Skip to main content
Erschienen in: Angiogenesis 3/2019

09.04.2019 | Original Paper

The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis

verfasst von: Alfred C. Aplin, Roberto F. Nicosia

Erschienen in: Angiogenesis | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Progression of atherosclerotic plaques into life-threatening lesions is associated with angiogenesis which contributes to intraplaque hemorrhages and plaque instability. The lack of adequate models for the study of human plaque-induced angiogenesis has limited progress in this field. We describe here a novel ex vivo model which fills this gap. Plaques obtained from 15 patients who underwent endarterectomy procedures were co-cultured in collagen gels with rat aorta rings which served as read-out of human plaque angiogenic activity. The majority of plaque fragments markedly stimulated angiogenic sprouting from the aortic rings while concurrently promoting the outgrowth of resident macrophages from the aortic adventitia. This stimulatory activity correlated with the presence of intraplaque macrophages. Proteomic analysis of plaque secretomes revealed heterogeneity of macrophage-stimulatory cytokine and angiogenic factor production by different plaques. VEGF was identified in some of the plaque secretomes. Antibody-mediated blockade of VEGF had significant but transient inhibitory effect on angiogenesis, which suggested redundancy of plaque-derived angiogenic stimuli. Pharmacologic ablation of adventitial macrophages permanently impaired the angiogenic response of aortic rings to plaque stimuli. Our results show that human plaque-induced angiogenesis can be reproduced ex vivo using rat aortic rings as read-out of plaque angiogenic activity. This model can be used to identify key cellular and molecular mechanisms responsible for the neovascularization of human plaques.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–944CrossRefPubMed Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–944CrossRefPubMed
2.
Zurück zum Zitat Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325CrossRefPubMed Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325CrossRefPubMed
3.
Zurück zum Zitat Falke P, Matzsch T, Sternby NH, Bergqvist D, Stavenow L (1995) Intraplaque haemorrhage at carotid artery surgery—a predictor of cardiovascular mortality. J Intern Med 238:131–135CrossRefPubMed Falke P, Matzsch T, Sternby NH, Bergqvist D, Stavenow L (1995) Intraplaque haemorrhage at carotid artery surgery—a predictor of cardiovascular mortality. J Intern Med 238:131–135CrossRefPubMed
4.
Zurück zum Zitat Saam T, Hatsukami TS, Takaya N, Chu B, Underhill H, Kerwin WS, Cai J, Ferguson MS, Yuan C (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77CrossRefPubMed Saam T, Hatsukami TS, Takaya N, Chu B, Underhill H, Kerwin WS, Cai J, Ferguson MS, Yuan C (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77CrossRefPubMed
5.
Zurück zum Zitat Michel JB, Virmani R, Arbustini E, Pasterkamp G (2011) Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J 32:1977–1985, 1985a, 1985b, 1985c Michel JB, Virmani R, Arbustini E, Pasterkamp G (2011) Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J 32:1977–1985, 1985a, 1985b, 1985c
6.
Zurück zum Zitat Davies MJ, Thomas AC (1985) Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53:363–373CrossRefPubMedPubMedCentral Davies MJ, Thomas AC (1985) Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53:363–373CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061CrossRefPubMed Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061CrossRefPubMed
8.
Zurück zum Zitat Zhang Y, Cliff WJ, Schoefl GI, Higgins G (1993) Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 143:164–172PubMedPubMedCentral Zhang Y, Cliff WJ, Schoefl GI, Higgins G (1993) Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 143:164–172PubMedPubMedCentral
9.
Zurück zum Zitat Michel JB, Thaunat O, Houard X, Meilhac O, Caligiuri G, Nicoletti A (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 27:1259–1268CrossRefPubMed Michel JB, Thaunat O, Houard X, Meilhac O, Caligiuri G, Nicoletti A (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 27:1259–1268CrossRefPubMed
10.
Zurück zum Zitat Jeziorska M, Woolley DE (1999) Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol 30:919–925CrossRefPubMed Jeziorska M, Woolley DE (1999) Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol 30:919–925CrossRefPubMed
11.
Zurück zum Zitat Ho-Tin-Noe B, Michel JB (2011) Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation. Trends Cardiovasc Med 21:183–187CrossRefPubMed Ho-Tin-Noe B, Michel JB (2011) Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation. Trends Cardiovasc Med 21:183–187CrossRefPubMed
12.
Zurück zum Zitat Hatsukami TS, Ferguson MS, Beach KW, Gordon D, Detmer P, Burns D, Alpers C, Strandness DE Jr (1997) Carotid plaque morphology and clinical events. Stroke 28:95–100CrossRefPubMed Hatsukami TS, Ferguson MS, Beach KW, Gordon D, Detmer P, Burns D, Alpers C, Strandness DE Jr (1997) Carotid plaque morphology and clinical events. Stroke 28:95–100CrossRefPubMed
14.
Zurück zum Zitat Nicosia RF, Zhu WH, Fogel E, Howson KM, Aplin AC (2005) A new ex vivo model to study venous angiogenesis and arterio-venous anastomosis formation. J Vasc Res 42:111–119CrossRefPubMed Nicosia RF, Zhu WH, Fogel E, Howson KM, Aplin AC (2005) A new ex vivo model to study venous angiogenesis and arterio-venous anastomosis formation. J Vasc Res 42:111–119CrossRefPubMed
15.
Zurück zum Zitat Aplin AC, Fogel E, Zorzi P, Nicosia RF (2008) The aortic ring model of angiogenesis. Methods Enzymol 443:119–136CrossRefPubMed Aplin AC, Fogel E, Zorzi P, Nicosia RF (2008) The aortic ring model of angiogenesis. Methods Enzymol 443:119–136CrossRefPubMed
16.
Zurück zum Zitat Gelati M, Aplin AC, Fogel E, Smith KD, Nicosia RF (2008) The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages. J Immunol 181:5711–5719CrossRefPubMed Gelati M, Aplin AC, Fogel E, Smith KD, Nicosia RF (2008) The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages. J Immunol 181:5711–5719CrossRefPubMed
17.
Zurück zum Zitat Ligresti G, Aplin AC, Zorzi P, Morishita A, Nicosia RF (2011) Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury. Arterioscler Thromb Vasc Biol 31:1151–1159CrossRefPubMedPubMedCentral Ligresti G, Aplin AC, Zorzi P, Morishita A, Nicosia RF (2011) Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury. Arterioscler Thromb Vasc Biol 31:1151–1159CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Schneider CA, Rasband WS, Eliceiri KW (2018) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef Schneider CA, Rasband WS, Eliceiri KW (2018) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef
19.
Zurück zum Zitat Zhu WH, Guo X, Villaschi S, Francesco NR (2000) Regulation of vascular growth and regression by matrix metalloproteinases in the rat aorta model of angiogenesis. Lab Invest 80:545–555CrossRefPubMed Zhu WH, Guo X, Villaschi S, Francesco NR (2000) Regulation of vascular growth and regression by matrix metalloproteinases in the rat aorta model of angiogenesis. Lab Invest 80:545–555CrossRefPubMed
20.
Zurück zum Zitat Aplin AC, Zhu WH, Fogel E, Nicosia RF (2009) Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am J Physiol Cell Physiol 297:C471–480CrossRefPubMedPubMedCentral Aplin AC, Zhu WH, Fogel E, Nicosia RF (2009) Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am J Physiol Cell Physiol 297:C471–480CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24:5494–5499CrossRefPubMed Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24:5494–5499CrossRefPubMed
22.
23.
Zurück zum Zitat Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309CrossRefPubMed Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309CrossRefPubMed
24.
Zurück zum Zitat Song H, Yin D, Liu Z (2012) GDF-15 promotes angiogenesis through modulating p53/HIF-1a signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep 39:4017–4022CrossRefPubMed Song H, Yin D, Liu Z (2012) GDF-15 promotes angiogenesis through modulating p53/HIF-1a signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep 39:4017–4022CrossRefPubMed
25.
Zurück zum Zitat Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271:736–741CrossRefPubMed Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271:736–741CrossRefPubMed
26.
Zurück zum Zitat Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17:135–143CrossRefPubMed Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17:135–143CrossRefPubMed
27.
Zurück zum Zitat Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34–40PubMed Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34–40PubMed
28.
Zurück zum Zitat Asare Y, Schmitt M, Bernhagen J (2013) The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 109:391–398CrossRefPubMed Asare Y, Schmitt M, Bernhagen J (2013) The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 109:391–398CrossRefPubMed
29.
Zurück zum Zitat Liekens S, Schols D, Hatse S (2018) CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des 16:3903–3920CrossRef Liekens S, Schols D, Hatse S (2018) CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des 16:3903–3920CrossRef
30.
Zurück zum Zitat Nicosia RF, Nicosia SV, Smith M (1994) Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145:1023–1029PubMedPubMedCentral Nicosia RF, Nicosia SV, Smith M (1994) Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145:1023–1029PubMedPubMedCentral
31.
Zurück zum Zitat Movahedi B, Gysemans C, Jacobs-Tulleneers-Thevissen D, Mathieu C, Pipeleers D (2008) Pancreatic duct cells in human islet cell preparations are a source of angiogenic cytokines interleukin-8 and vascular endothelial growth factor. Diabetes 57:2128–2136CrossRefPubMedPubMedCentral Movahedi B, Gysemans C, Jacobs-Tulleneers-Thevissen D, Mathieu C, Pipeleers D (2008) Pancreatic duct cells in human islet cell preparations are a source of angiogenic cytokines interleukin-8 and vascular endothelial growth factor. Diabetes 57:2128–2136CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Gopinathan G, Milagre C, Pearce OM, Reynolds LE, Hodivala-Dilke K, Leinster DA, Zhong H, Hollingsworth RE, Thompson R, Whiteford JR, Barger AC (2015) Interleukin-6 stimulates defective angiogenesis. Cancer Res 75:3098–3107CrossRefPubMedPubMedCentral Gopinathan G, Milagre C, Pearce OM, Reynolds LE, Hodivala-Dilke K, Leinster DA, Zhong H, Hollingsworth RE, Thompson R, Whiteford JR, Barger AC (2015) Interleukin-6 stimulates defective angiogenesis. Cancer Res 75:3098–3107CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Aplin AC, Fogel E, Nicosia RF (2010) MCP-1 promotes mural cell recruitment during angiogenesis in the aortic ring model. Angiogenesis 13:219–226CrossRefPubMedPubMedCentral Aplin AC, Fogel E, Nicosia RF (2010) MCP-1 promotes mural cell recruitment during angiogenesis in the aortic ring model. Angiogenesis 13:219–226CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135CrossRefPubMedPubMedCentral Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Aplin AC, Gelati M, Fogel E, Carnevale E, Nicosia RF (2006) Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics 27:20–28CrossRefPubMed Aplin AC, Gelati M, Fogel E, Carnevale E, Nicosia RF (2006) Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics 27:20–28CrossRefPubMed
36.
Zurück zum Zitat Martinet W, Schrijvers DM, De Meyer GR (2011) Necrotic cell death in atherosclerosis. Basic Res Cardiol 106:749–760CrossRefPubMed Martinet W, Schrijvers DM, De Meyer GR (2011) Necrotic cell death in atherosclerosis. Basic Res Cardiol 106:749–760CrossRefPubMed
37.
Zurück zum Zitat Parma L, Baganha F, Quax PHA, de Vries MR (2017) Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 816:107–115CrossRefPubMed Parma L, Baganha F, Quax PHA, de Vries MR (2017) Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 816:107–115CrossRefPubMed
38.
Zurück zum Zitat Barger AC, Beeuwkes R, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177CrossRefPubMed Barger AC, Beeuwkes R, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177CrossRefPubMed
39.
Zurück zum Zitat Guo L, Harari E, Virmani R, Finn AV (2017) Linking hemorrhage, angiogenesis, macrophages, and iron metabolism in atherosclerotic vascular diseases. Arterioscler Thromb Vasc Biol 37:e33–e39CrossRefPubMed Guo L, Harari E, Virmani R, Finn AV (2017) Linking hemorrhage, angiogenesis, macrophages, and iron metabolism in atherosclerotic vascular diseases. Arterioscler Thromb Vasc Biol 37:e33–e39CrossRefPubMed
40.
Zurück zum Zitat Li Y, Zhu Y, Deng Y, Liu Y, Mao Y, Sun J (2016) The therapeutic effect of bevacizumab on plaque neovascularization in a rabbit model of atherosclerosis during contrast-enhanced ultrasonography. Sci Rep 6:30417CrossRefPubMedPubMedCentral Li Y, Zhu Y, Deng Y, Liu Y, Mao Y, Sun J (2016) The therapeutic effect of bevacizumab on plaque neovascularization in a rabbit model of atherosclerosis during contrast-enhanced ultrasonography. Sci Rep 6:30417CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Guo L, Akahori H, Harari E, Smith SL, Polavarapu R, Karmali V, Otsuka F, Gannon RL, Braumann RE, Dickinson MH, Gupta A, Jenkins AL, Lipinski MJ, Kim J, Chhour P et al (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128:1106–1124CrossRefPubMedPubMedCentral Guo L, Akahori H, Harari E, Smith SL, Polavarapu R, Karmali V, Otsuka F, Gannon RL, Braumann RE, Dickinson MH, Gupta A, Jenkins AL, Lipinski MJ, Kim J, Chhour P et al (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128:1106–1124CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Olson FJ, Stromberg S, Hjelmgren O, Kjelldahl J, Fagerberg B, Bergstrom GM (2011) Increased vascularization of shoulder regions of carotid atherosclerotic plaques from patients with diabetes. J Vasc Surg 54:1324–1331CrossRefPubMed Olson FJ, Stromberg S, Hjelmgren O, Kjelldahl J, Fagerberg B, Bergstrom GM (2011) Increased vascularization of shoulder regions of carotid atherosclerotic plaques from patients with diabetes. J Vasc Surg 54:1324–1331CrossRefPubMed
43.
Zurück zum Zitat Zorzi P, Aplin AC, Smith KD, Nicosia RF (2010) Technical advance: the rat aorta contains resident mononuclear phagocytes with proliferative capacity and proangiogenic properties. J Leukoc Biol 88:1051–1059CrossRefPubMedPubMedCentral Zorzi P, Aplin AC, Smith KD, Nicosia RF (2010) Technical advance: the rat aorta contains resident mononuclear phagocytes with proliferative capacity and proangiogenic properties. J Leukoc Biol 88:1051–1059CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Wang J, Wang Y, Wang J, Guo X, Chan EC, Jiang F (2018) Adventitial activation in the pathogenesis of injury-induced arterial remodeling: potential implications in transplant vasculopathy. Am J Pathol 188:838–845CrossRefPubMed Wang J, Wang Y, Wang J, Guo X, Chan EC, Jiang F (2018) Adventitial activation in the pathogenesis of injury-induced arterial remodeling: potential implications in transplant vasculopathy. Am J Pathol 188:838–845CrossRefPubMed
45.
Zurück zum Zitat Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108CrossRefPubMedPubMedCentral Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59:166–177CrossRefPubMed Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59:166–177CrossRefPubMed
47.
Zurück zum Zitat Bo WJ, Murcuri M, Tucker R, Bond MG (2018) The human carotid atherosclerotic plaque stimulates angiogenesis on the chick chorioallantoic membrane. Atherosclerosis 94:71–79CrossRef Bo WJ, Murcuri M, Tucker R, Bond MG (2018) The human carotid atherosclerotic plaque stimulates angiogenesis on the chick chorioallantoic membrane. Atherosclerosis 94:71–79CrossRef
48.
Zurück zum Zitat Alpern-Elran H, Morog N, Robert F, Hoover G, Kalant N, Brem S (2018) Angiogenic activity of the atherosclerotic carotid artery plaque. J Neurosurg 70:942–945CrossRef Alpern-Elran H, Morog N, Robert F, Hoover G, Kalant N, Brem S (2018) Angiogenic activity of the atherosclerotic carotid artery plaque. J Neurosurg 70:942–945CrossRef
Metadaten
Titel
The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis
verfasst von
Alfred C. Aplin
Roberto F. Nicosia
Publikationsdatum
09.04.2019
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 3/2019
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-019-09667-z

Weitere Artikel der Ausgabe 3/2019

Angiogenesis 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.