Skip to main content
main-content
Erschienen in: Brain Structure and Function 9/2021

07.10.2021 | Original Article

The relationship between transcription and eccentricity in human V1

verfasst von: Jesse Gomez, Zonglei Zhen, Kevin S. Weiner

Erschienen in: Brain Structure and Function | Ausgabe 9/2021

Einloggen, um Zugang zu erhalten

Abstract

Gene expression gradients radiating from regions of primary sensory cortices have recently been described and are thought to underlie the large-scale organization of the human cerebral cortex. However, the role of transcription in the functional layout of a single region within the adult brain has yet to be clarified, likely owing to the difficulty of identifying a brain region anatomically consistent enough across individuals with dense enough tissue sampling. Overcoming these hurdles in human primary visual cortex (V1), we show a relationship between differential gene expression and the cortical layout of eccentricity in human V1. Interestingly, these genes are unique from those previously identified that contribute to the positioning of cortical areas in the visual processing hierarchy. Enrichment analyses show that a subset of the identified genes encode for structures related to inhibitory interneurons, ion channels, as well as cellular projections, and are expressed more in foveal compared to peripheral portions of human V1. These findings predict that tissue density should be higher in foveal compared to peripheral V1. Using a histological pipeline, we validate this prediction using Nissl-stained sections of postmortem occipital cortex. We discuss these findings relative to previous studies in non-human primates, as well as in the context of an organizational pattern in which the adult human brain employs transcription gradients at multiple spatial scales: across the cerebral cortex, across areas within processing hierarchies, and within single cortical areas.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alvarez I, Finlayson NJ, Ei S, de Haas B, Greenwood JA, Schwarzkopf DS (2021) Heritable functional architecture in human visual cortex. NeuroImage 239:118286. PubMedCrossRef Alvarez I, Finlayson NJ, Ei S, de Haas B, Greenwood JA, Schwarzkopf DS (2021) Heritable functional architecture in human visual cortex. NeuroImage 239:118286. PubMedCrossRef
Zurück zum Zitat Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond brodmann. Neuron 88:1086–1107 PubMedCrossRef Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond brodmann. Neuron 88:1086–1107 PubMedCrossRef
Zurück zum Zitat Arcaro MJ, Kastner S (2015) Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system. Vis Neurosci 32:E014 PubMedPubMedCentralCrossRef Arcaro MJ, Kastner S (2015) Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system. Vis Neurosci 32:E014 PubMedPubMedCentralCrossRef
Zurück zum Zitat Arnatkeviciute A, Fulcher BD, Fornito A (2019) A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189:353–367 PubMedCrossRef Arnatkeviciute A, Fulcher BD, Fornito A (2019) A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189:353–367 PubMedCrossRef
Zurück zum Zitat Azzopardi P, Jones KE, Cowey A (1999) Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey. Vision Res 39:2179–2189 PubMedCrossRef Azzopardi P, Jones KE, Cowey A (1999) Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey. Vision Res 39:2179–2189 PubMedCrossRef
Zurück zum Zitat Balaram P, Kaas JH (2014) Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front Neuroanat 8:81 PubMedPubMedCentralCrossRef Balaram P, Kaas JH (2014) Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front Neuroanat 8:81 PubMedPubMedCentralCrossRef
Zurück zum Zitat Barone P, Debay C, Berland M, Kennedy H (1996) Role of directed growth and target selection in the formation of cortical pathways: prenatal development of the projection of area V2 to area V4 in the monkey. J Comp Neurol 374:1–20 PubMedCrossRef Barone P, Debay C, Berland M, Kennedy H (1996) Role of directed growth and target selection in the formation of cortical pathways: prenatal development of the projection of area V2 to area V4 in the monkey. J Comp Neurol 374:1–20 PubMedCrossRef
Zurück zum Zitat Batardiere A, Barone P, Dehay C, Kennedy H (1998) Area-specific laminar distribution of cortical feedback neurons projecting to cat area 17: quantitative analysis in the adult and during ontogeny. J Comp Neurol 396:493–510 PubMedCrossRef Batardiere A, Barone P, Dehay C, Kennedy H (1998) Area-specific laminar distribution of cortical feedback neurons projecting to cat area 17: quantitative analysis in the adult and during ontogeny. J Comp Neurol 396:493–510 PubMedCrossRef
Zurück zum Zitat Benson NC et al (2021) Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers. bioRxiv 109:816 Benson NC et al (2021) Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers. bioRxiv 109:816
Zurück zum Zitat Burt JB et al (2018) Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci 93:165 Burt JB et al (2018) Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci 93:165
Zurück zum Zitat Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305-311 PubMedPubMedCentralCrossRef Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305-311 PubMedPubMedCentralCrossRef
Zurück zum Zitat Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci U S A 107:15927–15932 PubMedPubMedCentralCrossRef Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci U S A 107:15927–15932 PubMedPubMedCentralCrossRef
Zurück zum Zitat Collins CE, Turner EC, Sawyer EK, Reed JL, Young NA, Flaherty DK, Kaas JH (2016) Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc Nat Acad Sci 113(3):740–745 PubMedPubMedCentralCrossRef Collins CE, Turner EC, Sawyer EK, Reed JL, Young NA, Flaherty DK, Kaas JH (2016) Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc Nat Acad Sci 113(3):740–745 PubMedPubMedCentralCrossRef
Zurück zum Zitat Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9:179–194 PubMedCrossRef Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9:179–194 PubMedCrossRef
Zurück zum Zitat Eickhoff SB, Rottschy C, Zilles K (2007) Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex. Brain Struct Funct 212:255–267 PubMedCrossRef Eickhoff SB, Rottschy C, Zilles K (2007) Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex. Brain Struct Funct 212:255–267 PubMedCrossRef
Zurück zum Zitat Eickhoff SB, Yeo BTT, Genon S (2018) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686 PubMedCrossRef Eickhoff SB, Yeo BTT, Genon S (2018) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686 PubMedCrossRef
Zurück zum Zitat Fischl MI, Sereno AM, Dale, (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207 PubMedCrossRef Fischl MI, Sereno AM, Dale, (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207 PubMedCrossRef
Zurück zum Zitat Fornito A, Arnatkeviciute A, Fulcher BD (2019) Bridging the gap between connectome and transcriptome. Trends Cogn Sci 23:34–50 PubMedCrossRef Fornito A, Arnatkeviciute A, Fulcher BD (2019) Bridging the gap between connectome and transcriptome. Trends Cogn Sci 23:34–50 PubMedCrossRef
Zurück zum Zitat Fulcher BD (2019) Discovering conserved properties of brain organization through multimodal integration and interspecies comparison. J Exp Neurosci 13:1179069519862047 PubMedPubMedCentralCrossRef Fulcher BD (2019) Discovering conserved properties of brain organization through multimodal integration and interspecies comparison. J Exp Neurosci 13:1179069519862047 PubMedPubMedCentralCrossRef
Zurück zum Zitat Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K (2018) Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat Commun 9:788 PubMedPubMedCentralCrossRef Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K (2018) Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat Commun 9:788 PubMedPubMedCentralCrossRef
Zurück zum Zitat Gomez J et al (2019) Development of population receptive fields in the lateral visual stream improves spatial coding amid stable structural-functional coupling. Neuroimage 188:59–69 PubMedCrossRef Gomez J et al (2019) Development of population receptive fields in the lateral visual stream improves spatial coding amid stable structural-functional coupling. Neuroimage 188:59–69 PubMedCrossRef
Zurück zum Zitat Gomez J, Zhen Z, Weiner KS (2019) Human visual cortex is organized along two genetically opposed hierarchical gradients with unique developmental and evolutionary origins. PLoS Biol. 17:e3000362 PubMedPubMedCentralCrossRef Gomez J, Zhen Z, Weiner KS (2019) Human visual cortex is organized along two genetically opposed hierarchical gradients with unique developmental and evolutionary origins. PLoS Biol. 17:e3000362 PubMedPubMedCentralCrossRef
Zurück zum Zitat Hawrylycz MJ et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Natures 489:391–399 CrossRef Hawrylycz MJ et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Natures 489:391–399 CrossRef
Zurück zum Zitat Honig LS, Herrmann K, Shatz CJ (1996) Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb Cortex 6:794–806 PubMedCrossRef Honig LS, Herrmann K, Shatz CJ (1996) Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb Cortex 6:794–806 PubMedCrossRef
Zurück zum Zitat Horiguchi H, Nakadomari S, Misaki M, Wandell BA (2009) Two temporal channels in human V1 identified using fMRI. Neuroimage 47:273–280 PubMedCrossRef Horiguchi H, Nakadomari S, Misaki M, Wandell BA (2009) Two temporal channels in human V1 identified using fMRI. Neuroimage 47:273–280 PubMedCrossRef
Zurück zum Zitat Huntenburg JM, Bazin PL, Margulies DS (2018) Large-scale gradients in human cortical organization. Trends Cogn Sci 22:21–31 PubMedCrossRef Huntenburg JM, Bazin PL, Margulies DS (2018) Large-scale gradients in human cortical organization. Trends Cogn Sci 22:21–31 PubMedCrossRef
Zurück zum Zitat Jones AR, Overly CC, Sunkin SM (2009) The Allen Brain Atlas: 5 years and beyond. Nat Rev Neurosci 10:821–828 PubMedCrossRef Jones AR, Overly CC, Sunkin SM (2009) The Allen Brain Atlas: 5 years and beyond. Nat Rev Neurosci 10:821–828 PubMedCrossRef
Zurück zum Zitat Kennedy H, Dehay C, Bullier J (1986) Organization of the callosal connections of visual areas V1 and V2 in the macaque monkey. J Comp Neurol 247:398–415 PubMedCrossRef Kennedy H, Dehay C, Bullier J (1986) Organization of the callosal connections of visual areas V1 and V2 in the macaque monkey. J Comp Neurol 247:398–415 PubMedCrossRef
Zurück zum Zitat Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69 CrossRef Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69 CrossRef
Zurück zum Zitat Krienen FM, Yeo BT, Ge T, Buckner RL, Sherwood CC (2016) Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc Natl Acad Sci U S A 113:E469-478 PubMedPubMedCentralCrossRef Krienen FM, Yeo BT, Ge T, Buckner RL, Sherwood CC (2016) Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc Natl Acad Sci U S A 113:E469-478 PubMedPubMedCentralCrossRef
Zurück zum Zitat Perkel DJ, Bullier J, Kennedy H (1986) Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. J Comp Neurol 253:374–402 PubMedCrossRef Perkel DJ, Bullier J, Kennedy H (1986) Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. J Comp Neurol 253:374–402 PubMedCrossRef
Zurück zum Zitat Rakic P, Goldman-Rakic PS, Gallager D (1988) Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. J Neurosci 8:3670–3690 PubMedPubMedCentralCrossRef Rakic P, Goldman-Rakic PS, Gallager D (1988) Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. J Neurosci 8:3670–3690 PubMedPubMedCentralCrossRef
Zurück zum Zitat Rosa MG (2002) Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498 PubMedCrossRef Rosa MG (2002) Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498 PubMedCrossRef
Zurück zum Zitat Rosa MG, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci 360:665–691 PubMedPubMedCentralCrossRef Rosa MG, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci 360:665–691 PubMedPubMedCentralCrossRef
Zurück zum Zitat Schleicher AZ, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue. J Neurosci Methods 18:221–235 PubMedCrossRef Schleicher AZ, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue. J Neurosci Methods 18:221–235 PubMedCrossRef
Zurück zum Zitat Schwarzkopf DS, Song C, Rees G (2011) The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci 14:28–30 PubMedCrossRef Schwarzkopf DS, Song C, Rees G (2011) The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci 14:28–30 PubMedCrossRef
Zurück zum Zitat Sestan N, Rakic P, Donoghue MJ (2001) Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression. Curr Biol 11:39–43 PubMedCrossRef Sestan N, Rakic P, Donoghue MJ (2001) Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression. Curr Biol 11:39–43 PubMedCrossRef
Zurück zum Zitat Smart IHM, McSherry GM (1986) Gyrus formation in the cerebral cortex of the ferret. Description of the internal histological changes. J Anat 147:27–43 PubMedPubMedCentral Smart IHM, McSherry GM (1986) Gyrus formation in the cerebral cortex of the ferret. Description of the internal histological changes. J Anat 147:27–43 PubMedPubMedCentral
Zurück zum Zitat Stigliani A, Jeska B, K, (2017) Grill-spector, encoding model of temporal processing in human visual cortex. Proc Nat Acad Sci 41:788 Stigliani A, Jeska B, K, (2017) Grill-spector, encoding model of temporal processing in human visual cortex. Proc Nat Acad Sci 41:788
Zurück zum Zitat Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313:1795–1800 PubMedCrossRef Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313:1795–1800 PubMedCrossRef
Zurück zum Zitat Takahata T, Shukla R, Yamamori T, Kaas JH (2012) Differential expression patterns of striate cortex-enriched genes among Old World, New World, and prosimian primates. Cereb Cortex 22(10):2313–2321 PubMedCrossRef Takahata T, Shukla R, Yamamori T, Kaas JH (2012) Differential expression patterns of striate cortex-enriched genes among Old World, New World, and prosimian primates. Cereb Cortex 22(10):2313–2321 PubMedCrossRef
Zurück zum Zitat Valk SL et al (2020) Shaping brain structure: genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci Adv 6:eabb3417 PubMedPubMedCentralCrossRef Valk SL et al (2020) Shaping brain structure: genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci Adv 6:eabb3417 PubMedPubMedCentralCrossRef
Zurück zum Zitat Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51:718–737 PubMedCrossRef Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51:718–737 PubMedCrossRef
Zurück zum Zitat Watakabe A (2009) Comparative molecular neuroanatomy of mammalian neocortex: what can gene expression tell us about areas and layers? Dev Growth Differ 51:343–354 PubMedCrossRef Watakabe A (2009) Comparative molecular neuroanatomy of mammalian neocortex: what can gene expression tell us about areas and layers? Dev Growth Differ 51:343–354 PubMedCrossRef
Zurück zum Zitat Watakabe A et al (2007) Comparative analysis of layer-specific genes in Mammalian neocortex. Cereb Cortex 17:1918–1933 PubMedCrossRef Watakabe A et al (2007) Comparative analysis of layer-specific genes in Mammalian neocortex. Cereb Cortex 17:1918–1933 PubMedCrossRef
Zurück zum Zitat Yamamori T, Rockland KS (2006) Neocortical areas, layers, connections, and gene expression. Neurosci Res 55:11–27 PubMedCrossRef Yamamori T, Rockland KS (2006) Neocortical areas, layers, connections, and gene expression. Neurosci Res 55:11–27 PubMedCrossRef
Metadaten
Titel
The relationship between transcription and eccentricity in human V1
verfasst von
Jesse Gomez
Zonglei Zhen
Kevin S. Weiner
Publikationsdatum
07.10.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02387-5