Skip to main content
Erschienen in:

22.02.2022 | Original Article

The Protective Effect of miR-27-3p on Ischemia-Reperfusion-Induced Myocardial Injury Depends on HIF-1α and Galectin-3

verfasst von: Ziguang Song, Xiao Zhong, Zhongping Ning, Xiang Song

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Cardiac ischemia-reperfusion injury usually results in acute myocardial infarction (AMI). MiRNAs have been identified as key regulators of AMI. This study was carried out to investigate the effect of miR-27-3p on cardiomyocyte injury in AMI. CCK-8 and flow cytometry assays were used to evaluate cell viability and apoptosis. The expression levels of miR-27-3p, galectin-3, and hypoxia-inducible factor-1α were measured by qRT-PCR. The relationship among miR-27-3p, galectin-3, and HIF-1α was assessed by bioinformatics analysis and luciferase assay. The effects of miR-27-3p and/or galectin-3 and HIF-1α on the inhibition of cell viability and apoptosis induced by H/R were explored. The expression levels of apoptosis-related proteins were determined by Western blot analysis. The expression levels of miR-27-3p were reduced in both ischemia-reperfusion myocardium and HL-1 cells during hypoxia. Overexpression of miR-27-3p reduced I/R-induced myocardial injury, and HIF-1α can reduce this effect. H/R reduced the expression levels of miR-27-3p in HL-1 cardiomyocytes, and HIF1-α reduced this effect, indicating that HIF1-α could regulate the expression of miR-27-3p, and galectin-3 was a target of miR-27-3p. Finally, overexpression of galectin-3 reduced the protective effect of miR-27-3p on cardiomyocyte injury. The expression levels of HIF1-α were increased, and miR-27-3p was downregulated after AMI. HIF-1α promoted myocardial protection by upregulating miR-27-3p, and downregulation of miR-27-3p promoted myocardium cell injury by targeting galectin-3.

Graphical abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat ABH, W., Feng, Y. J., Moore, R., Apple, F. S., McPherson, P. H., Buechler, K. F., et al. (2020). Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. Clinical Chemistry, 44(6), 6. ABH, W., Feng, Y. J., Moore, R., Apple, F. S., McPherson, P. H., Buechler, K. F., et al. (2020). Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. Clinical Chemistry, 44(6), 6.
2.
Zurück zum Zitat Baudouy, D., Michiels, J. F., Vukolic, A., Wagner, K. D., & Wagner, N. (2017). Echocardiographic and histological examination of cardiac morphology in the mouse. Journal of visualized experiments : JoVE, 128, 55843. https://doi.org/10.3791/55843CrossRef Baudouy, D., Michiels, J. F., Vukolic, A., Wagner, K. D., & Wagner, N. (2017). Echocardiographic and histological examination of cardiac morphology in the mouse. Journal of visualized experiments : JoVE, 128, 55843. https://​doi.​org/​10.​3791/​55843CrossRef
3.
Zurück zum Zitat Wu, A. H., Valdes, R., Apple, F. S., Gornet, T., Stone, M. A., Mayfield-Stokes, S., Ingersoll-Stroubos, A. M., & Wiler, B. J. C. C. (2020). Cardiac troponin-T immunoassay for diagnosis of acute myocardial infarction. Clinical Chemistry, 40(6), 6. Wu, A. H., Valdes, R., Apple, F. S., Gornet, T., Stone, M. A., Mayfield-Stokes, S., Ingersoll-Stroubos, A. M., & Wiler, B. J. C. C. (2020). Cardiac troponin-T immunoassay for diagnosis of acute myocardial infarction. Clinical Chemistry, 40(6), 6.
4.
Zurück zum Zitat Christina, T., Pickering, J. W., Martin, T., Chris, B., Nie, L., Eldho, P., Anthony, D., Arch, B., & Gerhard, S. H. J. C. C. (2020). Impact of high-sensitivity troponin I testing with sex-specific cutoffs on the diagnosis of acute myocardial infarction. Clinical Chemistry, 62(6), 6. Christina, T., Pickering, J. W., Martin, T., Chris, B., Nie, L., Eldho, P., Anthony, D., Arch, B., & Gerhard, S. H. J. C. C. (2020). Impact of high-sensitivity troponin I testing with sex-specific cutoffs on the diagnosis of acute myocardial infarction. Clinical Chemistry, 62(6), 6.
5.
Zurück zum Zitat Wu, Y., Yao, J., & Feng, K. (2020). miR-124-5p/NOX2 axis modulates the ROS production and the inflammatory microenvironment to protect against the cerebral I/R injury. Neurochemical Research, 45(2), 404–417.CrossRefPubMed Wu, Y., Yao, J., & Feng, K. (2020). miR-124-5p/NOX2 axis modulates the ROS production and the inflammatory microenvironment to protect against the cerebral I/R injury. Neurochemical Research, 45(2), 404–417.CrossRefPubMed
6.
Zurück zum Zitat Yamada, N., Karasawa, T., Wakiya, T., Sadatomo, A., et al. (2020). iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis. American Journal of Transplantation, 20(6), 1606–1618.CrossRefPubMed Yamada, N., Karasawa, T., Wakiya, T., Sadatomo, A., et al. (2020). iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis. American Journal of Transplantation, 20(6), 1606–1618.CrossRefPubMed
7.
Zurück zum Zitat Zhang, Y.-M., Qu, X.-Y., Tao, L.-N., Zhai, J.-H., & Biology, S.-X. Z. J. P. (2020). XingNaoJing injection ameliorates cerebral ischaemia/reperfusion injury via SIRT1-mediated inflammatory response inhibition. Pharmaceutical Biology, 58(1), 16–24.CrossRefPubMed Zhang, Y.-M., Qu, X.-Y., Tao, L.-N., Zhai, J.-H., & Biology, S.-X. Z. J. P. (2020). XingNaoJing injection ameliorates cerebral ischaemia/reperfusion injury via SIRT1-mediated inflammatory response inhibition. Pharmaceutical Biology, 58(1), 16–24.CrossRefPubMed
8.
Zurück zum Zitat Playford, R. J., & Marchbank, T. (2020). Pancreatic secretory trypsin inhibitor reduces multi-organ injury caused by gut ischemia/reperfusion in mice. PLoS One, 15(1), e0227059.CrossRefPubMedPubMedCentral Playford, R. J., & Marchbank, T. (2020). Pancreatic secretory trypsin inhibitor reduces multi-organ injury caused by gut ischemia/reperfusion in mice. PLoS One, 15(1), e0227059.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Sun, Y., Xiong, X., & Wang, X. (2019). HIF1α/miR-199a/ADM feedback loop modulates the proliferation of human dermal microvascular endothelial cells (HDMECs) under hypoxic condition. Cell Cycle, 18(3), 1–12. Sun, Y., Xiong, X., & Wang, X. (2019). HIF1α/miR-199a/ADM feedback loop modulates the proliferation of human dermal microvascular endothelial cells (HDMECs) under hypoxic condition. Cell Cycle, 18(3), 1–12.
10.
Zurück zum Zitat Singh, S. K., Mishra, M. K., & Singh, R. (2019). Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Journal of Ovarian Research, 12(1), 1–10.CrossRef Singh, S. K., Mishra, M. K., & Singh, R. (2019). Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Journal of Ovarian Research, 12(1), 1–10.CrossRef
11.
Zurück zum Zitat Li, H.-M., Miao, J., Zhu, M., Gao, M., et al. (2019). Bishonokiol A inhibits breast cancer cell invasion and migration by suppressing hypoxia inducible factor-1α. Journal of Bioenergetics and Biomembranes, 51(3), 239–248.CrossRefPubMed Li, H.-M., Miao, J., Zhu, M., Gao, M., et al. (2019). Bishonokiol A inhibits breast cancer cell invasion and migration by suppressing hypoxia inducible factor-1α. Journal of Bioenergetics and Biomembranes, 51(3), 239–248.CrossRefPubMed
12.
Zurück zum Zitat Halliday, M. R., Abeydeera, D., Lundquist, A. J., Petzinger, G. M., & Neuroreport, M. W. J. J. (2019). Intensive treadmill exercise increases expression of hypoxia-inducible factor 1α and its downstream transcript targets: a potential role in neuroplasticity. Neuroreport, 30(9), 1.CrossRef Halliday, M. R., Abeydeera, D., Lundquist, A. J., Petzinger, G. M., & Neuroreport, M. W. J. J. (2019). Intensive treadmill exercise increases expression of hypoxia-inducible factor 1α and its downstream transcript targets: a potential role in neuroplasticity. Neuroreport, 30(9), 1.CrossRef
14.
Zurück zum Zitat Siebert, V., Allencherril, J., Ye, Y., Wehrens, X. H. T., & Birnbaum, Y. (2019). The role of non-coding RNAs in ischemic myocardial reperfusion injury. Cardiovascular Drugs and Therapy, 33(4), 489–498.CrossRefPubMed Siebert, V., Allencherril, J., Ye, Y., Wehrens, X. H. T., & Birnbaum, Y. (2019). The role of non-coding RNAs in ischemic myocardial reperfusion injury. Cardiovascular Drugs and Therapy, 33(4), 489–498.CrossRefPubMed
15.
Zurück zum Zitat Britta, V., Andreas, K., Frese, K. S., Wanda, K., Elham, K., Farbod, S. H., Sarah, H., Sabine, M., Markus, B., & Evangelos, G. J. C. C. (2020). Refining diagnostic MicroRNA signatures by whole-miRNome kinetic analysis in acute myocardial infarction. Clinical Chemistry, 59(2), 410–418. Britta, V., Andreas, K., Frese, K. S., Wanda, K., Elham, K., Farbod, S. H., Sarah, H., Sabine, M., Markus, B., & Evangelos, G. J. C. C. (2020). Refining diagnostic MicroRNA signatures by whole-miRNome kinetic analysis in acute myocardial infarction. Clinical Chemistry, 59(2), 410–418.
16.
Zurück zum Zitat Yang, H., Qin, X., Wang, H., Zhao, X., & Nano, K. L. J. A. (2019). An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano, 13(9), 9880–9894.CrossRefPubMedPubMedCentral Yang, H., Qin, X., Wang, H., Zhao, X., & Nano, K. L. J. A. (2019). An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano, 13(9), 9880–9894.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Wu, A., Mingjing, Z., Lixia, L., Jianying, Z., Dongmei, Z., Haiyan, Z., Yonghong, G., & Hongcai, S. (2017). International CLJBR effect of Wenxin granules on gap junction and MiR-1 in rats with myocardial infarction. BioMed Research International, 2017, 1–12. Wu, A., Mingjing, Z., Lixia, L., Jianying, Z., Dongmei, Z., Haiyan, Z., Yonghong, G., & Hongcai, S. (2017). International CLJBR effect of Wenxin granules on gap junction and MiR-1 in rats with myocardial infarction. BioMed Research International, 2017, 1–12.
18.
Zurück zum Zitat Zhou, L., Liang, X., Zhang, L., Yang, L., Nagao, N., Wu, H., Liu, C., Lin, S., Cai, G., & Liu, J. J. O. (2016). MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. Oncotarget, 7(32), 51943.CrossRefPubMedPubMedCentral Zhou, L., Liang, X., Zhang, L., Yang, L., Nagao, N., Wu, H., Liu, C., Lin, S., Cai, G., & Liu, J. J. O. (2016). MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. Oncotarget, 7(32), 51943.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sanders-van, W. S., Serge, M., Valentina, M., Peter, R., Marco, G., Tavazzi, L. T., Daniel, T., Hans, R., Roberto, L., et al. (2020). Interaction of galectin-3 concentrations with the treatment effects of β-blockers and RAS blockade in patients with systolic heart failure: A derivation-validation study from TIME-CHF and GISSI-HF. Clinical Chemistry, 62(4), 605–616. Sanders-van, W. S., Serge, M., Valentina, M., Peter, R., Marco, G., Tavazzi, L. T., Daniel, T., Hans, R., Roberto, L., et al. (2020). Interaction of galectin-3 concentrations with the treatment effects of β-blockers and RAS blockade in patients with systolic heart failure: A derivation-validation study from TIME-CHF and GISSI-HF. Clinical Chemistry, 62(4), 605–616.
20.
Zurück zum Zitat Romero, A., & Gabius, H.-J. (2019). Galectin-3: Is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opinion on Therapeutic Targets, 23(10), 819–828.CrossRefPubMed Romero, A., & Gabius, H.-J. (2019). Galectin-3: Is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opinion on Therapeutic Targets, 23(10), 819–828.CrossRefPubMed
21.
Zurück zum Zitat Andreas, N., Nina, S., Andreas, S. C., Olfert, L., & Wolfgang, S. J. C. C. (2020). Different real-time PCR formats compared for the quantitative detection of human cytomegalovirus DNA. Clinical Chemistry, 45(11), 1932–1937. Andreas, N., Nina, S., Andreas, S. C., Olfert, L., & Wolfgang, S. J. C. C. (2020). Different real-time PCR formats compared for the quantitative detection of human cytomegalovirus DNA. Clinical Chemistry, 45(11), 1932–1937.
22.
Zurück zum Zitat Pierce, G. F., & Jaffe, A. S. (2020). Increased creatine kinase MB in the absence of acute myocardial infarction. Clinical Chemistry, 32(11), 2044–2051.CrossRef Pierce, G. F., & Jaffe, A. S. (2020). Increased creatine kinase MB in the absence of acute myocardial infarction. Clinical Chemistry, 32(11), 2044–2051.CrossRef
23.
Zurück zum Zitat Mcelveen, J., Mackness, M. I., Colley, C. M., Peard, T., Warner, S., & Walker, C. H. J. C. C. (2020). Distribution of paraoxon hydrolytic activity in the serum of patients after myocardial infarction. Clinical Chemistry, 32(4), 671–673.CrossRef Mcelveen, J., Mackness, M. I., Colley, C. M., Peard, T., Warner, S., & Walker, C. H. J. C. C. (2020). Distribution of paraoxon hydrolytic activity in the serum of patients after myocardial infarction. Clinical Chemistry, 32(4), 671–673.CrossRef
24.
Zurück zum Zitat Karimipour, M., Zarghani, S. S., Milani, M. M., & Soraya, H. J. B. E. T. (2018). Pre-treatment with metformin in comparison with post-treatment reduces cerebral ischemia reperfusion induced injuries in rats. Bulletin of Emergency & Trauma, 6(2), 115–121.CrossRef Karimipour, M., Zarghani, S. S., Milani, M. M., & Soraya, H. J. B. E. T. (2018). Pre-treatment with metformin in comparison with post-treatment reduces cerebral ischemia reperfusion induced injuries in rats. Bulletin of Emergency & Trauma, 6(2), 115–121.CrossRef
25.
Zurück zum Zitat Cao, B., Wang, H., Zhang, C., Xia, M., & Yang, X. (2018). Remote ischemic postconditioning (RIPC) of the upper arm results in protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 1017–1026.CrossRef Cao, B., Wang, H., Zhang, C., Xia, M., & Yang, X. (2018). Remote ischemic postconditioning (RIPC) of the upper arm results in protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 1017–1026.CrossRef
26.
Zurück zum Zitat Dong, L.-Y., Chen, F., Xu, M., Yao, L.-P., Zhang, Y.-J., & Zhuang, Y. (2018). Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. American Journal of Translational Research, 10(5), 1273.PubMedPubMedCentral Dong, L.-Y., Chen, F., Xu, M., Yao, L.-P., Zhang, Y.-J., & Zhuang, Y. (2018). Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. American Journal of Translational Research, 10(5), 1273.PubMedPubMedCentral
27.
Zurück zum Zitat Chu, B., Zhou, Y., Zhai, H., Li, L., & Li, Y. J. C. J. P. P. (2018). The role of microRNA-146a in regulating the expression of IRAK1 in cerebral ischemia-reperfusion injury. Canadian Journal of Physiology and Pharmacology, 96(6), 611–617.CrossRefPubMed Chu, B., Zhou, Y., Zhai, H., Li, L., & Li, Y. J. C. J. P. P. (2018). The role of microRNA-146a in regulating the expression of IRAK1 in cerebral ischemia-reperfusion injury. Canadian Journal of Physiology and Pharmacology, 96(6), 611–617.CrossRefPubMed
28.
Zurück zum Zitat Yao, X., Wang, Y., & Zhang, D. (2018). microRNA-21 confers neuroprotection against cerebral ischemia-reperfusion injury and alleviates blood-brain barrier disruption in rats via the MAPK signaling pathway. Journal of Molecular Neuroscience, 65(1), 43–53.CrossRefPubMed Yao, X., Wang, Y., & Zhang, D. (2018). microRNA-21 confers neuroprotection against cerebral ischemia-reperfusion injury and alleviates blood-brain barrier disruption in rats via the MAPK signaling pathway. Journal of Molecular Neuroscience, 65(1), 43–53.CrossRefPubMed
29.
Zurück zum Zitat Yang, F., Li, T., Dong, Z., & Mi, R. (2018). MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein. Journal of Cellular Biochemistry, 119(2), 2427–2439.CrossRefPubMed Yang, F., Li, T., Dong, Z., & Mi, R. (2018). MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein. Journal of Cellular Biochemistry, 119(2), 2427–2439.CrossRefPubMed
30.
Zurück zum Zitat Yan, M., Yang, S., Meng, F., Zhao, Z., & Yang, P. (2018). MicroRNA 199a-5p induces apoptosis by targeting JunB. Scientific Reports, 8(1), 1–10.CrossRef Yan, M., Yang, S., Meng, F., Zhao, Z., & Yang, P. (2018). MicroRNA 199a-5p induces apoptosis by targeting JunB. Scientific Reports, 8(1), 1–10.CrossRef
31.
Zurück zum Zitat Li, L., Liu, T., Liu, L., Li, S., et al. (2019). Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. Journal of Bioenergetics and Biomembranes, 51(6), 393–402.CrossRefPubMed Li, L., Liu, T., Liu, L., Li, S., et al. (2019). Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. Journal of Bioenergetics and Biomembranes, 51(6), 393–402.CrossRefPubMed
32.
Zurück zum Zitat Li, W., Ning, J. Z., Cheng, F., Yu, W. M., Rao, T., Ruan, Y., et al. (2018). MALAT1 promotes cell apoptosis and suppresses cell proliferation in testicular ischemia-reperfusion injury by sponging miR-214 to modulate TRPV4 expression. Cellular Physiology and Biochemistry, 46(2), 802–814.CrossRefPubMed Li, W., Ning, J. Z., Cheng, F., Yu, W. M., Rao, T., Ruan, Y., et al. (2018). MALAT1 promotes cell apoptosis and suppresses cell proliferation in testicular ischemia-reperfusion injury by sponging miR-214 to modulate TRPV4 expression. Cellular Physiology and Biochemistry, 46(2), 802–814.CrossRefPubMed
33.
Zurück zum Zitat Gao, C. K., Liu, H., Cui, C. J., Liang, Z. G., Yao, H., & Tian, Y. (2016). Roles of MicroRNA-195 in cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion injury. Journal of Genetics, 95(1), 99–108.CrossRefPubMed Gao, C. K., Liu, H., Cui, C. J., Liang, Z. G., Yao, H., & Tian, Y. (2016). Roles of MicroRNA-195 in cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion injury. Journal of Genetics, 95(1), 99–108.CrossRefPubMed
34.
Zurück zum Zitat Luo, Y. L., Wu, J. B., & Luo, M. (2018). Impact of platelet mRNA/miRNA transfer on vascular cell function. Zhonghua Xin Xue Guan Bing Za Zhi, 46(2), 161–164.PubMed Luo, Y. L., Wu, J. B., & Luo, M. (2018). Impact of platelet mRNA/miRNA transfer on vascular cell function. Zhonghua Xin Xue Guan Bing Za Zhi, 46(2), 161–164.PubMed
35.
Zurück zum Zitat Luo, S., Chen, Y., He, R., Shi, Y., & Su, L. (2018). Rescuing infusion of miRNA-1 prevents cardiac remodeling in a heart-selective miRNA deficient mouse. Biochemical and Biophysical Research Communications, 495(1), 607–613.CrossRefPubMed Luo, S., Chen, Y., He, R., Shi, Y., & Su, L. (2018). Rescuing infusion of miRNA-1 prevents cardiac remodeling in a heart-selective miRNA deficient mouse. Biochemical and Biophysical Research Communications, 495(1), 607–613.CrossRefPubMed
36.
Zurück zum Zitat Ozaki, T., Nakamura, M., Ogata, T., Sang, M., & Shimozato, O. (2018). The functional interplay between pro-oncogenic RUNX2 and hypoxia-inducible factor-1α (HIF-1α) during hypoxia-mediated tumor progression. In N. Shinomiya, H. Kataoka, & Q. Xie (Eds.), Regulation of Signal Transduction in Human Cell Research. Current Human Cell Research and Applications. Ozaki, T., Nakamura, M., Ogata, T., Sang, M., & Shimozato, O. (2018). The functional interplay between pro-oncogenic RUNX2 and hypoxia-inducible factor-1α (HIF-1α) during hypoxia-mediated tumor progression. In N. Shinomiya, H. Kataoka, & Q. Xie (Eds.), Regulation of Signal Transduction in Human Cell Research. Current Human Cell Research and Applications.
37.
Zurück zum Zitat Peña-Mercado, E., Garcia-Lorenzana, M., Arechaga-Ocampo, E., Rosa, G. D. L., & Beltran, N. E. (2018). Evaluation of HIF-1α and iNOS in ischemia/reperfusion gastric model: Bioimpedance, histological and immunohistochemical analyses. Histology and Histopathology, 33(8), 815–823.PubMed Peña-Mercado, E., Garcia-Lorenzana, M., Arechaga-Ocampo, E., Rosa, G. D. L., & Beltran, N. E. (2018). Evaluation of HIF-1α and iNOS in ischemia/reperfusion gastric model: Bioimpedance, histological and immunohistochemical analyses. Histology and Histopathology, 33(8), 815–823.PubMed
38.
Zurück zum Zitat Bänfer, S., Schneider, D., Dewes, J., Strauss, M. T., & Jacob, R. (2018). Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proceedings of the National Academy of Sciences, 115(19), 201718921.CrossRef Bänfer, S., Schneider, D., Dewes, J., Strauss, M. T., & Jacob, R. (2018). Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proceedings of the National Academy of Sciences, 115(19), 201718921.CrossRef
39.
Zurück zum Zitat Andisheh-Tadbir, A., Mardani, M., Malekzadeh, M., Tafti, T. A., & Khademi, B. (2018). Galectin-3 serum levels could help clinicians screen for salivary gland tumor patients. Asian Pacific Journal of Cancer Prevention : APJCP, 19(3), 689–692.PubMedPubMedCentral Andisheh-Tadbir, A., Mardani, M., Malekzadeh, M., Tafti, T. A., & Khademi, B. (2018). Galectin-3 serum levels could help clinicians screen for salivary gland tumor patients. Asian Pacific Journal of Cancer Prevention : APJCP, 19(3), 689–692.PubMedPubMedCentral
41.
Zurück zum Zitat Liu, X., Gu, Y., Liu, Y., Zhang, M., Wang, Y., & Hu, L. (2018). Ticagrelor attenuates myocardial ischaemia–reperfusion injury possibly through downregulating galectin-3 expression in the infarct area of rats. British Journal of Clinical Pharmacology, 84(6), 1180–1186.CrossRefPubMedPubMedCentral Liu, X., Gu, Y., Liu, Y., Zhang, M., Wang, Y., & Hu, L. (2018). Ticagrelor attenuates myocardial ischaemia–reperfusion injury possibly through downregulating galectin-3 expression in the infarct area of rats. British Journal of Clinical Pharmacology, 84(6), 1180–1186.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Nguyen, M. N., Su, Y., Vizi, D., Fang, L., & Reports, X.-J. (2018). Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Scientific Reports, 8(1), 523.CrossRef Nguyen, M. N., Su, Y., Vizi, D., Fang, L., & Reports, X.-J. (2018). Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Scientific Reports, 8(1), 523.CrossRef
Metadaten
Titel
The Protective Effect of miR-27-3p on Ischemia-Reperfusion-Induced Myocardial Injury Depends on HIF-1α and Galectin-3
verfasst von
Ziguang Song
Xiao Zhong
Zhongping Ning
Xiang Song
Publikationsdatum
22.02.2022
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2022
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-021-10203-y

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Kardiologie

Schwere Menschen brauchen nicht mehr Strom

Die initiale Energiedosis – bezogen auf das Körpergewicht – hat wenig Einfluss auf den Erfolg einer Defibrillation von Erwachsenen mit Herzstillstand. Eine Rückkehr des Spontankreislaufs wird unabhängig von der Energiedichte ähnlich oft erzielt, auch die Überlebensraten sind vergleichbar.

Vorhofflimmern: Antikoagulation vor Schlaganfall von Vorteil

Erleiden Menschen mit Vorhofflimmern einen ischämischen Schlaganfall, ist dieser weniger schwer, auch sind Infarktgröße und Blutungsrisiko geringer, wenn sie zuvor orale Antikoagulanzien erhalten haben. Die Art der Antikoagulation spielt dabei keine Rolle.

Mehr Cholesterin im Essen = höheres Herzinfarktrisiko

Je mehr Cholesterin man täglich über die Nahrung zu sich nimmt, desto höher ist offenbar das Herzinfarktrisiko – das legt eine Studie mit US-Veteranen zumindest für Männer nahe.

Antikoagulation bei Vorhofflimmern: Sind DOAK noch zu toppen?

Gegen Thromboembolien so wirksam wie ein DOAK, bei zugleich geringerem Blutungsrisiko – werden Faktor-XI-Hemmer als neue Antikoagulanzien dieser Erwartung gerecht? Eine aktuell publizierte Vergleichsstudie gibt darüber Aufschluss.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.