Skip to main content
Erschienen in: Pathology & Oncology Research 1/2017

24.06.2016 | Original Article

The Promoting Effect of Radiation on Glucose Metabolism in Breast Cancer Cells under the Treatment of Cobalt Chloride

verfasst von: Chun-bo Zhao, Lei Shi, Hai-hong Pu, Qing-yuan Zhang

Erschienen in: Pathology & Oncology Research | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

We aimed to investigate the influence of radiation on hypoxia-treated breast cancers cells and its underlying mechanism. We mimicked the hypoxic response in MCF-7 cells by the treatment of CoCl2. Meanwhile, hypoxic MCF-7 cells induced by CoCl2 or untreated MCF-7 cells were treated with or without radiation, and then treated with or without hypoxia inducible factors-1α (HIF-1α) inhibitor. Subsequently, glucose update and lactate release rate were determined by commercial kits, as well as the expressions of HIF-1α and the glucose metabolic pathway related genes, including fructose biphoshatase 1 (FBP1), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), hexokinase 2 (HK2), and isocitrate dehydrogenase 2 (IDH20) were detected by western blotting and/or RT-PCR. The results showed that glucose uptake rate and lactate release rate were increased in cells under hypoxia and/or radiation condition compared with untreated cells (p < 0.05), while the addition of HIF-1α inhibitor decreased these rates in hypoxia + radiation treated cells (p < 0.05). In addition, compared with untreated cells, the mRNA and protein levels of HIF-1α were significantly increased under hypoxia and radiation condition (p < 0.05), while which decreased after the addition of HIF-1α inhibitor (p < 0.05). Similar content changing trends (all p < 0.05) were observed in FBP1, IDH2, GLUT1, and LDHA but not HK2. In conclusion, the combination of radiation and hypoxia could promote the glucose metabolism. Furthermore, HIF-1α might inhibit the promoting effect of radiation on glycolysis in hypoxic MCF-7 cells by regulating the glucose metabolic pathway.
Literatur
1.
2.
Zurück zum Zitat Noguchi S, Masuda N, Iwata H, Mukai H, Horiguchi J, Puttawibul P, Srimuninnimit V, Tokuda Y, Kuroi K, Iwase H (2014) Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2. Breast Cancer 21(6):703–714CrossRefPubMed Noguchi S, Masuda N, Iwata H, Mukai H, Horiguchi J, Puttawibul P, Srimuninnimit V, Tokuda Y, Kuroi K, Iwase H (2014) Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2. Breast Cancer 21(6):703–714CrossRefPubMed
3.
Zurück zum Zitat Lundgren K, Nordenskjöld B, Landberg G (2009) Hypoxia, snail and incomplete epithelial–mesenchymal transition in breast cancer. Br J Cancer 101(10):1769–1781CrossRefPubMedPubMedCentral Lundgren K, Nordenskjöld B, Landberg G (2009) Hypoxia, snail and incomplete epithelial–mesenchymal transition in breast cancer. Br J Cancer 101(10):1769–1781CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354CrossRefPubMed Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354CrossRefPubMed
5.
Zurück zum Zitat Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36(10):1674–1686CrossRefPubMedPubMedCentral Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36(10):1674–1686CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Zeng W, Liu P, Pan W, Singh SR, Wei Y (2015) Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett 356(2):263–267CrossRefPubMed Zeng W, Liu P, Pan W, Singh SR, Wei Y (2015) Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett 356(2):263–267CrossRefPubMed
7.
Zurück zum Zitat Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefPubMed Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefPubMed
8.
Zurück zum Zitat Daşu A, Toma-Daşu I, Karlsson M (2003) Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol 48(17):2829CrossRefPubMed Daşu A, Toma-Daşu I, Karlsson M (2003) Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol 48(17):2829CrossRefPubMed
9.
Zurück zum Zitat Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914CrossRefPubMed Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914CrossRefPubMed
10.
Zurück zum Zitat Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19(2):223–229CrossRefPubMed Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19(2):223–229CrossRefPubMed
11.
Zurück zum Zitat J-w K, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185CrossRef J-w K, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185CrossRef
12.
Zurück zum Zitat Semenza GL (2011) Oxygen sensing, homeostasis, and disease. New England J Med 365(6):537–547CrossRef Semenza GL (2011) Oxygen sensing, homeostasis, and disease. New England J Med 365(6):537–547CrossRef
13.
Zurück zum Zitat Germain S, Monnot C, Muller L, Eichmann A (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17(3):245–251PubMed Germain S, Monnot C, Muller L, Eichmann A (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17(3):245–251PubMed
14.
Zurück zum Zitat Baker L, Boult J, Walker-Samuel S, Chung Y, Jamin Y, Ashcroft M, Robinson S (2012) The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 106(10):1638–1647CrossRefPubMedPubMedCentral Baker L, Boult J, Walker-Samuel S, Chung Y, Jamin Y, Ashcroft M, Robinson S (2012) The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 106(10):1638–1647CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci 104(22):9445–9450CrossRefPubMedPubMedCentral Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci 104(22):9445–9450CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hu Y, Liu J, Huang H (2013) Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 114(3):498–509CrossRefPubMed Hu Y, Liu J, Huang H (2013) Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 114(3):498–509CrossRefPubMed
17.
Zurück zum Zitat Lu H, Li X, Luo Z, Liu J, Fan Z (2013) Cetuximab reverses the Warburg effect by inhibiting HIF-1–regulated LDH-A. Mol Cancer Ther 12(10):2187–2199CrossRefPubMed Lu H, Li X, Luo Z, Liu J, Fan Z (2013) Cetuximab reverses the Warburg effect by inhibiting HIF-1–regulated LDH-A. Mol Cancer Ther 12(10):2187–2199CrossRefPubMed
18.
Zurück zum Zitat Lagadec C, Dekmezian C, Bauche L, Pajonk F (2012) Oxygen levels do not determine radiation survival of breast cancer stem cells. PLoS One 7(3):29CrossRef Lagadec C, Dekmezian C, Bauche L, Pajonk F (2012) Oxygen levels do not determine radiation survival of breast cancer stem cells. PLoS One 7(3):29CrossRef
19.
Zurück zum Zitat Chandel N, Maltepe E, Goldwasser E, Mathieu C, Simon M, Schumacker P (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci 95(20):11715–11720CrossRefPubMedPubMedCentral Chandel N, Maltepe E, Goldwasser E, Mathieu C, Simon M, Schumacker P (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci 95(20):11715–11720CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Jiang B-H, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1α modulation of transcriptional activity by oxygen tension. J Biol Chem 272(31):19253–19260CrossRefPubMed Jiang B-H, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1α modulation of transcriptional activity by oxygen tension. J Biol Chem 272(31):19253–19260CrossRefPubMed
21.
Zurück zum Zitat An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392(6674):405–408CrossRefPubMed An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392(6674):405–408CrossRefPubMed
22.
Zurück zum Zitat Wang G, Hazra TK, Mitra S, Lee H-M, Englander EW (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Symp Ser 28(10):2135–2140CrossRef Wang G, Hazra TK, Mitra S, Lee H-M, Englander EW (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Symp Ser 28(10):2135–2140CrossRef
23.
Zurück zum Zitat Lagadec C, Dekmezian C, Bauché L, Pajonk F (2012) Oxygen levels do not determine radiation survival of breast cancer stem cells. PLoS One 7(3):e34545CrossRefPubMedPubMedCentral Lagadec C, Dekmezian C, Bauché L, Pajonk F (2012) Oxygen levels do not determine radiation survival of breast cancer stem cells. PLoS One 7(3):e34545CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Hoogsteen I, Marres H, Van Der Kogel A, Kaanders J (2007) The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin Oncol 19(6):385–396CrossRef Hoogsteen I, Marres H, Van Der Kogel A, Kaanders J (2007) The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin Oncol 19(6):385–396CrossRef
25.
Zurück zum Zitat Horsman MR, Wouters BG, Joiner MC, Overgaard J (2009) The oxygen effect and fractionated radiotherapy. Basic clinical radiobiology London: Edward Arnold: 207–209 Horsman MR, Wouters BG, Joiner MC, Overgaard J (2009) The oxygen effect and fractionated radiotherapy. Basic clinical radiobiology London: Edward Arnold: 207–209
26.
Zurück zum Zitat Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39(3):251–257CrossRefPubMed Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39(3):251–257CrossRefPubMed
27.
Zurück zum Zitat Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121(1):29–40CrossRefPubMed Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121(1):29–40CrossRefPubMed
28.
Zurück zum Zitat Harrison L, Blackwell K (2004) Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? The Oncologist 9(Supplement 5):31–40CrossRefPubMed Harrison L, Blackwell K (2004) Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? The Oncologist 9(Supplement 5):31–40CrossRefPubMed
29.
Zurück zum Zitat Sattler UG, Mueller-Klieser W (2009) The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 85(11):963–971CrossRefPubMed Sattler UG, Mueller-Klieser W (2009) The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 85(11):963–971CrossRefPubMed
30.
Zurück zum Zitat Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331CrossRefPubMedPubMedCentral Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316CrossRefPubMedPubMedCentral Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Behrooz A, Ismail-Beigi F (1997) Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J Biol Chem 272(9):5555–5562CrossRefPubMed Behrooz A, Ismail-Beigi F (1997) Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J Biol Chem 272(9):5555–5562CrossRefPubMed
33.
Zurück zum Zitat Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Aimee YY (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12(2):149–162CrossRefPubMedPubMedCentral Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Aimee YY (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12(2):149–162CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434CrossRefPubMed Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434CrossRefPubMed
36.
Zurück zum Zitat Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ (2009) IDH1 and IDH2 mutations in gliomas. New England J Med 360(8):765–773CrossRef Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ (2009) IDH1 and IDH2 mutations in gliomas. New England J Med 360(8):765–773CrossRef
37.
Zurück zum Zitat Drabovich AP, Pavlou MP, Dimitromanolakis A, Diamandis EP (2012) Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 11(8):422–434CrossRefPubMedPubMedCentral Drabovich AP, Pavlou MP, Dimitromanolakis A, Diamandis EP (2012) Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 11(8):422–434CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Exp Mol Med 36(1):1–12CrossRefPubMed Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Exp Mol Med 36(1):1–12CrossRefPubMed
39.
Zurück zum Zitat Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455(3):479–492CrossRefPubMedPubMedCentral Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455(3):479–492CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H, Greschat S, Ehrmann A, Summer H, Flamme I, Oehme F (2013) BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2(5):611–624PubMedPubMedCentral Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H, Greschat S, Ehrmann A, Summer H, Flamme I, Oehme F (2013) BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2(5):611–624PubMedPubMedCentral
41.
Zurück zum Zitat Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277CrossRefPubMed Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277CrossRefPubMed
Metadaten
Titel
The Promoting Effect of Radiation on Glucose Metabolism in Breast Cancer Cells under the Treatment of Cobalt Chloride
verfasst von
Chun-bo Zhao
Lei Shi
Hai-hong Pu
Qing-yuan Zhang
Publikationsdatum
24.06.2016
Verlag
Springer Netherlands
Erschienen in
Pathology & Oncology Research / Ausgabe 1/2017
Print ISSN: 1219-4956
Elektronische ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-016-0076-3

Weitere Artikel der Ausgabe 1/2017

Pathology & Oncology Research 1/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.