Skip to main content
Erschienen in: Cancer Chemotherapy and Pharmacology 1/2018

10.11.2017 | Review Article

The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer

verfasst von: Larry H. Matherly, Zhanjun Hou, Aleem Gangjee

Erschienen in: Cancer Chemotherapy and Pharmacology | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

This review considers the “promise” of exploiting the proton-coupled folate transporter (PCFT) for selective therapeutic targeting of cancer. PCFT was discovered in 2006 and was identified as the principal folate transporter involved in the intestinal absorption of dietary folates. The recognition that PCFT was highly expressed in many tumors stimulated substantial interest in using PCFT for cytotoxic drug targeting, taking advantage of its high level transport activity under the acidic pH conditions that characterize many tumors. For pemetrexed, among the best PCFT substrates, transport by PCFT establishes its importance as a clinically important transporter in malignant pleural mesothelioma and non-small cell lung cancer. In recent years, the notion of PCFT-targeting has been extended to a new generation of tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine compounds that are structurally and functionally distinct from pemetrexed, and that exhibit near exclusive transport by PCFT and potent inhibition of de novo purine nucleotide biosynthesis. Based on compelling preclinical evidence in a wide range of human tumor models, it is now time to advance the most optimized PCFT-targeted agents with the best balance of PCFT transport specificity and potent antitumor efficacy to the clinic to validate this novel paradigm of highly selective tumor targeting.
Literatur
4.
Zurück zum Zitat Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127(5):917–928. doi:10.1016/j.cell.2006.09.041 PubMedCrossRef Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127(5):917–928. doi:10.​1016/​j.​cell.​2006.​09.​041 PubMedCrossRef
5.
6.
Zurück zum Zitat Shin DS, Zhao R, Yap EH, Fiser A, Goldman ID (2012) A P425R mutation of the proton-coupled folate transporter causing hereditary folate malabsorption produces a highly selective alteration in folate binding. Am J Physiol Cell Physiol 302(9):C1405-C1412. doi:10.1152/ajpcell.00435.2011 PubMedCentralCrossRef Shin DS, Zhao R, Yap EH, Fiser A, Goldman ID (2012) A P425R mutation of the proton-coupled folate transporter causing hereditary folate malabsorption produces a highly selective alteration in folate binding. Am J Physiol Cell Physiol 302(9):C1405-C1412. doi:10.​1152/​ajpcell.​00435.​2011 PubMedCentralCrossRef
7.
Zurück zum Zitat Zhao R, Shin DS, Fiser A, Goldman ID (2012) Identification of a functionally critical GXXG motif and its relationship to the folate binding site of the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol 303(6):C673-681. doi:10.1152/ajpcell.00123.2012 CrossRef Zhao R, Shin DS, Fiser A, Goldman ID (2012) Identification of a functionally critical GXXG motif and its relationship to the folate binding site of the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol 303(6):C673-681. doi:10.​1152/​ajpcell.​00123.​2012 CrossRef
8.
Zurück zum Zitat Shin DS, Zhao R, Fiser A, Goldman ID (2013) The role of the fourth transmembrane domain in proton-coupled folate transporter (PCFT) function as assessed by the substituted cysteine accessibility method. Am J Physiol Cell Physiol 304:C1159-1167. doi:10.1152/ajpcell.00353.2012 CrossRef Shin DS, Zhao R, Fiser A, Goldman ID (2013) The role of the fourth transmembrane domain in proton-coupled folate transporter (PCFT) function as assessed by the substituted cysteine accessibility method. Am J Physiol Cell Physiol 304:C1159-1167. doi:10.​1152/​ajpcell.​00353.​2012 CrossRef
9.
10.
Zurück zum Zitat Visentin M, Unal ES, Najmi M, Fiser A, Zhao R, Goldman ID (2015) Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol 308(8):C631-641. doi:10.1152/ajpcell.00238.2014 CrossRef Visentin M, Unal ES, Najmi M, Fiser A, Zhao R, Goldman ID (2015) Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol 308(8):C631-641. doi:10.​1152/​ajpcell.​00238.​2014 CrossRef
13.
Zurück zum Zitat Zhao R, Najmi M, Aluri S, Goldman ID (2017) Impact of posttranslational modifications of engineered cysteines on the substituted cysteine accessibility method: evidence for glutathionylation. Am J Physiol Cell Physiol 312(4):C517-C526. doi:10.1152/ajpcell.00350.2016 PubMedCrossRef Zhao R, Najmi M, Aluri S, Goldman ID (2017) Impact of posttranslational modifications of engineered cysteines on the substituted cysteine accessibility method: evidence for glutathionylation. Am J Physiol Cell Physiol 312(4):C517-C526. doi:10.​1152/​ajpcell.​00350.​2016 PubMedCrossRef
14.
Zurück zum Zitat Zhao R, Min SH, Qiu A, Sakaris A, Goldberg GL, Sandoval C, Malatack JJ, Rosenblatt DS, Goldman ID (2007) The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption. Blood 110(4):1147–1152. doi:10.1182/blood-2007-02-077099 PubMedPubMedCentralCrossRef Zhao R, Min SH, Qiu A, Sakaris A, Goldberg GL, Sandoval C, Malatack JJ, Rosenblatt DS, Goldman ID (2007) The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption. Blood 110(4):1147–1152. doi:10.​1182/​blood-2007-02-077099 PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Lasry I, Berman B, Straussberg R, Sofer Y, Bessler H, Sharkia M, Glaser F, Jansen G, Drori S, Assaraf YG (2008) A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function. Blood 112(5):2055–2061. doi:10.1182/blood-2008-04-150276 PubMedCrossRef Lasry I, Berman B, Straussberg R, Sofer Y, Bessler H, Sharkia M, Glaser F, Jansen G, Drori S, Assaraf YG (2008) A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function. Blood 112(5):2055–2061. doi:10.​1182/​blood-2008-04-150276 PubMedCrossRef
20.
22.
Zurück zum Zitat Mahadeo K, Diop-Bove N, Shin D, Unal ES, Teo J, Zhao R, Chang MH, Fulterer A, Romero MF, Goldman ID (2010) Properties of the Arg376 residue of the proton-coupled folate transporter (PCFT-SLC46A1) and a glutamine mutant causing hereditary folate malabsorption. Am J Physiol Cell Physiol 299(5):C1153-1161. doi:10.1152/ajpcell.00113.2010 CrossRef Mahadeo K, Diop-Bove N, Shin D, Unal ES, Teo J, Zhao R, Chang MH, Fulterer A, Romero MF, Goldman ID (2010) Properties of the Arg376 residue of the proton-coupled folate transporter (PCFT-SLC46A1) and a glutamine mutant causing hereditary folate malabsorption. Am J Physiol Cell Physiol 299(5):C1153-1161. doi:10.​1152/​ajpcell.​00113.​2010 CrossRef
24.
28.
29.
Zurück zum Zitat Aluri S, Zhao R, Fiser A, Goldman ID (2017) Residues in the eighth transmembrane domain of the proton-coupled folate transporter (SLC46A1) play an important role in defining the aqueous translocation pathway and in folate substrate binding. Biochim Biophys Acta 1859(11):2193–2202. doi:10.1016/j.bbamem.2017.08.006 PubMedCrossRef Aluri S, Zhao R, Fiser A, Goldman ID (2017) Residues in the eighth transmembrane domain of the proton-coupled folate transporter (SLC46A1) play an important role in defining the aqueous translocation pathway and in folate substrate binding. Biochim Biophys Acta 1859(11):2193–2202. doi:10.​1016/​j.​bbamem.​2017.​08.​006 PubMedCrossRef
31.
Zurück zum Zitat Kugel Desmoulin S, Wang Y, Wu J, Stout M, Hou Z, Fulterer A, Chang MH, Romero MF, Cherian C, Gangjee A, Matherly LH (2010) Targeting the proton-coupled folate transporter for selective delivery of 6-substituted pyrrolo[2,3-d]pyrimidine antifolate inhibitors of de novo purine biosynthesis in the chemotherapy of solid tumors. Mol Pharmacol 78(4):577–587. doi:10.1124/mol.110.065896 CrossRef Kugel Desmoulin S, Wang Y, Wu J, Stout M, Hou Z, Fulterer A, Chang MH, Romero MF, Cherian C, Gangjee A, Matherly LH (2010) Targeting the proton-coupled folate transporter for selective delivery of 6-substituted pyrrolo[2,3-d]pyrimidine antifolate inhibitors of de novo purine biosynthesis in the chemotherapy of solid tumors. Mol Pharmacol 78(4):577–587. doi:10.​1124/​mol.​110.​065896 CrossRef
32.
Zurück zum Zitat Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, Hou Z, White K, Kushner J, Matherly LH, Gangjee A (2010) Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 53(3):1306–1318. doi:10.1021/jm9015729 PubMedPubMedCentralCrossRef Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, Hou Z, White K, Kushner J, Matherly LH, Gangjee A (2010) Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 53(3):1306–1318. doi:10.​1021/​jm9015729 PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Kugel Desmoulin S, Wang L, Hales E, Polin L, White K, Kushner J, Stout M, Hou Z, Cherian C, Gangjee A, Matherly LH (2011) Therapeutic targeting of a novel 6-substituted pyrrolo [2,3-d]pyrimidine thienoyl antifolate to human solid tumors based on selective uptake by the proton-coupled folate transporter. Mol Pharmacol 80(6):1096–1107. doi:10.1124/mol.111.073833 PubMedPubMedCentralCrossRef Kugel Desmoulin S, Wang L, Hales E, Polin L, White K, Kushner J, Stout M, Hou Z, Cherian C, Gangjee A, Matherly LH (2011) Therapeutic targeting of a novel 6-substituted pyrrolo [2,3-d]pyrimidine thienoyl antifolate to human solid tumors based on selective uptake by the proton-coupled folate transporter. Mol Pharmacol 80(6):1096–1107. doi:10.​1124/​mol.​111.​073833 PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Wang L, Kugel Desmoulin S, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A (2011) Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits beta-glycinamide ribonucleotide formyltransferase. J Med Chem 54(20):7150–7164. doi:10.1021/jm200739e PubMedPubMedCentralCrossRef Wang L, Kugel Desmoulin S, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A (2011) Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits beta-glycinamide ribonucleotide formyltransferase. J Med Chem 54(20):7150–7164. doi:10.​1021/​jm200739e PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Wang L, Cherian C, Kugel Desmoulin S, Mitchell-Ryan S, Hou Z, Matherly LH, Gangjee A (2012) Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier. J Med Chem 55(4):1758–1770. doi:10.1021/jm201688n PubMedPubMedCentralCrossRef Wang L, Cherian C, Kugel Desmoulin S, Mitchell-Ryan S, Hou Z, Matherly LH, Gangjee A (2012) Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier. J Med Chem 55(4):1758–1770. doi:10.​1021/​jm201688n PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Cherian C, Kugel Desmoulin S, Wang L, Polin L, White K, Kushner J, Stout M, Hou Z, Gangjee A, Matherly LH (2013) Therapeutic targeting malignant mesothelioma with a novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate via its selective uptake by the proton-coupled folate transporter. Cancer Chemother Pharmacol 71(4):999–1011. doi:10.1007/s00280-013-2094-0 PubMedPubMedCentralCrossRef Cherian C, Kugel Desmoulin S, Wang L, Polin L, White K, Kushner J, Stout M, Hou Z, Gangjee A, Matherly LH (2013) Therapeutic targeting malignant mesothelioma with a novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate via its selective uptake by the proton-coupled folate transporter. Cancer Chemother Pharmacol 71(4):999–1011. doi:10.​1007/​s00280-013-2094-0 PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Golani LK, George C, Zhao S, Raghavan S, Orr S, Wallace A, Wilson MR, Hou Z, Matherly LH, Gangjee A (2014) Structure-activity profiles of novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates with modified amino acids for cellular uptake by folate receptors alpha and beta and the proton-coupled folate transporter. J Med Chem 57:8152–8166. doi:10.1021/jm501113m PubMedPubMedCentralCrossRef Golani LK, George C, Zhao S, Raghavan S, Orr S, Wallace A, Wilson MR, Hou Z, Matherly LH, Gangjee A (2014) Structure-activity profiles of novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates with modified amino acids for cellular uptake by folate receptors alpha and beta and the proton-coupled folate transporter. J Med Chem 57:8152–8166. doi:10.​1021/​jm501113m PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Wang L, Wallace A, Raghavan S, Deis SM, Wilson MR, Yang S, Polin L, White K, Kushner J, Orr S, George C, O’Connor C, Hou Z, Mitchell-Ryan S, Dann CE, 3rd, Matherly LH, Gangjee A (2015) 6-Substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as targeted antifolates for folate receptor alpha and the proton-coupled folate transporter in human tumors. J Med Chem 58 (17):6938–6959. doi:10.1021/acs.jmedchem.5b00801 PubMedPubMedCentralCrossRef Wang L, Wallace A, Raghavan S, Deis SM, Wilson MR, Yang S, Polin L, White K, Kushner J, Orr S, George C, O’Connor C, Hou Z, Mitchell-Ryan S, Dann CE, 3rd, Matherly LH, Gangjee A (2015) 6-Substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as targeted antifolates for folate receptor alpha and the proton-coupled folate transporter in human tumors. J Med Chem 58 (17):6938–6959. doi:10.​1021/​acs.​jmedchem.​5b00801 PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Golani LK, Wallace-Povirk A, Deis SM, Wong J, Ke J, Gu X, Raghavan S, Wilson MR, Li X, Polin L, de Waal PW, White K, Kushner J, O’Connor C, Hou Z, Xu HE, Melcher K, Dann CE, 3rd, Matherly LH, Gangjee A (2016) Tumor targeting with novel 6-substituted pyrrolo [2,3-d]pyrimidine antifolates with heteroatom bridge substitutions via cellular uptake by folate receptor alpha and the proton-coupled folate transporter and inhibition of de novo purine nucleotide biosynthesis. J Med Chem 59 (17):7856–7876. doi:10.1021/acs.jmedchem.6b00594 PubMedPubMedCentralCrossRef Golani LK, Wallace-Povirk A, Deis SM, Wong J, Ke J, Gu X, Raghavan S, Wilson MR, Li X, Polin L, de Waal PW, White K, Kushner J, O’Connor C, Hou Z, Xu HE, Melcher K, Dann CE, 3rd, Matherly LH, Gangjee A (2016) Tumor targeting with novel 6-substituted pyrrolo [2,3-d]pyrimidine antifolates with heteroatom bridge substitutions via cellular uptake by folate receptor alpha and the proton-coupled folate transporter and inhibition of de novo purine nucleotide biosynthesis. J Med Chem 59 (17):7856–7876. doi:10.​1021/​acs.​jmedchem.​6b00594 PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Wilson MR, Hou Z, Yang S, Polin L, Kushner J, White K, Huang J, Ratnam M, Gangjee A, Matherly LH (2016) Targeting nonsquamous nonsmall cell lung cancer via the proton-coupled folate transporter with 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates. Mol Pharmacol 89(4):425–434. doi:10.1124/mol.115.102798 PubMedPubMedCentralCrossRef Wilson MR, Hou Z, Yang S, Polin L, Kushner J, White K, Huang J, Ratnam M, Gangjee A, Matherly LH (2016) Targeting nonsquamous nonsmall cell lung cancer via the proton-coupled folate transporter with 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates. Mol Pharmacol 89(4):425–434. doi:10.​1124/​mol.​115.​102798 PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Hou Z, Gattoc L, O’Connor C, Yang S, Wallace-Povirk A, George C, Orr S, Polin L, White K, Kushner J, Morris RT, Gangjee A, Matherly LH (2017) Dual targeting of epithelial ovarian cancer via folate receptor alpha and the proton-coupled folate transporter with 6-substituted pyrrolo[2,3-d]pyrimidine antifolates. Mol Cancer Ther 16:819–830. doi:10.1158/1535-7163.MCT-16-0444 PubMedCrossRef Hou Z, Gattoc L, O’Connor C, Yang S, Wallace-Povirk A, George C, Orr S, Polin L, White K, Kushner J, Morris RT, Gangjee A, Matherly LH (2017) Dual targeting of epithelial ovarian cancer via folate receptor alpha and the proton-coupled folate transporter with 6-substituted pyrrolo[2,3-d]pyrimidine antifolates. Mol Cancer Ther 16:819–830. doi:10.​1158/​1535-7163.​MCT-16-0444 PubMedCrossRef
42.
Zurück zum Zitat Avallone A, Di Gennaro E, Silvestro L, Iaffaioli VR, Budillon A (2014) Targeting thymidylate synthase in colorectal cancer: critical re-evaluation and emerging therapeutic role of raltitrexed. Expert Opin Drug Saf 13(1):113–129. doi:10.1517/14740338.2014.845167 PubMedCrossRef Avallone A, Di Gennaro E, Silvestro L, Iaffaioli VR, Budillon A (2014) Targeting thymidylate synthase in colorectal cancer: critical re-evaluation and emerging therapeutic role of raltitrexed. Expert Opin Drug Saf 13(1):113–129. doi:10.​1517/​14740338.​2014.​845167 PubMedCrossRef
48.
Zurück zum Zitat Shih C, Thornton DE (1999) Preclinical pharmacology studies and the clinical development of a novel multitargeted antifolate, MTA (LY231514). In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana, Totowa, pp 183–201CrossRef Shih C, Thornton DE (1999) Preclinical pharmacology studies and the clinical development of a novel multitargeted antifolate, MTA (LY231514). In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana, Totowa, pp 183–201CrossRef
52.
Zurück zum Zitat Beardsley GP, Moroson BA, Taylor EC, Moran RG (1989) A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of de novo purine synthesis. J Biol Chem 264(1):328–333PubMed Beardsley GP, Moroson BA, Taylor EC, Moran RG (1989) A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of de novo purine synthesis. J Biol Chem 264(1):328–333PubMed
53.
Zurück zum Zitat Mendelsohn LG, Worzalla JF, Walling JM (1999) Preclinical and clinical evaluation of the glycinamide ribonucleotide formyltransferase inhibitors lometrexol and LY309887. In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana, Totowa, pp 261–280CrossRef Mendelsohn LG, Worzalla JF, Walling JM (1999) Preclinical and clinical evaluation of the glycinamide ribonucleotide formyltransferase inhibitors lometrexol and LY309887. In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana, Totowa, pp 261–280CrossRef
54.
Zurück zum Zitat Moran RG, Baldwin SW, Taylor EC, Shih C (1989) The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. J Biol Chem 264(35):21047–21051PubMed Moran RG, Baldwin SW, Taylor EC, Shih C (1989) The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. J Biol Chem 264(35):21047–21051PubMed
55.
Zurück zum Zitat Ray MS, Muggia FM, Leichman CG, Grunberg SM, Nelson RL, Dyke RW, Moran RG (1993) Phase I study of (6R)-5,10-dideazatetrahydrofolate: a folate antimetabolite inhibitory to de novo purine synthesis. J Natl Cancer Inst 85(14):1154–1159PubMedCrossRef Ray MS, Muggia FM, Leichman CG, Grunberg SM, Nelson RL, Dyke RW, Moran RG (1993) Phase I study of (6R)-5,10-dideazatetrahydrofolate: a folate antimetabolite inhibitory to de novo purine synthesis. J Natl Cancer Inst 85(14):1154–1159PubMedCrossRef
56.
Zurück zum Zitat Boritzki TJ, Barlett CA, Zhang C, Howland EF (1996) AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase. Invest New Drugs 14(3):295–303PubMedCrossRef Boritzki TJ, Barlett CA, Zhang C, Howland EF (1996) AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase. Invest New Drugs 14(3):295–303PubMedCrossRef
58.
Zurück zum Zitat Budman DR, Johnson R, Barile B, Bowsher RR, Vinciguerra V, Allen SL, Kolitz J, Ernest CS, 2nd, Kreis W, Zervos P, Walling J (2001) Phase I and pharmacokinetic study of LY309887: a specific inhibitor of purine biosynthesis. Cancer Chemother Pharmacol 47 (6):525–531PubMedCrossRef Budman DR, Johnson R, Barile B, Bowsher RR, Vinciguerra V, Allen SL, Kolitz J, Ernest CS, 2nd, Kreis W, Zervos P, Walling J (2001) Phase I and pharmacokinetic study of LY309887: a specific inhibitor of purine biosynthesis. Cancer Chemother Pharmacol 47 (6):525–531PubMedCrossRef
59.
Zurück zum Zitat Bronder JL, Moran RG (2002) Antifolates targeting purine synthesis allow entry of tumor cells into S phase regardless of p53 function. Cancer Res 62(18):5236–5241PubMed Bronder JL, Moran RG (2002) Antifolates targeting purine synthesis allow entry of tumor cells into S phase regardless of p53 function. Cancer Res 62(18):5236–5241PubMed
61.
Zurück zum Zitat Hori H, Tran P, Carrera CJ, Hori Y, Rosenbach MD, Carson DA, Nobori T (1996) Methylthioadenosine phosphorylase cDNA transfection alters sensitivity to depletion of purine and methionine in A549 lung cancer cells. Cancer Res 56(24):5653–5658PubMed Hori H, Tran P, Carrera CJ, Hori Y, Rosenbach MD, Carson DA, Nobori T (1996) Methylthioadenosine phosphorylase cDNA transfection alters sensitivity to depletion of purine and methionine in A549 lung cancer cells. Cancer Res 56(24):5653–5658PubMed
65.
Zurück zum Zitat Matherly LH, Angeles SM, McGuire JJ (1993) Determinants of the disparate antitumor activities of (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolate and methotrexate toward human lymphoblastic leukemia cells, characterized by severely impaired antifolate membrane transport. Biochem Pharmacol 46(12):2185–2195PubMedCrossRef Matherly LH, Angeles SM, McGuire JJ (1993) Determinants of the disparate antitumor activities of (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolate and methotrexate toward human lymphoblastic leukemia cells, characterized by severely impaired antifolate membrane transport. Biochem Pharmacol 46(12):2185–2195PubMedCrossRef
66.
Zurück zum Zitat Qiu A, Min SH, Jansen M, Malhotra U, Tsai E, Cabelof DC, Matherly LH, Zhao R, Akabas MH, Goldman ID (2007) Rodent intestinal folate transporters (SLC46A1): secondary structure, functional properties, and response to dietary folate restriction. Am J Physiol Cell Physiol 293(5):C1669-1678. doi:10.1152/ajpcell.00202.2007 CrossRef Qiu A, Min SH, Jansen M, Malhotra U, Tsai E, Cabelof DC, Matherly LH, Zhao R, Akabas MH, Goldman ID (2007) Rodent intestinal folate transporters (SLC46A1): secondary structure, functional properties, and response to dietary folate restriction. Am J Physiol Cell Physiol 293(5):C1669-1678. doi:10.​1152/​ajpcell.​00202.​2007 CrossRef
67.
Zurück zum Zitat Inoue K, Nakai Y, Ueda S, Kamigaso S, Ohta KY, Hatakeyama M, Hayashi Y, Otagiri M, Yuasa H (2008) Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model. Am J Physiol Gastrointest Liver Physiol 294(3):G660-668. doi:10.1152/ajpgi.00309.2007 CrossRef Inoue K, Nakai Y, Ueda S, Kamigaso S, Ohta KY, Hatakeyama M, Hayashi Y, Otagiri M, Yuasa H (2008) Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model. Am J Physiol Gastrointest Liver Physiol 294(3):G660-668. doi:10.​1152/​ajpgi.​00309.​2007 CrossRef
68.
70.
Zurück zum Zitat Giovannetti E, Zucali PA, Assaraf YG, Funel N, Gemelli M, Stark M, Thunnissen E, Hou Z, Muller IB, Struijs EA, Perrino M, Jansen G, Matherly LH, Peters GJ (2017) Role of proton-coupled folate transporter in pemetrexed-resistance of mesothelioma: clinical evidence and new pharmacological tools. Ann Oncol. doi:10.1093/annonc/mdx499 PubMed Giovannetti E, Zucali PA, Assaraf YG, Funel N, Gemelli M, Stark M, Thunnissen E, Hou Z, Muller IB, Struijs EA, Perrino M, Jansen G, Matherly LH, Peters GJ (2017) Role of proton-coupled folate transporter in pemetrexed-resistance of mesothelioma: clinical evidence and new pharmacological tools. Ann Oncol. doi:10.​1093/​annonc/​mdx499 PubMed
74.
Zurück zum Zitat Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, Forster MD, Mitchell F, Bavetsias V, Henderson E, Jackman AL (2005) BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 65(24):11721–11728. doi:10.1158/0008-5472.CAN-05-2034 PubMedCrossRef Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, Forster MD, Mitchell F, Bavetsias V, Henderson E, Jackman AL (2005) BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 65(24):11721–11728. doi:10.​1158/​0008-5472.​CAN-05-2034 PubMedCrossRef
75.
Zurück zum Zitat Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT (2005) Identification of an intestinal heme transporter. Cell 122(5):789–801. doi:10.1016/j.cell.2005.06.025 PubMedCrossRef Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT (2005) Identification of an intestinal heme transporter. Cell 122(5):789–801. doi:10.​1016/​j.​cell.​2005.​06.​025 PubMedCrossRef
77.
Zurück zum Zitat Hou Z, Kugel Desmoulin S, Etnyre E, Olive M, Hsiung B, Cherian C, Wloszczynski PA, Moin K, Matherly LH (2012) Identification and functional impact of homo-oligomers of the human proton-coupled folate transporter. J Biol Chem 287(7):4982–4995. doi:10.1074/jbc.M111.306860 PubMedCrossRef Hou Z, Kugel Desmoulin S, Etnyre E, Olive M, Hsiung B, Cherian C, Wloszczynski PA, Moin K, Matherly LH (2012) Identification and functional impact of homo-oligomers of the human proton-coupled folate transporter. J Biol Chem 287(7):4982–4995. doi:10.​1074/​jbc.​M111.​306860 PubMedCrossRef
78.
Zurück zum Zitat Wilson MR, Kugel S, Huang J, Wilson LJ, Wloszczynski PA, Ye J, Matherly LH, Hou Z (2015) Structural determinants of human proton-coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6. Biochem J 469(1):33–44. doi:10.1042/BJ20150169 PubMedPubMedCentralCrossRef Wilson MR, Kugel S, Huang J, Wilson LJ, Wloszczynski PA, Ye J, Matherly LH, Hou Z (2015) Structural determinants of human proton-coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6. Biochem J 469(1):33–44. doi:10.​1042/​BJ20150169 PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Chattopadhyay S, Tamari R, Min SH, Zhao R, Tsai E, Goldman ID (2007) Commentary: a case for minimizing folate supplementation in clinical regimens with pemetrexed based on the marked sensitivity of the drug to folate availability. Oncologist 12(7):808–815. doi:10.1634/theoncologist.12-7-808 PubMedCrossRef Chattopadhyay S, Tamari R, Min SH, Zhao R, Tsai E, Goldman ID (2007) Commentary: a case for minimizing folate supplementation in clinical regimens with pemetrexed based on the marked sensitivity of the drug to folate availability. Oncologist 12(7):808–815. doi:10.​1634/​theoncologist.​12-7-808 PubMedCrossRef
80.
Zurück zum Zitat Deng Y, Zhou X, Kugel Desmoulin S, Wu J, Cherian C, Hou Z, Matherly LH, Gangjee A (2009) Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 52(9):2940–2951. doi:10.1021/jm8011323 PubMedPubMedCentralCrossRef Deng Y, Zhou X, Kugel Desmoulin S, Wu J, Cherian C, Hou Z, Matherly LH, Gangjee A (2009) Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 52(9):2940–2951. doi:10.​1021/​jm8011323 PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453(7197):940–943. doi:10.1038/nature07017 PubMedCrossRef Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453(7197):940–943. doi:10.​1038/​nature07017 PubMedCrossRef
83.
Zurück zum Zitat Mitchell-Ryan S, Wang Y, Raghavan S, Ravindra MP, Hales E, Orr S, Cherian C, Hou Z, Matherly LH, Gangjee A (2013) Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual-acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to ampk activation and antitumor activity. J Med Chem 56(24):10016–10032. doi:10.1021/jm401328u PubMedPubMedCentralCrossRef Mitchell-Ryan S, Wang Y, Raghavan S, Ravindra MP, Hales E, Orr S, Cherian C, Hou Z, Matherly LH, Gangjee A (2013) Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual-acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to ampk activation and antitumor activity. J Med Chem 56(24):10016–10032. doi:10.​1021/​jm401328u PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Gangjee A, Zeng Y, McGuire JJ, Kisliuk RL (2005) Synthesis of classical, four-carbon bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 48(16):5329–5336. doi:10.1021/jm058213s PubMedPubMedCentralCrossRef Gangjee A, Zeng Y, McGuire JJ, Kisliuk RL (2005) Synthesis of classical, four-carbon bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 48(16):5329–5336. doi:10.​1021/​jm058213s PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL (2004) Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 47(27):6893–6901. doi:10.1021/jm040123k PubMedCrossRef Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL (2004) Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 47(27):6893–6901. doi:10.​1021/​jm040123k PubMedCrossRef
86.
Zurück zum Zitat Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A (2008) Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity. J Med Chem 51(16):5052–5063. doi:10.1021/jm8003366 PubMedPubMedCentralCrossRef Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A (2008) Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity. J Med Chem 51(16):5052–5063. doi:10.​1021/​jm8003366 PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Kugel Desmoulin S, Wang L, Polin L, White K, Kushner J, Stout M, Hou Z, Cherian C, Gangjee A, Matherly LH (2012) Functional loss of the reduced folate carrier enhances the antitumor activities of novel antifolates with selective uptake by the proton-coupled folate transporter. Mol Pharmacol 82(4):591–600. doi:10.1124/mol.112.079004 CrossRef Kugel Desmoulin S, Wang L, Polin L, White K, Kushner J, Stout M, Hou Z, Cherian C, Gangjee A, Matherly LH (2012) Functional loss of the reduced folate carrier enhances the antitumor activities of novel antifolates with selective uptake by the proton-coupled folate transporter. Mol Pharmacol 82(4):591–600. doi:10.​1124/​mol.​112.​079004 CrossRef
89.
Zurück zum Zitat Gates SB, Worzalla JF, Shih C, Grindey GB, Mendelsohn LG (1996) Dietary folate and folylpolyglutamate synthetase activity in normal and neoplastic murine tissues and human tumor xenografts. Biochem Pharmacol 52(9):1477–1479PubMedCrossRef Gates SB, Worzalla JF, Shih C, Grindey GB, Mendelsohn LG (1996) Dietary folate and folylpolyglutamate synthetase activity in normal and neoplastic murine tissues and human tumor xenografts. Biochem Pharmacol 52(9):1477–1479PubMedCrossRef
90.
Zurück zum Zitat Ifergan I, Jansen G, Assaraf YG (2005) Cytoplasmic confinement of breast cancer resistance protein (BCRP/ABCG2) as a novel mechanism of adaptation to short-term folate deprivation. Mol Pharmacol 67(4):1349–1359. doi:10.1124/mol.104.008250 PubMedCrossRef Ifergan I, Jansen G, Assaraf YG (2005) Cytoplasmic confinement of breast cancer resistance protein (BCRP/ABCG2) as a novel mechanism of adaptation to short-term folate deprivation. Mol Pharmacol 67(4):1349–1359. doi:10.​1124/​mol.​104.​008250 PubMedCrossRef
91.
Zurück zum Zitat Howell SB, Mansfield SJ, Taetle R (1981) Thymidine and hypoxanthine requirements of normal and malignant human cells for protection against methotrexate cytotoxicity. Cancer Res 41(3):945–950PubMed Howell SB, Mansfield SJ, Taetle R (1981) Thymidine and hypoxanthine requirements of normal and malignant human cells for protection against methotrexate cytotoxicity. Cancer Res 41(3):945–950PubMed
92.
Zurück zum Zitat Jackson RC, Harkrader RJ (1981) The contributions of de-novo and salvage pathways of nucleotide biosynthesis in normal and malignant cells. In: Tattersall MHN, Fox RM (eds) Nucleosides and cancer treatment. Academic, Sydney, pp 18–31 Jackson RC, Harkrader RJ (1981) The contributions of de-novo and salvage pathways of nucleotide biosynthesis in normal and malignant cells. In: Tattersall MHN, Fox RM (eds) Nucleosides and cancer treatment. Academic, Sydney, pp 18–31
93.
Zurück zum Zitat Issaeva N, Thomas HD, Djureinovic T, Jaspers JE, Stoimenov I, Kyle S, Pedley N, Gottipati P, Zur R, Sleeth K, Chatzakos V, Mulligan EA, Lundin C, Gubanova E, Kersbergen A, Harris AL, Sharma RA, Rottenberg S, Curtin NJ, Helleday T (2010) 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res 70(15):6268–6276. doi:10.1158/0008-5472.CAN-09-3416 PubMedPubMedCentralCrossRef Issaeva N, Thomas HD, Djureinovic T, Jaspers JE, Stoimenov I, Kyle S, Pedley N, Gottipati P, Zur R, Sleeth K, Chatzakos V, Mulligan EA, Lundin C, Gubanova E, Kersbergen A, Harris AL, Sharma RA, Rottenberg S, Curtin NJ, Helleday T (2010) 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res 70(15):6268–6276. doi:10.​1158/​0008-5472.​CAN-09-3416 PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69(1):358–368. doi:10.1158/0008-5472.CAN-08-2470 PubMedCrossRef Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69(1):358–368. doi:10.​1158/​0008-5472.​CAN-08-2470 PubMedCrossRef
100.
Zurück zum Zitat Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819. doi:10.1182/blood-2006-07-035972 PubMedCrossRef Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819. doi:10.​1182/​blood-2006-07-035972 PubMedCrossRef
101.
Zurück zum Zitat Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021. doi:10.1182/blood-2005-05-1795 PubMedCrossRef Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021. doi:10.​1182/​blood-2005-05-1795 PubMedCrossRef
102.
Zurück zum Zitat Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL, Tumour Angiogenesis Research G (2006) Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway—a report of the Tumour Angiogenesis Research Group. J Clin Oncol 24(26):4301–4308. doi:10.1200/JCO.2006.05.9501 PubMedCrossRef Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL, Tumour Angiogenesis Research G (2006) Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway—a report of the Tumour Angiogenesis Research Group. J Clin Oncol 24(26):4301–4308. doi:10.​1200/​JCO.​2006.​05.​9501 PubMedCrossRef
103.
104.
Zurück zum Zitat Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361PubMedCrossRef Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361PubMedCrossRef
106.
Zurück zum Zitat Durand RE (1994) The influence of microenvironmental factors during cancer therapy. In Vivo 8(5):691–702PubMed Durand RE (1994) The influence of microenvironmental factors during cancer therapy. In Vivo 8(5):691–702PubMed
107.
Zurück zum Zitat Tannock IF (1998) Conventional cancer therapy: promise broken or promise delayed? The Lancet 351(Suppl 2):SII9-16 Tannock IF (1998) Conventional cancer therapy: promise broken or promise delayed? The Lancet 351(Suppl 2):SII9-16
108.
Zurück zum Zitat Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22(2):258–273PubMedPubMedCentralCrossRef Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22(2):258–273PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91. doi:10.1038/379088a0 PubMedCrossRef Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91. doi:10.​1038/​379088a0 PubMedCrossRef
110.
Zurück zum Zitat Yuan J, Glazer PM (1998) Mutagenesis induced by the tumor microenvironment. Mutat Res 400(1–2):439–446PubMedCrossRef Yuan J, Glazer PM (1998) Mutagenesis induced by the tumor microenvironment. Mutat Res 400(1–2):439–446PubMedCrossRef
111.
Zurück zum Zitat Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1(6):401–408. doi:10.1016/j.cmet.2005.05.001 PubMedCrossRef Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1(6):401–408. doi:10.​1016/​j.​cmet.​2005.​05.​001 PubMedCrossRef
114.
Zurück zum Zitat Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76(5):589–605PubMedCrossRef Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76(5):589–605PubMedCrossRef
115.
Zurück zum Zitat Blancher C, Harris AL (1998) The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target. Cancer Metastasis Rev 17(2):187–194PubMedCrossRef Blancher C, Harris AL (1998) The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target. Cancer Metastasis Rev 17(2):187–194PubMedCrossRef
122.
Zurück zum Zitat Kimura H, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong K, Dewhirst MW (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56(23):5522–5528PubMed Kimura H, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong K, Dewhirst MW (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56(23):5522–5528PubMed
123.
Zurück zum Zitat Brurberg KG, Thuen M, Ruud EB, Rofstad EK (2006) Fluctuations in pO2 in irradiated human melanoma xenografts. Radiat Res 165(1):16–25PubMedCrossRef Brurberg KG, Thuen M, Ruud EB, Rofstad EK (2006) Fluctuations in pO2 in irradiated human melanoma xenografts. Radiat Res 165(1):16–25PubMedCrossRef
125.
Zurück zum Zitat Sun JD, Liu Q, Ahluwalia D, Li W, Meng F, Wang Y, Bhupathi D, Ruprell AS, Hart CP (2015) Efficacy and safety of the hypoxia-activated prodrug TH-302 in combination with gemcitabine and nab-paclitaxel in human tumor xenograft models of pancreatic cancer. Cancer Biol Ther 16(3):438–449. doi:10.1080/15384047.2014.1003005 PubMedPubMedCentralCrossRef Sun JD, Liu Q, Ahluwalia D, Li W, Meng F, Wang Y, Bhupathi D, Ruprell AS, Hart CP (2015) Efficacy and safety of the hypoxia-activated prodrug TH-302 in combination with gemcitabine and nab-paclitaxel in human tumor xenograft models of pancreatic cancer. Cancer Biol Ther 16(3):438–449. doi:10.​1080/​15384047.​2014.​1003005 PubMedPubMedCentralCrossRef
127.
128.
Zurück zum Zitat Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR, Shelton LM, Gui DY, Kwon M, Ramkissoon SH, Ligon KL, Kang SW, Snuderl M, Vander Heiden MG, Sabatini DM (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520(7547):363–367. doi:10.1038/nature14363 PubMedPubMedCentralCrossRef Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR, Shelton LM, Gui DY, Kwon M, Ramkissoon SH, Ligon KL, Kang SW, Snuderl M, Vander Heiden MG, Sabatini DM (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520(7547):363–367. doi:10.​1038/​nature14363 PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, Davis D, Stokoe D, Settleman J, de Sauvage FJ, Neve RM (2014) Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res 74(11):3114–3126. doi:10.1158/0008-5472.CAN-13-2683 PubMedCrossRef Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, Davis D, Stokoe D, Settleman J, de Sauvage FJ, Neve RM (2014) Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res 74(11):3114–3126. doi:10.​1158/​0008-5472.​CAN-13-2683 PubMedCrossRef
Metadaten
Titel
The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer
verfasst von
Larry H. Matherly
Zhanjun Hou
Aleem Gangjee
Publikationsdatum
10.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Chemotherapy and Pharmacology / Ausgabe 1/2018
Print ISSN: 0344-5704
Elektronische ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-017-3473-8

Weitere Artikel der Ausgabe 1/2018

Cancer Chemotherapy and Pharmacology 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.