Skip to main content
Erschienen in: Osteoporosis International 6/2011

01.06.2011 | Original Article

The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats

verfasst von: D. Jing, J. Cai, G. Shen, J. Huang, F. Li, J. Li, L. Lu, E. Luo, Q. Xu

Erschienen in: Osteoporosis International | Ausgabe 6/2011

Einloggen, um Zugang zu erhalten

Abstract

Summary

The present study was the first report demonstrating that pulsed electromagnetic field (PEMF) could partially prevent bone strength and architecture deterioration and improve the impaired bone formation in streptozotocin-induced diabetic rats. The findings indicated that PEMF might become a potential additive method for inhibiting diabetic osteopenia or osteoporosis.

Introduction

Diabetes mellitus (DM) can cause various musculoskeletal abnormalities. Optimal therapeutic methods for diabetic bone complication are still lacking. It is essential to develop more effective and safe therapeutic methods for diabetic bone disorders. Pulsed electromagnetic field (PEMF) as an alternative noninvasive method has proven to be effective for treating fracture healing and osteoporosis in non-diabetic conditions. However, the issue about the therapeutic effects of PEMF on diabetic bone complication has not been previously investigated.

Methods

We herein systematically evaluated the preventive effects of PEMF on diabetic bone loss in streptozotocin-treated rats. Two similar experiments were conducted. In each experiment, 16 diabetic and eight non-diabetic rats were equally assigned to the control, DM, and DM + PEMF group. DM + PEMF group was subjected to daily 8-h PEMF exposure for 8 weeks.

Results

In experiment 1, three-point bending test suggested that PEMF improved the biomechanical quality of diabetic bone tissues, evidenced by increased maximum load, stiffness, and energy absorption. Microcomputed tomography analysis demonstrated that DM-induced bone architecture deterioration was partially reversed by PEMF, evidenced by increased Tb.N, Tb.Th, BV/TV, and Conn.D and reduced Tb.Sp and SMI. Serum OC analysis indicated that PEMF partially prevented DM-induced decrease in bone formation. In experiment 2, no significant difference in the bone resorption marker TRACP5b was observed. These biochemical findings were further supported by the dynamic bone histomorphometric parameters BFR/BS and Oc.N/BS.

Conclusions

The results demonstrated that PEMF could partially prevent DM-induced bone strength and architecture deterioration and improve the impaired bone formation. PEMF might become a potential additive method for inhibiting diabetic osteoporosis.
Literatur
1.
Zurück zum Zitat WHO (2002) World Health Organization: diabetes: the cost of diabetes. Fact Sheet No. 236. World Health Organization. Geneva WHO (2002) World Health Organization: diabetes: the cost of diabetes. Fact Sheet No. 236. World Health Organization. Geneva
2.
Zurück zum Zitat Heath H, Melton LJ, Chu CP (1980) Diabetes mellitus and risk of skeletal fracture. N Engl J Med 303:567–570PubMedCrossRef Heath H, Melton LJ, Chu CP (1980) Diabetes mellitus and risk of skeletal fracture. N Engl J Med 303:567–570PubMedCrossRef
3.
Zurück zum Zitat Forsén L, Meyer HE, Midthjell K, Edna TH (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42:920–925PubMedCrossRef Forsén L, Meyer HE, Midthjell K, Edna TH (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42:920–925PubMedCrossRef
4.
Zurück zum Zitat Macey LR, Kana SM, Jingushi S, Terek RM, Borretos J, Bolander ME (1989) Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am 71:722–733PubMed Macey LR, Kana SM, Jingushi S, Terek RM, Borretos J, Bolander ME (1989) Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am 71:722–733PubMed
5.
Zurück zum Zitat Räkel A, Sheehy O, Rahme E, LeLorier J (2008) Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 34:193–205PubMedCrossRef Räkel A, Sheehy O, Rahme E, LeLorier J (2008) Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 34:193–205PubMedCrossRef
6.
Zurück zum Zitat Hofbauer LC, Brueck CC, Singh SK, Dobnig H (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328PubMedCrossRef Hofbauer LC, Brueck CC, Singh SK, Dobnig H (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328PubMedCrossRef
7.
Zurück zum Zitat Thrailkill KM, Liu L, Wahl EC, Bunn RC, Perrien DS, Cockrell GE, Skinner RA, Hogue WR, Carver AA, Fowlkes JL, Aronson J, Lumpkin CK Jr (2005) Bone formation is impaired in a model of type 1 diabetes. Diabetes 54:2875–2881PubMedCrossRef Thrailkill KM, Liu L, Wahl EC, Bunn RC, Perrien DS, Cockrell GE, Skinner RA, Hogue WR, Carver AA, Fowlkes JL, Aronson J, Lumpkin CK Jr (2005) Bone formation is impaired in a model of type 1 diabetes. Diabetes 54:2875–2881PubMedCrossRef
8.
Zurück zum Zitat Botolin S, McCabe LR (2007) Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology 148:198–205PubMedCrossRef Botolin S, McCabe LR (2007) Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology 148:198–205PubMedCrossRef
9.
Zurück zum Zitat Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44:775–782PubMedCrossRef Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44:775–782PubMedCrossRef
10.
Zurück zum Zitat Miazgowski T, Czekalski S (1998) A 2-year follow-up study on bone mineral density and markers of bone turnover in patients with long-standing insulin-dependent diabetes mellitus. Osteoporos Int 8:399–403PubMedCrossRef Miazgowski T, Czekalski S (1998) A 2-year follow-up study on bone mineral density and markers of bone turnover in patients with long-standing insulin-dependent diabetes mellitus. Osteoporos Int 8:399–403PubMedCrossRef
11.
Zurück zum Zitat Brown SA, Sharpless JI (2004) Osteoporosis: an under-appreciated complication of diabetes. Clin Diabetes 22:l0–l20CrossRef Brown SA, Sharpless JI (2004) Osteoporosis: an under-appreciated complication of diabetes. Clin Diabetes 22:l0–l20CrossRef
12.
Zurück zum Zitat Heckman JD, Ingram AJ, Loyd RD, Luck JV Jr, Mayer PW (1981) Nonunion treatment with pulsed electromagnetic fields. Clin Orthop Relat Res 161:58–66PubMed Heckman JD, Ingram AJ, Loyd RD, Luck JV Jr, Mayer PW (1981) Nonunion treatment with pulsed electromagnetic fields. Clin Orthop Relat Res 161:58–66PubMed
13.
Zurück zum Zitat Satter Syed A, Islam MS, Rabbani KS, Talukder MS (1999) Pulsed electromagnetic fields for the treatment of bone fractures. Bangladesh Med Res Counc Bull 25:6–10PubMed Satter Syed A, Islam MS, Rabbani KS, Talukder MS (1999) Pulsed electromagnetic fields for the treatment of bone fractures. Bangladesh Med Res Counc Bull 25:6–10PubMed
14.
Zurück zum Zitat Thamsborg G, Florescu A, Oturai P, Fallentin E, Tritsaris K, Dissing S (2005) Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study. Osteoarthritis Cartilage 13:575–581PubMedCrossRef Thamsborg G, Florescu A, Oturai P, Fallentin E, Tritsaris K, Dissing S (2005) Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study. Osteoarthritis Cartilage 13:575–581PubMedCrossRef
15.
Zurück zum Zitat Garland DE, Adkins RH, Matsuno NN, Stewart CA (1999) The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. J Spinal Cord Med 22:239–245PubMed Garland DE, Adkins RH, Matsuno NN, Stewart CA (1999) The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. J Spinal Cord Med 22:239–245PubMed
16.
Zurück zum Zitat Skerry TM, Pead MJ, Lanyon LE (1991) Modulation of bone loss during disuse by pulsed electromagnetic fields. J Orthop Res 9:600–608PubMedCrossRef Skerry TM, Pead MJ, Lanyon LE (1991) Modulation of bone loss during disuse by pulsed electromagnetic fields. J Orthop Res 9:600–608PubMedCrossRef
17.
Zurück zum Zitat Simske SJ, Wachtel H, Luttges MW (1991) Effect of localized pulsed electromagnetic fields on tail-suspension osteopenia in growing mice. Bioelectromagnetics 12:101–116PubMedCrossRef Simske SJ, Wachtel H, Luttges MW (1991) Effect of localized pulsed electromagnetic fields on tail-suspension osteopenia in growing mice. Bioelectromagnetics 12:101–116PubMedCrossRef
18.
Zurück zum Zitat Jing D, Shen G, Huang J, Xie K, Cai J, Xu Q, Wu X, Luo E (2010) Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone 46:487–495PubMedCrossRef Jing D, Shen G, Huang J, Xie K, Cai J, Xu Q, Wu X, Luo E (2010) Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone 46:487–495PubMedCrossRef
19.
Zurück zum Zitat Tabrah FL, Ross P, Hoffmeier M, Gilbert F Jr (1998) Clinical report on long-term bone density after short-term EMF application. Bioelectromagnetics 19:75–78PubMedCrossRef Tabrah FL, Ross P, Hoffmeier M, Gilbert F Jr (1998) Clinical report on long-term bone density after short-term EMF application. Bioelectromagnetics 19:75–78PubMedCrossRef
20.
Zurück zum Zitat Tabrah F, Hoffmeier M, Gilbert F Jr, Batkin S, Bassett CA (1990) Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 5:437–442PubMedCrossRef Tabrah F, Hoffmeier M, Gilbert F Jr, Batkin S, Bassett CA (1990) Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 5:437–442PubMedCrossRef
21.
Zurück zum Zitat Seeman E (2003) Invited review: pathogenesis of osteoporosis. J Appl Physiol 95:2142–2151PubMed Seeman E (2003) Invited review: pathogenesis of osteoporosis. J Appl Physiol 95:2142–2151PubMed
22.
23.
Zurück zum Zitat Hie M, Yamazaki M, Tsukamoto I (2009) Curcumin suppresses increased bone resorption by inhibiting osteoclastogenesis in rats with streptozotocin-induced diabetes. Eur J Pharmacol 621:1–9PubMedCrossRef Hie M, Yamazaki M, Tsukamoto I (2009) Curcumin suppresses increased bone resorption by inhibiting osteoclastogenesis in rats with streptozotocin-induced diabetes. Eur J Pharmacol 621:1–9PubMedCrossRef
24.
Zurück zum Zitat Suzuki K, Miyakoshi N, Tsuchida T, Kasukawa Y, Sato K, Itoi E (2003) Effects of combined treatment of insulin and human parathyroid hormone(1–34) on cancellous bone mass and structure in streptozotocin-induced diabetic rats. Bone 33:108–114PubMedCrossRef Suzuki K, Miyakoshi N, Tsuchida T, Kasukawa Y, Sato K, Itoi E (2003) Effects of combined treatment of insulin and human parathyroid hormone(1–34) on cancellous bone mass and structure in streptozotocin-induced diabetic rats. Bone 33:108–114PubMedCrossRef
25.
Zurück zum Zitat Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD (2006) The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 38:368–377PubMedCrossRef Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD (2006) The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 38:368–377PubMedCrossRef
26.
Zurück zum Zitat Hie M, Shimono M, Fujii K, Tsukamoto I (2007) Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone 41:1045–1050PubMedCrossRef Hie M, Shimono M, Fujii K, Tsukamoto I (2007) Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone 41:1045–1050PubMedCrossRef
27.
Zurück zum Zitat Luo E, Shen G, Xie K, Wu X, Xu Q, Lu L, Jing X (2007) Alimentary hyperlipemia of rabbits is affected by exposure to low-intensity pulsed magnetic fields. Bioelectromagnetics 28:608–614PubMedCrossRef Luo E, Shen G, Xie K, Wu X, Xu Q, Lu L, Jing X (2007) Alimentary hyperlipemia of rabbits is affected by exposure to low-intensity pulsed magnetic fields. Bioelectromagnetics 28:608–614PubMedCrossRef
28.
Zurück zum Zitat Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608PubMedCrossRef Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608PubMedCrossRef
29.
Zurück zum Zitat Rosen HN, Middlebrooks VL, Sullivan EK, Rosenblatt M, Maitland LA, Moses AC, Greenspan SL (1994) Subregion analysis of the rat femur: a sensitive indicator of changes in bone density following treatment with thyroid hormone or bisphosphonates. Calcif Tissue Int 55:173–175PubMedCrossRef Rosen HN, Middlebrooks VL, Sullivan EK, Rosenblatt M, Maitland LA, Moses AC, Greenspan SL (1994) Subregion analysis of the rat femur: a sensitive indicator of changes in bone density following treatment with thyroid hormone or bisphosphonates. Calcif Tissue Int 55:173–175PubMedCrossRef
30.
Zurück zum Zitat Jee WSS, Inuoe J, JeeKW HT (1983) Histomorphometric assay of the growing long bone. In: Takahashi H (ed) Handbook of bone histomorphometry. Nishimura Ltd, Niigata City, pp 101–124 Jee WSS, Inuoe J, JeeKW HT (1983) Histomorphometric assay of the growing long bone. In: Takahashi H (ed) Handbook of bone histomorphometry. Nishimura Ltd, Niigata City, pp 101–124
31.
Zurück zum Zitat Callaghan MJ, Chang EI, Seiser N, Aarabi S, Ghali S, Kinnucan ER, Simon BJ, Gurtner GC (2008) Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg 121:130–141PubMedCrossRef Callaghan MJ, Chang EI, Seiser N, Aarabi S, Ghali S, Kinnucan ER, Simon BJ, Gurtner GC (2008) Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg 121:130–141PubMedCrossRef
32.
Zurück zum Zitat Mert T, Gunay I, Ocal I (2010) Neurobiological effects of pulsed magnetic field on diabetes-induced neuropathy. Bioelectromagnetics 31:39–47PubMed Mert T, Gunay I, Ocal I (2010) Neurobiological effects of pulsed magnetic field on diabetes-induced neuropathy. Bioelectromagnetics 31:39–47PubMed
33.
Zurück zum Zitat Lu H, Kraut D, Gerstenfeld LC, Graves DT (2003) Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology 144:346–352PubMedCrossRef Lu H, Kraut D, Gerstenfeld LC, Graves DT (2003) Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology 144:346–352PubMedCrossRef
34.
Zurück zum Zitat Verhaeghe J, Van Herck E, van Bree R, Moermans K, Bouillon R (1997) Decreased osteoblast activity in spontaneously diabetic rats: in vivo studies on the pathogenesis. Endocr 7:165–175CrossRef Verhaeghe J, Van Herck E, van Bree R, Moermans K, Bouillon R (1997) Decreased osteoblast activity in spontaneously diabetic rats: in vivo studies on the pathogenesis. Endocr 7:165–175CrossRef
35.
Zurück zum Zitat Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR (2005) Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology 146:3622–3631PubMedCrossRef Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR (2005) Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology 146:3622–3631PubMedCrossRef
36.
Zurück zum Zitat Sasaki T, Kaneko H, Ramamurthy NS, Golub LM (1991) Tetracycline administration restores osteoblast structure and function during experimental diabetes. Anat Rec 231:25–34PubMedCrossRef Sasaki T, Kaneko H, Ramamurthy NS, Golub LM (1991) Tetracycline administration restores osteoblast structure and function during experimental diabetes. Anat Rec 231:25–34PubMedCrossRef
37.
Zurück zum Zitat Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39:1173–1181PubMedCrossRef Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39:1173–1181PubMedCrossRef
38.
Zurück zum Zitat Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523PubMedCrossRef Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523PubMedCrossRef
39.
Zurück zum Zitat Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X (2009) Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res 24:1618–1627PubMedCrossRef Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X (2009) Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res 24:1618–1627PubMedCrossRef
40.
Zurück zum Zitat Chappard D, Baslé MF, Legrand E, Audran M (2008) Trabecular bone microarchitecture: a review. Morphologie 92:162–170PubMedCrossRef Chappard D, Baslé MF, Legrand E, Audran M (2008) Trabecular bone microarchitecture: a review. Morphologie 92:162–170PubMedCrossRef
41.
Zurück zum Zitat Sran MM, Boyd SK, Cooper DM, Khan KM, Zernicke RF, Oxland TR (2007) Regional trabecular morphology assessed by micro-CT is correlated with failure of aged thoracic vertebrae under a posteroanterior load and may determine the site of fracture. Bone 40:751–757PubMedCrossRef Sran MM, Boyd SK, Cooper DM, Khan KM, Zernicke RF, Oxland TR (2007) Regional trabecular morphology assessed by micro-CT is correlated with failure of aged thoracic vertebrae under a posteroanterior load and may determine the site of fracture. Bone 40:751–757PubMedCrossRef
42.
Zurück zum Zitat Motyl KJ, McCabe LR (2009) Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice. J Cell Physiol 218:376–384PubMedCrossRef Motyl KJ, McCabe LR (2009) Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice. J Cell Physiol 218:376–384PubMedCrossRef
43.
Zurück zum Zitat Markov MS (2007) Expanding use of pulsed electromagnetic field therapies. Electromagn Biol Med 26:257–274PubMedCrossRef Markov MS (2007) Expanding use of pulsed electromagnetic field therapies. Electromagn Biol Med 26:257–274PubMedCrossRef
44.
Zurück zum Zitat Markov MS (2007) Pulsed electromagnetic field therapy history, state of the art and future. Environmentalist 27:465–475CrossRef Markov MS (2007) Pulsed electromagnetic field therapy history, state of the art and future. Environmentalist 27:465–475CrossRef
45.
Zurück zum Zitat McCabe LR (2007) Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 102:1343–1357PubMedCrossRef McCabe LR (2007) Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 102:1343–1357PubMedCrossRef
Metadaten
Titel
The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats
verfasst von
D. Jing
J. Cai
G. Shen
J. Huang
F. Li
J. Li
L. Lu
E. Luo
Q. Xu
Publikationsdatum
01.06.2011
Verlag
Springer-Verlag
Erschienen in
Osteoporosis International / Ausgabe 6/2011
Print ISSN: 0937-941X
Elektronische ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-010-1447-3

Weitere Artikel der Ausgabe 6/2011

Osteoporosis International 6/2011 Zur Ausgabe

Bone Quality Seminars: Bone Fracture Healing and Strengthening

Bone regeneration and limb lengthening

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.