Skip to main content
Erschienen in: Inflammation 2/2016

05.02.2016 | ORIGINAL ARTICLE

The Protective Role of Autophagy in Matrix Metalloproteinase-Mediated Cell Transmigration and Cell Death in High-Glucose-Treated Endothelial Cells

verfasst von: Chia-Lun Chao, Chun-Pin Chuang, Yen-Fen Cheng, Kueir-Rarn Lee, Yung Chang, Shun-Ping Cheng, Wan-Khey Chan, Feng-Ming Ho

Erschienen in: Inflammation | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Diabetes mellitus may cause vascular endothelial damage via endothelial matrix metalloproteinase-2 (MMP-2). The role of endothelial autophagy in MMP-2-mediated cell injury in response to high-glucose (HG) stimulation was rarely described. In this study, we used HG-treated human umbilical vein endothelial cells (HUVECs) to investigate the effect of autophagy on MMP-2-induced cell transmigration and apoptosis. THP-1 transmigration was detected by the transmigration assay. Light chain 3 (LC3, representing autophagy), MMP-2, and poly (ADP-ribose) polymerase (PARP, representing apoptosis) of HG (33 mM)-treated HUVECs were evaluated by western blot analysis. The MMP-2 activity was also examined by gelatin zymography. We used GM6001 (10 μM, an MMP-2 inhibitor) to investigate the relationship of MMP-2 and THP-1 transmigration. Using 3-methyladenine (3MA, 5 mM, an LC3 inhibitor), we explored the effects of autophagy on MMP-2 expression, THP-1 transmigration, and apoptosis. Our results showed that HG increased LC3-II expression, MMP-2 activity, THP-1 transmigration, and cleaved PARP expression in a time-dependent manner (0–48 h); among them, LC3-II appeared earlier (0–24 h) than the others (24–48 h). GM6001 suppressed MMP-2 activity and ameliorated THP-1 transmigration. 3MA suppressed LC3-II expression and increased MMP-2 expression, THP-1 transmigration, and cleaved PARP expression. From these sequential findings, we demonstrated that autophagy plays a protective role in MMP-2-mediated cell transmigration and cell death in HG-stimulated HUVECs.
Literatur
1.
Zurück zum Zitat Haffner, S.M., S. Lehto, T. Rönnemaa, K. Pyörälä, and M. Laakso. 1998. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine 339: 229–234.CrossRefPubMed Haffner, S.M., S. Lehto, T. Rönnemaa, K. Pyörälä, and M. Laakso. 1998. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine 339: 229–234.CrossRefPubMed
2.
Zurück zum Zitat Nandy, D., R. Janardhanan, D. Mukhopadhyay, and A. Basu. 2011. Effect of hyperglycemia on human monocyte activation. Journal of Investigative Medicine 59: 661–667.PubMedPubMedCentral Nandy, D., R. Janardhanan, D. Mukhopadhyay, and A. Basu. 2011. Effect of hyperglycemia on human monocyte activation. Journal of Investigative Medicine 59: 661–667.PubMedPubMedCentral
3.
Zurück zum Zitat Sena, C.M., A.M. Pereira, and R. Seiça. 2013. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochimica et Biophysica Acta 1832: 2216–2231.CrossRefPubMed Sena, C.M., A.M. Pereira, and R. Seiça. 2013. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochimica et Biophysica Acta 1832: 2216–2231.CrossRefPubMed
4.
Zurück zum Zitat Konior, A., A. Schramm, M. Czesnikiewicz-Guzik, and T.J. Guzik. 2014. NADPH oxidases in vascular pathology. Antioxidants and Redox Signaling 20: 2794–2814.CrossRefPubMedPubMedCentral Konior, A., A. Schramm, M. Czesnikiewicz-Guzik, and T.J. Guzik. 2014. NADPH oxidases in vascular pathology. Antioxidants and Redox Signaling 20: 2794–2814.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Packard, R.R., and P. Libby. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry 54: 24–38.CrossRefPubMed Packard, R.R., and P. Libby. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry 54: 24–38.CrossRefPubMed
8.
Zurück zum Zitat Chen, Q., M. Jin, F. Yang, J. Zhu, Q. Xiao, and L. Zhang. 2013. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators of Inflammation 2013: 928315.PubMedPubMedCentral Chen, Q., M. Jin, F. Yang, J. Zhu, Q. Xiao, and L. Zhang. 2013. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators of Inflammation 2013: 928315.PubMedPubMedCentral
9.
Zurück zum Zitat Lin, J., V. Kakkar, and X. Lu. 2014. Impact of matrix metalloproteinases on atherosclerosis. Current Drug Targets 15: 442–453.CrossRefPubMed Lin, J., V. Kakkar, and X. Lu. 2014. Impact of matrix metalloproteinases on atherosclerosis. Current Drug Targets 15: 442–453.CrossRefPubMed
10.
Zurück zum Zitat Magné, J., P. Gustafsson, H. Jin, L. Maegdefessel, K. Hultenby, A. Wernerson, P. Eriksson, A. Franco-Cereceda, P.T. Kovanen, I. Gonçalves, and E. Ehrenborg. 2015. ATG16L1 expression in carotid atherosclerotic plaques is associated with plaque vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 1226–1235.CrossRefPubMed Magné, J., P. Gustafsson, H. Jin, L. Maegdefessel, K. Hultenby, A. Wernerson, P. Eriksson, A. Franco-Cereceda, P.T. Kovanen, I. Gonçalves, and E. Ehrenborg. 2015. ATG16L1 expression in carotid atherosclerotic plaques is associated with plaque vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 1226–1235.CrossRefPubMed
11.
Zurück zum Zitat Newby, A.C. 2015. Metalloproteinases promote plaque rupture and myocardial infarction: a persuasive concept waiting for clinical translation. Matrix Biology 44-46C: 157–166.CrossRef Newby, A.C. 2015. Metalloproteinases promote plaque rupture and myocardial infarction: a persuasive concept waiting for clinical translation. Matrix Biology 44-46C: 157–166.CrossRef
12.
Zurück zum Zitat Giebel, S.J., G. Menicucci, P.G. McGuire, and A. Das. 2005. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Laboratory Investigation 85: 597–607.CrossRefPubMed Giebel, S.J., G. Menicucci, P.G. McGuire, and A. Das. 2005. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Laboratory Investigation 85: 597–607.CrossRefPubMed
13.
Zurück zum Zitat Cook-Mills, J.M. 2006. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Circulation Research 116: 456–467. Cook-Mills, J.M. 2006. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Circulation Research 116: 456–467.
14.
Zurück zum Zitat Kim, D.S., H.M. Kwon, J.S. Choi, S.W. Kang, G.E. Ji, and Y.H. Kang. 2007. Resveratrol blunts tumor necrosis factor-alpha-induced monocyte adhesion and transmigration. Nutrition Research and Practice 1: 285–290.CrossRefPubMedPubMedCentral Kim, D.S., H.M. Kwon, J.S. Choi, S.W. Kang, G.E. Ji, and Y.H. Kang. 2007. Resveratrol blunts tumor necrosis factor-alpha-induced monocyte adhesion and transmigration. Nutrition Research and Practice 1: 285–290.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Ho, F.M., S.H. Liu, W.W. Lin, and C.S. Liau. 2007. Opposite effects of high glucose on MMP-2 and TIMP-2 in human endothelial cells. Journal of Cellular Biochemistry 101: 442–450.CrossRefPubMed Ho, F.M., S.H. Liu, W.W. Lin, and C.S. Liau. 2007. Opposite effects of high glucose on MMP-2 and TIMP-2 in human endothelial cells. Journal of Cellular Biochemistry 101: 442–450.CrossRefPubMed
16.
Zurück zum Zitat Gatica, D., M. Chiong, S. Lavandero, and D.J. Klionsky. 2015. Molecular mechanisms of autophagy in the cardiovascular system. Circulation Research 116: 456–467.CrossRefPubMedPubMedCentral Gatica, D., M. Chiong, S. Lavandero, and D.J. Klionsky. 2015. Molecular mechanisms of autophagy in the cardiovascular system. Circulation Research 116: 456–467.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ouyang, C., J. You, and Z. Xie. 2014. The interplay between autophagy and apoptosis in the diabetic heart. Journal of Molecular and Cellular Cardiology 71: 71–80.CrossRefPubMed Ouyang, C., J. You, and Z. Xie. 2014. The interplay between autophagy and apoptosis in the diabetic heart. Journal of Molecular and Cellular Cardiology 71: 71–80.CrossRefPubMed
18.
Zurück zum Zitat Xu, Q., X. Li, Y. Lu, L. Shen, J. Zhang, S. Cao, X. Huang, J. Bin, and Y. Liao. 2015. Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. British Journal of Pharmacology 172: 3072–3085.CrossRefPubMed Xu, Q., X. Li, Y. Lu, L. Shen, J. Zhang, S. Cao, X. Huang, J. Bin, and Y. Liao. 2015. Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. British Journal of Pharmacology 172: 3072–3085.CrossRefPubMed
19.
Zurück zum Zitat Zhang, J., H. Deng, L. Liu, X. Liu, X. Zuo, Q. Xu, Z. Wu, X. Peng, and A. Ji. 2015. α-Lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy. Molecular Medicine Reports 12: 180–186.PubMedPubMedCentral Zhang, J., H. Deng, L. Liu, X. Liu, X. Zuo, Q. Xu, Z. Wu, X. Peng, and A. Ji. 2015. α-Lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy. Molecular Medicine Reports 12: 180–186.PubMedPubMedCentral
20.
Zurück zum Zitat Chen, F., B. Chen, F.Q. Xiao, Y.T. Wu, R.H. Wang, Z.W. Sun, G.S. Fu, Y. Mou, W. Tao, X.S. Hu, and S.J. Hu. 2014. Autophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cells. Cellular Physiology and Biochemistry 33: 1058–1074.CrossRefPubMed Chen, F., B. Chen, F.Q. Xiao, Y.T. Wu, R.H. Wang, Z.W. Sun, G.S. Fu, Y. Mou, W. Tao, X.S. Hu, and S.J. Hu. 2014. Autophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cells. Cellular Physiology and Biochemistry 33: 1058–1074.CrossRefPubMed
21.
Zurück zum Zitat Ding, Z., X. Wang, L. Schnackenberg, M. Khaidakov, S. Liu, S. Singla, Y. Dai, and J.L. Mehta. 2013. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g. International Journal of Cardiology 168: 1378–1385.CrossRefPubMed Ding, Z., X. Wang, L. Schnackenberg, M. Khaidakov, S. Liu, S. Singla, Y. Dai, and J.L. Mehta. 2013. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g. International Journal of Cardiology 168: 1378–1385.CrossRefPubMed
22.
Zurück zum Zitat Perrotta, I., and S. Aquila. 2015. The role of oxidative stress and autophagy in atherosclerosis. Oxidative Medicine and Cellular Longevity 2015: 130315.CrossRefPubMedPubMedCentral Perrotta, I., and S. Aquila. 2015. The role of oxidative stress and autophagy in atherosclerosis. Oxidative Medicine and Cellular Longevity 2015: 130315.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Chao, C.L., Y.C. Hou, P.D. Chao, C.S. Weng, and F.M. Ho. 2009. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. British Journal of Nutrition 101: 1165–1170.CrossRefPubMed Chao, C.L., Y.C. Hou, P.D. Chao, C.S. Weng, and F.M. Ho. 2009. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. British Journal of Nutrition 101: 1165–1170.CrossRefPubMed
24.
Zurück zum Zitat Chao, C.L., N.C. Chang, C.S. Weng, K.R. Lee, S.T. Kao, J.C. Hsu, and F.M. Ho. 2011. Grape seed extract ameliorates tumor necrosis factor-α-induced inflammatory status of human umbilical vein endothelial cells. European Journal of Nutrition 50: 401–409.CrossRefPubMed Chao, C.L., N.C. Chang, C.S. Weng, K.R. Lee, S.T. Kao, J.C. Hsu, and F.M. Ho. 2011. Grape seed extract ameliorates tumor necrosis factor-α-induced inflammatory status of human umbilical vein endothelial cells. European Journal of Nutrition 50: 401–409.CrossRefPubMed
27.
Zurück zum Zitat Beckman, J.A., M.A. Creager, and P. Libby. 2002. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287: 2570–2581.CrossRefPubMed Beckman, J.A., M.A. Creager, and P. Libby. 2002. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287: 2570–2581.CrossRefPubMed
28.
Zurück zum Zitat Nesto, R.W. 2004. Correlation between cardiovascular disease and diabetes mellitus: current concepts. American Journal of Medicine 116(Suppl 5A): 11S–22S.CrossRefPubMed Nesto, R.W. 2004. Correlation between cardiovascular disease and diabetes mellitus: current concepts. American Journal of Medicine 116(Suppl 5A): 11S–22S.CrossRefPubMed
29.
Zurück zum Zitat Shiau, M.Y., S.T. Tsai, K.J. Tsai, M.L. Haung, Y.T. Hsu, and Y.H. Chang. 2006. Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mount Sinai Journal of Medicine 73: 1024–1028.PubMed Shiau, M.Y., S.T. Tsai, K.J. Tsai, M.L. Haung, Y.T. Hsu, and Y.H. Chang. 2006. Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mount Sinai Journal of Medicine 73: 1024–1028.PubMed
30.
Zurück zum Zitat Yang, R., H. Liu, I. Williams, and B. Chaqour. 2007. Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: implications in diabetic retinopathy. Annals of the New York Academy of Sciences 1103: 196–201.CrossRefPubMed Yang, R., H. Liu, I. Williams, and B. Chaqour. 2007. Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: implications in diabetic retinopathy. Annals of the New York Academy of Sciences 1103: 196–201.CrossRefPubMed
31.
Zurück zum Zitat Kowluru, R.A., and M. Kanwar. 2009. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radical Biology and Medicine 46: 1677–1685.CrossRefPubMedPubMedCentral Kowluru, R.A., and M. Kanwar. 2009. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radical Biology and Medicine 46: 1677–1685.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat De Meyer, G.R., M.O. Grootaert, C.F. Michiels, A. Kurdi, D.M. Schrijvers, and W. Martinet. 2015. Autophagy in vascular disease. Circulation Research 116: 468–479.CrossRefPubMed De Meyer, G.R., M.O. Grootaert, C.F. Michiels, A. Kurdi, D.M. Schrijvers, and W. Martinet. 2015. Autophagy in vascular disease. Circulation Research 116: 468–479.CrossRefPubMed
33.
Zurück zum Zitat Mellor, K.M., J.R. Bell, M.J. Young, R.H. Ritchie, and L.M. Delbridge. 2011. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. Journal of Molecular and Cellular Cardiology 50: 1035–1043.CrossRefPubMed Mellor, K.M., J.R. Bell, M.J. Young, R.H. Ritchie, and L.M. Delbridge. 2011. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. Journal of Molecular and Cellular Cardiology 50: 1035–1043.CrossRefPubMed
34.
Zurück zum Zitat Wu, X., L. He, F. Chen, X. He, Y. Cai, G. Zhang, Q. Yi, M. He, and J. Luo. 2014. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 9, e112891.CrossRefPubMedPubMedCentral Wu, X., L. He, F. Chen, X. He, Y. Cai, G. Zhang, Q. Yi, M. He, and J. Luo. 2014. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 9, e112891.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Kobayashi, S., X. Xu, K. Chen, and Q. Liang. 2012. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8: 577–592.CrossRefPubMedPubMedCentral Kobayashi, S., X. Xu, K. Chen, and Q. Liang. 2012. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8: 577–592.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4: 244–252.CrossRefPubMedPubMedCentral Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4: 244–252.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ho, F.M., S.H. Liu, C.S. Liau, P.J. Huang, S.G. Shiah, and S.Y. Lin-Shiau. 1999. Nitric oxide prevents apoptosis of human endothelial cells from high glucose exposure during early stage. Journal of Cellular Biochemistry 75: 258–263.CrossRefPubMed Ho, F.M., S.H. Liu, C.S. Liau, P.J. Huang, S.G. Shiah, and S.Y. Lin-Shiau. 1999. Nitric oxide prevents apoptosis of human endothelial cells from high glucose exposure during early stage. Journal of Cellular Biochemistry 75: 258–263.CrossRefPubMed
38.
Zurück zum Zitat Ho, F.M., W.W. Lin, B.C. Chen, C.M. Chao, C.R. Yang, L.Y. Lin, C.C. Lai, S.H. Liu, and C.S. Liau. 2006. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cellular Signalling 18: 391–399.CrossRefPubMed Ho, F.M., W.W. Lin, B.C. Chen, C.M. Chao, C.R. Yang, L.Y. Lin, C.C. Lai, S.H. Liu, and C.S. Liau. 2006. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cellular Signalling 18: 391–399.CrossRefPubMed
Metadaten
Titel
The Protective Role of Autophagy in Matrix Metalloproteinase-Mediated Cell Transmigration and Cell Death in High-Glucose-Treated Endothelial Cells
verfasst von
Chia-Lun Chao
Chun-Pin Chuang
Yen-Fen Cheng
Kueir-Rarn Lee
Yung Chang
Shun-Ping Cheng
Wan-Khey Chan
Feng-Ming Ho
Publikationsdatum
05.02.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0313-7

Weitere Artikel der Ausgabe 2/2016

Inflammation 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.