Skip to main content
Erschienen in: Intensive Care Medicine 9/2017

14.02.2017 | What's New in Intensive Care

The research agenda in VAP/HAP: next steps

verfasst von: Michael S. Niederman, Ignacio Martin-Loeches, Antoni Torres

Erschienen in: Intensive Care Medicine | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Excerpt

In the coming decade, ventilator-associated pneumonia (VAP) and hospital-acquired pneumonia (HAP) will continue to be major infections in the intensive care unit (ICU). While prevention efforts may reduce the frequency of these infections, we do not believe that “zero VAP”, which is a common goal in the USA, has or will be achieved, as evidenced by continued antibiotic use for nosocomial respiratory infections [1]. In Europe, the degree of preventable VAP has been estimated to be approximately 50%, so many episodes will still be present, in spite of the use of ventilator bundles [2]. In the coming decade, we anticipate the need for better epidemiologic and diagnostic tools that will inform us about the true incidence of these infections and the impact of specific prevention strategies. For epidemiologic purposes, the concept of ventilator-associated events (VAE), used by some in the USA, has not gained traction in Europe and it seems unlikely to become a valued concept [3]. Recently, a systematic review and meta-analysis examined 61,489 patients receiving mechanical ventilation in eight countries and found that the pooled sensitivity and positive predictive value of each VAE type for VAP detection did not exceed 50%, reflecting that VAE surveillance does not accurately detect cases of traditional VAP [3]. The clinical management and importance of the ventilator-associated lower respiratory tract infections (VA-LRTI) concept also need clarification. A multicentre, prospective, observational study found improved outcomes with the use of appropriate antibiotic treatment in VA-LRTI (including ventilator-associated tracheobronchitis, or VAT) [4]. Future studies are needed to see if VAT is an appropriate illness for routine antibiotic therapy, or whether only certain specific VAT needs antibiotic treatment. One area not covered by VA-LRTI is pneumonia in non-ventilated patients, and the topic of HAP requires more study to clarify its true incidence and bacteriology (possibly with quantitative culture methods) and to determine if the current assumptions, that the bacteriology parallels that of VAP, are in fact accurate. …
Literatur
1.
Zurück zum Zitat Matar DS, Pham JC, Louis TA, Berenholtz SM (2013) Achieving and sustaining ventilator-associated pneumonia-free time among intensive care units (ICUs): evidence from the Keystone ICU Quality Improvement Collaborative. Infect Control Hosp Epidemiol 34:740–743. doi:10.1086/670989 CrossRefPubMed Matar DS, Pham JC, Louis TA, Berenholtz SM (2013) Achieving and sustaining ventilator-associated pneumonia-free time among intensive care units (ICUs): evidence from the Keystone ICU Quality Improvement Collaborative. Infect Control Hosp Epidemiol 34:740–743. doi:10.​1086/​670989 CrossRefPubMed
2.
Zurück zum Zitat Lambert ML, Silversmit G, Savey A, Palomar M, Hiesmayr M, Agodi A et al (2014) Preventable proportion of severe infections acquired in intensive care units: case-mix adjusted estimations from patient-based surveillance data. Infect Control Hosp Epidemiol 35:494–501. doi:10.1086/675824 CrossRefPubMed Lambert ML, Silversmit G, Savey A, Palomar M, Hiesmayr M, Agodi A et al (2014) Preventable proportion of severe infections acquired in intensive care units: case-mix adjusted estimations from patient-based surveillance data. Infect Control Hosp Epidemiol 35:494–501. doi:10.​1086/​675824 CrossRefPubMed
4.
7.
Zurück zum Zitat Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, Niederman MS, Rello J, EU-VAP Study Investigators (2013) Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 39:672–681. doi:10.1007/s00134-012-2808-5 CrossRefPubMed Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, Niederman MS, Rello J, EU-VAP Study Investigators (2013) Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 39:672–681. doi:10.​1007/​s00134-012-2808-5 CrossRefPubMed
10.
Zurück zum Zitat Que YA, Lazar H, Wolff M, François B, Laterre PF, Mercier E et al (2014) Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial Pseudomonas aeruginosa pneumonia. Eur J Clin Microbiol Infect Dis 33:1861–1867. doi:10.1007/s10096-014-2156-1 CrossRefPubMed Que YA, Lazar H, Wolff M, François B, Laterre PF, Mercier E et al (2014) Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial Pseudomonas aeruginosa pneumonia. Eur J Clin Microbiol Infect Dis 33:1861–1867. doi:10.​1007/​s10096-014-2156-1 CrossRefPubMed
11.
Zurück zum Zitat Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB et al (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63:e61–e111. doi:10.1093/cid/ciw353 CrossRefPubMed Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB et al (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63:e61–e111. doi:10.​1093/​cid/​ciw353 CrossRefPubMed
12.
Zurück zum Zitat Planquette B, Timsit JF, Misset BY, Schwebel C, Azoulay E, Adrie C et al (2013) Pseudomonas aeruginosa ventilator-associated pneumonia. Predictive factors of treatment failure. Am J Respir Crit Care Med 188:69–76. doi:10.1164/rccm.201210-1897OC CrossRefPubMed Planquette B, Timsit JF, Misset BY, Schwebel C, Azoulay E, Adrie C et al (2013) Pseudomonas aeruginosa ventilator-associated pneumonia. Predictive factors of treatment failure. Am J Respir Crit Care Med 188:69–76. doi:10.​1164/​rccm.​201210-1897OC CrossRefPubMed
13.
Zurück zum Zitat Niederman MS, Chastre J, Corkery K et al (2012) BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med 38:263–271. doi:10.1007/s00134-011-2420-0 CrossRefPubMed Niederman MS, Chastre J, Corkery K et al (2012) BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med 38:263–271. doi:10.​1007/​s00134-011-2420-0 CrossRefPubMed
14.
15.
Zurück zum Zitat De Waele JJ, Lipman J, Akova M, Bassetti M, Dimopoulos G, Kaukonen M et al (2014) Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intensive Care Med 40:1340–1351. doi:10.1007/s00134-014-3403-8 CrossRefPubMed De Waele JJ, Lipman J, Akova M, Bassetti M, Dimopoulos G, Kaukonen M et al (2014) Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intensive Care Med 40:1340–1351. doi:10.​1007/​s00134-014-3403-8 CrossRefPubMed
Metadaten
Titel
The research agenda in VAP/HAP: next steps
verfasst von
Michael S. Niederman
Ignacio Martin-Loeches
Antoni Torres
Publikationsdatum
14.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Intensive Care Medicine / Ausgabe 9/2017
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-017-4695-2

Weitere Artikel der Ausgabe 9/2017

Intensive Care Medicine 9/2017 Zur Ausgabe

Focus Editorial

Focus on brain injury

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.