathways or on the growth and survival of the KB-3-1 cells (Fig. 6) Combined with the data from the BAY-1082439-induced downregulation of P-gp in the KB-C2 cells, but not in the KB-3-1 cells, the findings indicate that BAY-1082439 has a more severe effect on KB-C2 cells because of the downregulation of P-gp, which affects the efflux of drugs from the cells.
The H460 cells showed a minimal increase in AKT and P53; unchanged Bcl-xL levels; a slight decrease in GSK3β, phospho-FOXO3a and caspase-9; and unchanged levels of phospho-FOXO3a to BAY-1082439 treatment, showing good cell survivability and weak influence of BAY-1082439 on PI3K/AKT or its downstream pathways (Fig. 6). These results also explained the mechanisms inducing the increased apoptosis of the BAY-1082439-treated MDR H460/MX80 cells, but not the drug-sensitive H460 cells, as was also shown by the results from the flow cytometry analysis (Fig. 3). The major difference between the H460/MX80 and H460 cells is the degree to which downregulated BCRP in the H460/MX80 cells induced this phenomenon. Similar to the KB-C2 cells, BAY-1082439 treatment led to greater accumulation of the antitumor drugs in the cells, because of inhibited P-gp or BCRP expression, inducing increased apoptosis of these MDR cells, as suggested by caspase-9 levels and other results from the flow cytometry analysis (Fig. 3, Fig. 6). These phenomena also support the conclusion that downregulated P-gp or BCRP expression mediated by inhibition of P110α and P110β may be due to the action of pathways that are not regulated by AKT.

Discussion

For both cancerous and normal cells, PI3K signaling pathways are pivotal to many cellular metabolic functions in a highly ordered, sophisticated system. They regulate not only metabolic processes such as protein synthesis and glycolysis/gluconeogenesis [32, 33] but also cell growth, cycle progression and cell division, proliferation, and apoptosis [3437]. Currently, the PI3K pathway is receiving increasing attention, and far more significant functions are being revealed [3840].
PI3K signaling pathway covers a wide and complicated network critical for the regulation of protein expression [4143], and a series of factors belonging to different downstream functional pathways is associated with the pathway, for example, GSK3β, FOXO3A, caspase-9, and P53, which are involved in cell apoptosis and tumor suppression [4449]; therefore, inhibition of a specific subunit is considered safer than inhibition of several nonspecific targets that operate together in PI3K-associated signaling pathways.
As shown by the results, the drug-sensitive parental cells have PI3K subunits but were not affected in terms of viability when they were treated with 10 μM BAY-1082439. This result may indicate that this concentration of BAY-1082439 might not affect the PI3K/AKT pathways or that the influence on PI3K/AKT did not cause an increase in cell death. However, P-gp and BCRP were substantially downregulated in the MDR cells, which caused the recovery of drug sensitivity, as shown by the increased cell death rate; this finding implied that BAY-1082439 reversed P-gp and BCRP expression and increased the intercellular accumulation of drugs prior to its function on PI3K/AKT/apoptosis. Therefore, the regulation of P110α and P110β on P-gp or BCRP is likely independent of the regulation of the PI3K/AKT pathways. Although this study revealed that AKT expression in the 110α- an 110β-knockout cells was unchanged, this phenomenon did not conflict with the possibly normal phosphorylation/activation of AKT by the other P110 (110β or 110α) subunit or the regulation of AKT expression level by other factors, which might be necessary for cell survival. We are carrying out studies on possible regulatory pathways that are related to downregulated P-gp or BCRP as mediated by inhibition of P110α or P110β.
Both the KB-C2 and H460/MX20 cells cultured with the AKT inhibitor GSK did not exhibit MDR reversal. In addition to the dominant functions of P110α or P110β in regulating ABC transporters in these cells, AKT may play a separate role in enhancing drug resistance via other functions, such as inducing antiapoptosis or stimulating cell proliferation [50]. Mechanisms relevant to this dual function of P110α or P110β as specific targets for reversing cancer MDR are proposed as illustrated in Fig. 7. In this regard, signaling pathways critical for targeted regulation are under investigation in our laboratory through studies on both the protein expression network and in vivo experiments. With dual functions in the reversal of ABC-transporter-mediated and AKT-activation-enhanced MDR, inhibition or gene knockout of PI3K 110α and/or 110β is promising for the improvement to current strategies that are based on combined drug treatment to challenge MDR.
As highlighted cancer treatment strategies, most gene therapies that rely on transgene and gene deletion or silencing technologies still lack tumor specificity and are therefore limited in studies in vivo and in the clinic. Considering that PI3K signaling pathways always show particularly high activity in cancers and that PI3K subunits are frequently mutated or truncated, which may be, at least in part, a reason for the enhanced functions of the PI3K pathways during the course of tumor metagenesis and deterioration [5154], and as Western blot analysis results showed this truncation in the KB-C2 cells but not the parental KB-3-1 cells, it is possible to design more specific knockouts based on the sequence of mutated PI3K subunits in cancer cells without interfering with the PI3K genes in normal tissues. When these types of breakthroughs are realized to resolve the current bottleneck issues related to security and specificity of gene-knockout therapeutics, a complete cure for cancer will no longer be just a vain hope.
Gene knockout based on CRISPR/Cas9 has high specificity and more advantages over target inhibition through less selective compounds and can be an ideal approach for studying a specific target. Knocking out a gene from a stable genome via CRISPR/Cas9 can be accompanied with uncertain DNA strand breaks, which may initiate a number of mechanisms involved in the self-repair in the target cells [5557]. In addition, use of nonviral polymers as gene delivery vectors can reduce the risks of creating additional uncertain mutations. Therefore, a nonviral transgene vector-mediated CRISPR/Cas9 gene knockout in the cancer cell population can provide a safe and proper basis for evaluating the efficacy of inhibiting P110α or P110β as a target to reverse cancer MDR.
It has been reported that the ATPase activity of P-gp was increased by voruciclib at low to moderate concentrations (not exceeding 7 μM) but was inhibited by CCT129202 [58], although both compounds were categorized as inhibitors/substrates [24]. Together with a recent report indicating that ATP binding to P-gp, but not inducing hydrolysis, promotes release of the substrate [26], these findings indicate that the variance in ATPase activity showing hydrolysis by ABC transporters may be a response to a ligand binding to ABC transporters but does not necessarily indicate inhibition or activation by this ligand. Furthermore, the stimulation of ATPase activity by BAY-1082439 suggests that BAY-1082439 can bind to both P-gp and BCRP. Because of the alterations to the structure and the binding sites of the ABC proteins/molecule complexes during transportation, the ATPase and efflux activity of the transporters may also be changed.

Conclusion

The PI3k signaling pathway is vital for many aspects of the biological functions in human and has been frequently reported with enhanced activity in cancers. Targeting a specific factor to reverse the drug-resistance without influencing the functions of normal tissue cells has become a safe and efficient strategy to overcome the MDR of cancers. In this study, we report for the first time that, through the specific inhibition of PI3K 110α and 110β subunits of PI3K with BAY-1082439 and via Crispr/Cas9 gene knockout method, two ABC transporters, P-gp/ABCB1 and BCRP/ABCG2 that contribute to the MDR of cancers were downregulated and the drug resistance was reversed in human epidermoid carcinoma and non-small cell lung cancer (NSCLC) MDR cells. Inhibition of AKT did not reverse the MDR mediated by P-gp or BCRP. Therefore, the ABC family proteins and AKT may play independent role in enhancing MDR of cancers. For the first time, P110α and P110β were demonstrated to be directly linked to MDR. The knockout of P110α and P110β is a promising strategy with high efficiency in the reduction of MDR in more than one cancer cell types and can prosperously be facilitated for administration in combination with anticancer drugs and PI3K inhibitors [59].

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12943-019-1112-1.

Acknowledgments

We would like to thank Dr. Yangmin Chen (MediMedia Managed Markets, ICON plc) for editorial assistance, and thank Dr. Pranav Gupta (St. John’s University, New York, NY) for helping with the ATPase assay.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
insite
INHALT
download
DOWNLOAD
print
DRUCKEN
Anhänge

Supplementary information

Additional file 1: Figure S1 Model complex structure showing the interactions stabilizing BAY1082439/PIK3CA (A-C) and BAY-1082439/PIK3CB (D-F) complexes. (A) Domains and positions of BCRP binding with BAY-1082439. The region for binding to BAY-1082439 covers three functional domains of P110α, including Pro159-Tyr167 helix on the RAS binding domain (RBD), Cys257-Asp300 on the helical domain, Asn660-Ser673 helix and Met697-Leu761 helix-helix-turn structures on the C-terminal bilobal kinase domain, resulting in strong and specific inhibition on P110α catalytic subunit. (B) Polar interaction between BAY-1082439 and PIK3CA. Strong polar contact was unveiled between BAY-1082439 and Pro298 of P110α. (C) Spatial structure showing surface and residue groups for PIK3CA to dock with BAY-1082439. For the selective binding between BAY-1082439 and PI3K 110α (PIK3CA), the position for docking is possibly formed by a group of amino residues (Arg-162, Val-166, Tyr-167, Asp-258, Glu-259, Gln-296, Pro-298, ASP-300, MET-697, Tyr-698, His-701, Leu-752, Gln-760, etc.) with surface charges and cavity sizes that match BAY-1082439. (D) Domains and positions of PIK3CB binding with BAY-1082439. The site for docking of BAY-082439 and P110β involves residues Ala19-Arg114 on the adaptor-binding domain (ABD), Glu120-Ile130 helix on RBD, and Val703-Lys732 helix on N-lobe of the kinase domain. (E) Cavity structure and polar interaction between BAY-1082439 and PIK3CB. Besides shape complementarity, polar contacts exist between BAY-1082439 and Thr86, and between BAY-1082439 and Arg97. (F) Spatial structure showing surface and residue groups for PIK3CB to dock with BAY-1082439.
Literatur
1.
Zurück zum Zitat Cerniglia GJ, Dey S, Gallagher-Colombo SM, Daurio NA, Tuttle S, Busch TM, Lin A, Sun R, Esipova TV, Vinogradov SA, et al. The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1alpha phosphorylation. Mol Cancer Ther. 2015;14(8):1928–38.PubMedPubMedCentralCrossRef Cerniglia GJ, Dey S, Gallagher-Colombo SM, Daurio NA, Tuttle S, Busch TM, Lin A, Sun R, Esipova TV, Vinogradov SA, et al. The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1alpha phosphorylation. Mol Cancer Ther. 2015;14(8):1928–38.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. 2015;42(4):841–51.PubMedCrossRef Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. 2015;42(4):841–51.PubMedCrossRef
3.
Zurück zum Zitat Qian P, He XC, Paulson A, Li Z, Tao F, Perry JM, Guo F, Zhao M, Zhi L, Venkatraman A, et al. The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell. 2016;18(2):214–28.PubMedCrossRef Qian P, He XC, Paulson A, Li Z, Tao F, Perry JM, Guo F, Zhao M, Zhi L, Venkatraman A, et al. The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell. 2016;18(2):214–28.PubMedCrossRef
4.
5.
Zurück zum Zitat McKnight NC, Zhenyu Y. Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr Pathobiol Rep. 2013;1(4):231–8.PubMedPubMedCentralCrossRef McKnight NC, Zhenyu Y. Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr Pathobiol Rep. 2013;1(4):231–8.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Shanware NP, Bray K, Abraham RT. The PI3K, metabolic, and autophagy networks: interactive partners in cellular health and disease. Annu Rev Pharmacol Toxicol. 2013;53:89–106.PubMedCrossRef Shanware NP, Bray K, Abraham RT. The PI3K, metabolic, and autophagy networks: interactive partners in cellular health and disease. Annu Rev Pharmacol Toxicol. 2013;53:89–106.PubMedCrossRef
7.
Zurück zum Zitat Sanchez-Alegria K, Flores-Leon M, Avila-Munoz E, Rodriguez-Corona N, Arias C. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. Int J Mol Sci. 2018;19(12):3725.PubMedCentralCrossRef Sanchez-Alegria K, Flores-Leon M, Avila-Munoz E, Rodriguez-Corona N, Arias C. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. Int J Mol Sci. 2018;19(12):3725.PubMedCentralCrossRef
8.
Zurück zum Zitat Kloo B, Nagel D, Pfeifer M, Grau M, Duwel M, Vincendeau M, Dorken B, Lenz P, Lenz G, Krappmann D. Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci U S A. 2011;108(1):272–7.PubMedCrossRef Kloo B, Nagel D, Pfeifer M, Grau M, Duwel M, Vincendeau M, Dorken B, Lenz P, Lenz G, Krappmann D. Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci U S A. 2011;108(1):272–7.PubMedCrossRef
9.
Zurück zum Zitat Xie D, Gore C, Zhou J, Pong RC, Zhang H, Yu L, Vessella RL, Min W, Hsieh JT. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc Natl Acad Sci U S A. 2009;106(47):19878–83.PubMedPubMedCentralCrossRef Xie D, Gore C, Zhou J, Pong RC, Zhang H, Yu L, Vessella RL, Min W, Hsieh JT. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc Natl Acad Sci U S A. 2009;106(47):19878–83.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc Natl Acad Sci U S A. 2010;107(25):11381–6.PubMedPubMedCentralCrossRef Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc Natl Acad Sci U S A. 2010;107(25):11381–6.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take Centre stage. Curr Opin Cell Biol. 1999;11(2):219–5.PubMedCrossRef Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take Centre stage. Curr Opin Cell Biol. 1999;11(2):219–5.PubMedCrossRef
12.
Zurück zum Zitat Holand K, Boller D, Hagel C, Dolski S, Treszl A, Pardo OE, Cwiek P, Salm F, Leni Z, Shepherd PR, et al. Targeting class IA PI3K isoforms selectively impairs cell growth, survival, and migration in glioblastoma. PLoS One. 2014;9(4):e94132.PubMedPubMedCentralCrossRef Holand K, Boller D, Hagel C, Dolski S, Treszl A, Pardo OE, Cwiek P, Salm F, Leni Z, Shepherd PR, et al. Targeting class IA PI3K isoforms selectively impairs cell growth, survival, and migration in glioblastoma. PLoS One. 2014;9(4):e94132.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Bleeker FE, Lamba S, Zanon C, Molenaar RJ, Hulsebos TJM, Troost D, van Tilborg AA, Vandertop WP, Leenstra S, van Noorden CJF, et al. Mutational profiling of kinases in glioblastoma. BMC Cancer. 2014;14:718.PubMedPubMedCentralCrossRef Bleeker FE, Lamba S, Zanon C, Molenaar RJ, Hulsebos TJM, Troost D, van Tilborg AA, Vandertop WP, Leenstra S, van Noorden CJF, et al. Mutational profiling of kinases in glioblastoma. BMC Cancer. 2014;14:718.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ojeda L, Gao JL, Hooten KG, Wang EY, Thonhoff JR, Dunn TJ, Gao TY, Wu P. Critical Role of PI3K/Akt/GSK3 beta in Motoneuron Specification from Human Neural Stem Cells in Response to FGF2 and EGF. Plos One. 2011;6(8):e23414.PubMedPubMedCentralCrossRef Ojeda L, Gao JL, Hooten KG, Wang EY, Thonhoff JR, Dunn TJ, Gao TY, Wu P. Critical Role of PI3K/Akt/GSK3 beta in Motoneuron Specification from Human Neural Stem Cells in Response to FGF2 and EGF. Plos One. 2011;6(8):e23414.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Peltier J, O'Neill A, Schaffer DV. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 2007;67(10):1348–61.CrossRefPubMed Peltier J, O'Neill A, Schaffer DV. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 2007;67(10):1348–61.CrossRefPubMed
16.
Zurück zum Zitat Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol. 2011;93(2):182–203.CrossRefPubMed Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol. 2011;93(2):182–203.CrossRefPubMed
17.
Zurück zum Zitat King D, Yeomanson D, Bryant HE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediat Hematol Onc. 2015;37(4):245–51.CrossRef King D, Yeomanson D, Bryant HE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediat Hematol Onc. 2015;37(4):245–51.CrossRef
18.
Zurück zum Zitat Wyatt LA, Filbin MT, Keirstead HS. PTEN inhibition enhances Neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 2014;522(12):2741–55.PubMedCrossRef Wyatt LA, Filbin MT, Keirstead HS. PTEN inhibition enhances Neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 2014;522(12):2741–55.PubMedCrossRef
19.
Zurück zum Zitat Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Update. 2015;18:1–17.CrossRef Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Update. 2015;18:1–17.CrossRef
20.
Zurück zum Zitat Zou ZY, Zhang J, Zhang HY, Liu HG, Li ZG, Cheng D, Chen J, Liu L, Ni MJ, Zhang Y, et al. 3-Methyladenine can depress drug efflux transporters via blocking the PI3K-AKT-mTOR pathway thus sensitizing MDR cancer to chemotherapy. J Drug Target. 2014;22(9):839–48.PubMedCrossRef Zou ZY, Zhang J, Zhang HY, Liu HG, Li ZG, Cheng D, Chen J, Liu L, Ni MJ, Zhang Y, et al. 3-Methyladenine can depress drug efflux transporters via blocking the PI3K-AKT-mTOR pathway thus sensitizing MDR cancer to chemotherapy. J Drug Target. 2014;22(9):839–48.PubMedCrossRef
21.
Zurück zum Zitat Wu CP, Murakami M, Hsiao SH, Chou AW, Li YQ, Huang YH, Hung TH, Ambudkar SV. Overexpression of ATP-binding cassette subfamily G member 2 confers resistance to phosphatidylinositol 3-kinase inhibitor PF-4989216 in Cancer cells. Mol Pharm. 2017;14(7):2368–77.PubMedCrossRefPubMedCentral Wu CP, Murakami M, Hsiao SH, Chou AW, Li YQ, Huang YH, Hung TH, Ambudkar SV. Overexpression of ATP-binding cassette subfamily G member 2 confers resistance to phosphatidylinositol 3-kinase inhibitor PF-4989216 in Cancer cells. Mol Pharm. 2017;14(7):2368–77.PubMedCrossRefPubMedCentral
22.
Zurück zum Zitat Wang K, Shan YT, Ma L, Yang KY, Hua BJ, Yin W, Yin FZ, Chen Y. Natural product toosendanin reverses the resistance of human breast cancer cells to adriamycin as a novel PI3K inhibitor. Biochem Pharmacol. 2018;152:153–64.CrossRef Wang K, Shan YT, Ma L, Yang KY, Hua BJ, Yin W, Yin FZ, Chen Y. Natural product toosendanin reverses the resistance of human breast cancer cells to adriamycin as a novel PI3K inhibitor. Biochem Pharmacol. 2018;152:153–64.CrossRef
23.
Zurück zum Zitat Ambudkar SV. Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzymol. 1998;292:504–14.PubMedCrossRef Ambudkar SV. Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzymol. 1998;292:504–14.PubMedCrossRef
24.
Zurück zum Zitat Gupta P, Zhang YK, Zhang XY, Wang YJ, Lu KW, Hall T, Peng R, Yang DH, Xie N, Chen ZS. Voruciclib, a potent CDK4/6 inhibitor, antagonizes ABCB1 and ABCG2-mediated multi-drug resistance in Cancer cells. Cell Physiol Biochem. 2018;45(4):1515–28.PubMedCrossRef Gupta P, Zhang YK, Zhang XY, Wang YJ, Lu KW, Hall T, Peng R, Yang DH, Xie N, Chen ZS. Voruciclib, a potent CDK4/6 inhibitor, antagonizes ABCB1 and ABCG2-mediated multi-drug resistance in Cancer cells. Cell Physiol Biochem. 2018;45(4):1515–28.PubMedCrossRef
25.
Zurück zum Zitat Smiley ST, Reers M, Mottolahartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB. Intracellular heterogeneity in mitochondrial-membrane potentials revealed by a J-aggregate-forming lipophilic Cation Jc-1. P Natl Acad Sci USA. 1991;88(9):3671–5.CrossRef Smiley ST, Reers M, Mottolahartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB. Intracellular heterogeneity in mitochondrial-membrane potentials revealed by a J-aggregate-forming lipophilic Cation Jc-1. P Natl Acad Sci USA. 1991;88(9):3671–5.CrossRef
26.
Zurück zum Zitat Kim Y, Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 2018;359(6378):915–9.PubMedCrossRef Kim Y, Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 2018;359(6378):915–9.PubMedCrossRef
27.
Zurück zum Zitat Wang SQ, Liu ST, Zhao BX, Yang FH, Wang YT, Liang QY, Sun YB, Liu Y, Song ZH, Cai Y, et al. Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1. Oncotarget. 2015;6(28):26142–60.PubMedPubMedCentral Wang SQ, Liu ST, Zhao BX, Yang FH, Wang YT, Liang QY, Sun YB, Liu Y, Song ZH, Cai Y, et al. Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1. Oncotarget. 2015;6(28):26142–60.PubMedPubMedCentral
28.
Zurück zum Zitat Wu CP, Hsieh YJ, Hsiao SH, Su CY, Li YQ, Huang YH, Huang CW, Hsieh CH, Yu JS, Wu YS. Human ATP-binding cassette transporter ABCG2 confers resistance to CUDC-907, a dual inhibitor of histone Deacetylase and phosphatidylinositol 3-kinase. Mol Pharm. 2016;13(3):784–94.PubMedCrossRef Wu CP, Hsieh YJ, Hsiao SH, Su CY, Li YQ, Huang YH, Huang CW, Hsieh CH, Yu JS, Wu YS. Human ATP-binding cassette transporter ABCG2 confers resistance to CUDC-907, a dual inhibitor of histone Deacetylase and phosphatidylinositol 3-kinase. Mol Pharm. 2016;13(3):784–94.PubMedCrossRef
29.
Zurück zum Zitat Baba Y, Nosho K, Shima K, Hayashi M, Meyerhardt JA, Chan AT, Giovannucci E, Fuchs CS, Ogino S. Phosphorylated AKT expression is associated with PIK3CA mutation, low stage, and favorable outcome in 717 colorectal cancers. Cancer-Am Cancer Soc. 2011;117(7):1399–408. Baba Y, Nosho K, Shima K, Hayashi M, Meyerhardt JA, Chan AT, Giovannucci E, Fuchs CS, Ogino S. Phosphorylated AKT expression is associated with PIK3CA mutation, low stage, and favorable outcome in 717 colorectal cancers. Cancer-Am Cancer Soc. 2011;117(7):1399–408.
30.
Zurück zum Zitat Li SL, Huang CH, Lin CC, Huang ZN, Chern JH, Lien HY, Wu YY, Cheng CH, Chang CY, Chuu JJ. Antitumor effect of BPR-DC-2, a novel synthetic cyclic cyanoguanidine derivative, involving the inhibition of MDR-1 expression and down-regulation of p-AKT and PARP-1 in lung cancer. Investig New Drugs. 2011;29(2):195–206.CrossRef Li SL, Huang CH, Lin CC, Huang ZN, Chern JH, Lien HY, Wu YY, Cheng CH, Chang CY, Chuu JJ. Antitumor effect of BPR-DC-2, a novel synthetic cyclic cyanoguanidine derivative, involving the inhibition of MDR-1 expression and down-regulation of p-AKT and PARP-1 in lung cancer. Investig New Drugs. 2011;29(2):195–206.CrossRef
31.
Zurück zum Zitat Wang L, Chen B, Lin M, Cao Y, Chen Y, Chen X, Liu T, Hu J. Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling. Immunobiology. 2015;220(3):331–40.PubMedCrossRef Wang L, Chen B, Lin M, Cao Y, Chen Y, Chen X, Liu T, Hu J. Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling. Immunobiology. 2015;220(3):331–40.PubMedCrossRef
32.
Zurück zum Zitat Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (review). Mol Med Rep. 2019;19(2):783–91.PubMed Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (review). Mol Med Rep. 2019;19(2):783–91.PubMed
33.
Zurück zum Zitat Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep. 2018;45(6):2869–81.PubMedCrossRef Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep. 2018;45(6):2869–81.PubMedCrossRef
34.
Zurück zum Zitat Zhang SL, Ma L, Zhao J, You SP, Ma XT, Ye XY, Liu T. The Phenylethanol glycoside liposome inhibits PDGF-induced HSC activation via regulation of the FAK/PI3K/Akt signaling pathway. Molecules. 2019;24(18):3282.PubMedCentralCrossRef Zhang SL, Ma L, Zhao J, You SP, Ma XT, Ye XY, Liu T. The Phenylethanol glycoside liposome inhibits PDGF-induced HSC activation via regulation of the FAK/PI3K/Akt signaling pathway. Molecules. 2019;24(18):3282.PubMedCentralCrossRef
35.
Zurück zum Zitat Chang LC, Sun HL, Tsai CH, Kuo CW, Liu KL, Lii CK, Huang CS, Li CC. 1,25(OH)2 D3 attenuates indoxyl sulfate-induced epithelial-to-mesenchymal cell transition via inactivation of PI3K/Akt/beta-catenin signaling in renal tubular epithelial cells. Nutrition. 2019;69:110554.PubMedCrossRef Chang LC, Sun HL, Tsai CH, Kuo CW, Liu KL, Lii CK, Huang CS, Li CC. 1,25(OH)2 D3 attenuates indoxyl sulfate-induced epithelial-to-mesenchymal cell transition via inactivation of PI3K/Akt/beta-catenin signaling in renal tubular epithelial cells. Nutrition. 2019;69:110554.PubMedCrossRef
36.
Zurück zum Zitat Shi G, Zhang H, Yu Q, Hu C, Ji Y. GATA1 gene silencing inhibits invasion, proliferation and migration of cholangiocarcinoma stem cells via disrupting the PI3K/AKT pathway. Onco Targets Ther. 2019;12:5335–54.PubMedPubMedCentralCrossRef Shi G, Zhang H, Yu Q, Hu C, Ji Y. GATA1 gene silencing inhibits invasion, proliferation and migration of cholangiocarcinoma stem cells via disrupting the PI3K/AKT pathway. Onco Targets Ther. 2019;12:5335–54.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Kim JY, Ohn J, Yoon JS, Kang BM, Park M, Kim S, Lee W, Hwang S, Kim JI, Kim KH, et al. Priming mobilization of hair follicle stem cells triggers permanent loss of regeneration after alkylating chemotherapy. Nat Commun. 2019;10(1):3694.PubMedPubMedCentralCrossRef Kim JY, Ohn J, Yoon JS, Kang BM, Park M, Kim S, Lee W, Hwang S, Kim JI, Kim KH, et al. Priming mobilization of hair follicle stem cells triggers permanent loss of regeneration after alkylating chemotherapy. Nat Commun. 2019;10(1):3694.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zhang YZ, Xia MF, Jin K, Wang SF, Wei H, Fan CM, Wu YF, Li XL, Li XY, Li GY, et al. Function of the c-met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17:45.PubMedPubMedCentralCrossRef Zhang YZ, Xia MF, Jin K, Wang SF, Wei H, Fan CM, Wu YF, Li XL, Li XY, Li GY, et al. Function of the c-met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17:45.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Yang WB, Wu ZJ, Yang K, Han YX, Chen YJ, Zhao WL, Huang FY, Jin Y, Jin W. BMI1 promotes cardiac fibrosis in ischemia-induced heart failure via the PTEN-PI3K/Akt-mTOR signaling pathway. Am J Physiol-Heart C. 2019;316(1):H61–9.CrossRef Yang WB, Wu ZJ, Yang K, Han YX, Chen YJ, Zhao WL, Huang FY, Jin Y, Jin W. BMI1 promotes cardiac fibrosis in ischemia-induced heart failure via the PTEN-PI3K/Akt-mTOR signaling pathway. Am J Physiol-Heart C. 2019;316(1):H61–9.CrossRef
40.
Zurück zum Zitat Yang X, Zhao T, Feng L, Shi Y, Jiang J, Liang S, Sun B, Xu Q, Duan J, Sun Z. PM2.5-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environ Int. 2019;127:601–14.PubMedCrossRef Yang X, Zhao T, Feng L, Shi Y, Jiang J, Liang S, Sun B, Xu Q, Duan J, Sun Z. PM2.5-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environ Int. 2019;127:601–14.PubMedCrossRef
41.
Zurück zum Zitat Zhuo MQ, Pan YX, Wu K, Xu YH, Luo Z. Characterization and mechanism of phosphoinositide 3-kinases (PI3Ks) members in insulin-induced changes of protein metabolism in yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocr. 2017;247:34–45.PubMedCrossRef Zhuo MQ, Pan YX, Wu K, Xu YH, Luo Z. Characterization and mechanism of phosphoinositide 3-kinases (PI3Ks) members in insulin-induced changes of protein metabolism in yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocr. 2017;247:34–45.PubMedCrossRef
42.
Zurück zum Zitat Yan X, Hui Y, Hua Y, Huang L, Wang L, Peng F, Tang C, Liu D, Song J, Wang F. EG-VEGF silencing inhibits cell proliferation and promotes cell apoptosis in pancreatic carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother. 2019;109:762–9.PubMedCrossRef Yan X, Hui Y, Hua Y, Huang L, Wang L, Peng F, Tang C, Liu D, Song J, Wang F. EG-VEGF silencing inhibits cell proliferation and promotes cell apoptosis in pancreatic carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother. 2019;109:762–9.PubMedCrossRef
43.
Zurück zum Zitat Wu Y, Hu Y, Yu X, Zhang Y, Huang X, Chen S, Li Y, Zeng C. TAL1 mediates imatinib-induced CML cell apoptosis via the PTEN/PI3K/AKT pathway. Biochem Biophys Res Commun. 2019;519(2):234–9.PubMedCrossRef Wu Y, Hu Y, Yu X, Zhang Y, Huang X, Chen S, Li Y, Zeng C. TAL1 mediates imatinib-induced CML cell apoptosis via the PTEN/PI3K/AKT pathway. Biochem Biophys Res Commun. 2019;519(2):234–9.PubMedCrossRef
44.
Zurück zum Zitat Zhou S, Sakamoto K. Pyruvic acid/ethyl pyruvate inhibits melanogenesis in B16F10 melanoma cells through PI3K/AKT, GSK3beta, and ROS-ERK signaling pathways. Genes Cells. 2019;24(1):60–9.PubMedCrossRef Zhou S, Sakamoto K. Pyruvic acid/ethyl pyruvate inhibits melanogenesis in B16F10 melanoma cells through PI3K/AKT, GSK3beta, and ROS-ERK signaling pathways. Genes Cells. 2019;24(1):60–9.PubMedCrossRef
45.
Zurück zum Zitat Wang J, Sun J, Zhang N, Yang R, Li H, Zhang Y, Chen K, Kong D. PES1 enhances proliferation and tumorigenesis in hepatocellular carcinoma via the PI3K/AKT pathway. Life Sci. 2019;219:182–9.PubMedCrossRef Wang J, Sun J, Zhang N, Yang R, Li H, Zhang Y, Chen K, Kong D. PES1 enhances proliferation and tumorigenesis in hepatocellular carcinoma via the PI3K/AKT pathway. Life Sci. 2019;219:182–9.PubMedCrossRef
46.
Zurück zum Zitat Lu M, Hartmann D, Braren R, Gupta A, Wang B, Wang Y, Mogler C, Cheng Z, Wirth T, Friess H, et al. Oncogenic Akt-FOXO3 loop favors tumor-promoting modes and enhances oxidative damage-associated hepatocellular carcinogenesis. BMC Cancer. 2019;19(1):887.PubMedPubMedCentralCrossRef Lu M, Hartmann D, Braren R, Gupta A, Wang B, Wang Y, Mogler C, Cheng Z, Wirth T, Friess H, et al. Oncogenic Akt-FOXO3 loop favors tumor-promoting modes and enhances oxidative damage-associated hepatocellular carcinogenesis. BMC Cancer. 2019;19(1):887.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Liu MH, Li GH, Peng LJ, Qu SL, Zhang Y, Peng J, Luo XY, Hu HJ, Ren Z, Liu Y, et al. PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells. Mol Cell Biochem. 2016;414(1–2):57–66.PubMed Liu MH, Li GH, Peng LJ, Qu SL, Zhang Y, Peng J, Luo XY, Hu HJ, Ren Z, Liu Y, et al. PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells. Mol Cell Biochem. 2016;414(1–2):57–66.PubMed
48.
Zurück zum Zitat Ma L, Meng Y, Tu C, Cao X, Wang H, Li Y, Man S, Zhou J, Li M, Liu Z, et al. A cardiac glycoside HTF-1 isolated from Helleborus thibetanus Franch displays potent in vitro anti-cancer activity via caspase-9, MAPK and PI3K-Akt-mTOR pathways. Eur J Med Chem. 2018;158:743–52.PubMedCrossRef Ma L, Meng Y, Tu C, Cao X, Wang H, Li Y, Man S, Zhou J, Li M, Liu Z, et al. A cardiac glycoside HTF-1 isolated from Helleborus thibetanus Franch displays potent in vitro anti-cancer activity via caspase-9, MAPK and PI3K-Akt-mTOR pathways. Eur J Med Chem. 2018;158:743–52.PubMedCrossRef
49.
Zurück zum Zitat Lee C, Kim JS, Waldman T. Activated PI3K signaling as an endogenous inducer of p53 in human cancer. Cell Cycle. 2007;6(4):394–6.PubMedCrossRef Lee C, Kim JS, Waldman T. Activated PI3K signaling as an endogenous inducer of p53 in human cancer. Cell Cycle. 2007;6(4):394–6.PubMedCrossRef
50.
Zurück zum Zitat Tsuji T, Ozasa H, Aoki W, Aburaya S, Funazo T, Furugaki K, Yoshimura Y, Ajimizu H, Okutani R, Yasuda Y, et al. Alectinib resistance in ALK-rearranged lung Cancer by dual salvage signaling in a clinically paired resistance model. Mol Cancer Res. 2019;17(1):212–24.PubMedCrossRef Tsuji T, Ozasa H, Aoki W, Aburaya S, Funazo T, Furugaki K, Yoshimura Y, Ajimizu H, Okutani R, Yasuda Y, et al. Alectinib resistance in ALK-rearranged lung Cancer by dual salvage signaling in a clinically paired resistance model. Mol Cancer Res. 2019;17(1):212–24.PubMedCrossRef
51.
Zurück zum Zitat Gasser JA, Inuzuka H, Lau AW, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56(4):595–607.PubMedPubMedCentralCrossRef Gasser JA, Inuzuka H, Lau AW, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56(4):595–607.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–91.PubMedCrossRef Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–91.PubMedCrossRef
54.
Zurück zum Zitat Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, Bergo M, Ejeskar K. p37delta is a new isoform of PI3K p110delta that increases cell proliferation and is overexpressed in tumors. Oncogene. 2012;31(27):3277–86.PubMedCrossRef Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, Bergo M, Ejeskar K. p37delta is a new isoform of PI3K p110delta that increases cell proliferation and is overexpressed in tumors. Oncogene. 2012;31(27):3277–86.PubMedCrossRef
55.
Zurück zum Zitat Naduthodi MIS, Mohanraju P, Sudfeld C, D'Adamo S, Barbosa MJ, van der Oost J. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. Biotechnol Biofuels. 2019;12:66.PubMedPubMedCentralCrossRef Naduthodi MIS, Mohanraju P, Sudfeld C, D'Adamo S, Barbosa MJ, van der Oost J. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. Biotechnol Biofuels. 2019;12:66.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, Kong N, Liu SC, Chen GQ, Wang Y, et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 2018;19(1):170.PubMedPubMedCentralCrossRef Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, Kong N, Liu SC, Chen GQ, Wang Y, et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 2018;19(1):170.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Momose T, De Cian A, Shiba K, Inaba K, Giovannangeli C, Concordet JP. High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low mosaicism in the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion. Sci Rep. 2018;8(1):11734.PubMedPubMedCentralCrossRef Momose T, De Cian A, Shiba K, Inaba K, Giovannangeli C, Concordet JP. High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low mosaicism in the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion. Sci Rep. 2018;8(1):11734.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Cheng C, Liu ZG, Zhang H, Xie JD, Chen XG, Zhao XQ, Wang F, Liang YJ, Chen LK, Singh S, et al. Enhancing chemosensitivity in ABCB1- and ABCG2-overexpressing cells and cancer stem-like cells by an Aurora kinase inhibitor CCT129202. Mol Pharm. 2012;9(7):1971–82.PubMedCrossRef Cheng C, Liu ZG, Zhang H, Xie JD, Chen XG, Zhao XQ, Wang F, Liang YJ, Chen LK, Singh S, et al. Enhancing chemosensitivity in ABCB1- and ABCG2-overexpressing cells and cancer stem-like cells by an Aurora kinase inhibitor CCT129202. Mol Pharm. 2012;9(7):1971–82.PubMedCrossRef
59.
Zurück zum Zitat Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium (ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev. 2017;46(19):5771–804.PubMedPubMedCentralCrossRef Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium (ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev. 2017;46(19):5771–804.PubMedPubMedCentralCrossRef
Metadaten
Titel
The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer
verfasst von
Lei Zhang
Yidong Li
Qianchao Wang
Zhuo Chen
Xiaoyun Li
Zhuoxun Wu
Chaohua Hu
Dan Liao
Wei Zhang
Zhe-Sheng Chen
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2020
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-019-1112-1

Weitere Artikel der Ausgabe 1/2020

Molecular Cancer 1/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.