Skip to main content
Erschienen in: Calcified Tissue International 6/2010

01.06.2010

The Role of Circulating Bone Cell Precursors in Fracture Healing

verfasst von: Patrizia D’Amelio, Maria Angela Cristofaro, Anastasia Grimaldi, Marco Ravazzoli, Fernanda Pluviano, Elena Grosso, Gian Piero Pescarmona, Giovanni Carlo Isaia

Erschienen in: Calcified Tissue International | Ausgabe 6/2010

Einloggen, um Zugang zu erhalten

Abstract

Fracture healing is a complex process that involves several cell types; as a previous report suggested an increase in osteoblast (OB) precursors in peripheral blood during this process, this paper examines the role of circulating bone cell precursors in this process in the light of a prior suggestion that OB precursors are increased. Nine healthy men less than 60 years old with traumatic fractures were enrolled. The parameters circulating OB precursors (osteocalcin+/alkaline phosphatase+/CD15− cells) and osteoclast precursors (CD14+/CD11b+/vitronectin receptor + cells) were measured by flow cytometry; bone formation markers and TGFβ1, by ELISA; and PTH, by RIA in serum on arrival at the emergency department (baseline) and 15 days after fracture. Bone cell precursors behaved differently during healing. TGFβ1 was inversely correlated with OB number, but increased their degree of maturation at baseline. Bone formation markers and TGFβ1 were increased after fracture, whereas PTH was decreased. The TGFβ1 increase was directly correlated with age, whereas age was not correlated with the precursors. In conclusion, we confirm the role of TGFβ1 in fracture healing; and its possible role in the control of pre-OB homeostasis. There was no variation in circulating precursor cells during healing, though the increase in TGFβ1 may suggest increased pre-OB maturation and homing to the injured site.
Literatur
1.
Zurück zum Zitat De Vries TJ, Everts V (2009) Osteoclast formation from peripheral blood of patients with bone-lytic diseases. Clin Rev Bone Mineral Met 7:285–292CrossRef De Vries TJ, Everts V (2009) Osteoclast formation from peripheral blood of patients with bone-lytic diseases. Clin Rev Bone Mineral Met 7:285–292CrossRef
2.
Zurück zum Zitat D’Amelio P, Grimaldi A, Di Bella S, Tamone C, Brianza SZ, Ravazzoli MG, Bernabei P, Cristofaro MA, Pescarmona GP, Isaia G (2008) Risedronate reduces osteoclast precursors and cytokine production in postmenopausal osteoporotic women. J Bone Miner Res 23:373–379CrossRefPubMed D’Amelio P, Grimaldi A, Di Bella S, Tamone C, Brianza SZ, Ravazzoli MG, Bernabei P, Cristofaro MA, Pescarmona GP, Isaia G (2008) Risedronate reduces osteoclast precursors and cytokine production in postmenopausal osteoporotic women. J Bone Miner Res 23:373–379CrossRefPubMed
3.
Zurück zum Zitat D’Amelio P, Grimaldi A, Cristofaro MA, Ravazzoli M, Molinatti PA, Pescarmona GP, Isaia GC (2009) Alendronate reduces osteoclast precursors in osteoporosis. Osteoporos Int (in press) D’Amelio P, Grimaldi A, Cristofaro MA, Ravazzoli M, Molinatti PA, Pescarmona GP, Isaia GC (2009) Alendronate reduces osteoclast precursors in osteoporosis. Osteoporos Int (in press)
4.
Zurück zum Zitat Gossl M, Modder UI, Atkinson EJ, Lerman A, Khosla S (2008) Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol 52:1314–1325CrossRefPubMed Gossl M, Modder UI, Atkinson EJ, Lerman A, Khosla S (2008) Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol 52:1314–1325CrossRefPubMed
5.
Zurück zum Zitat Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating osteoblast-lineage cells in humans. N Engl J Med 352:1959–1966CrossRefPubMed Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating osteoblast-lineage cells in humans. N Engl J Med 352:1959–1966CrossRefPubMed
6.
Zurück zum Zitat Eghbali-Fatourechi GZ, Modder UI, Charatcharoenwitthaya N, Sanyal A, Undale AH, Clowes JA, Tarara JE, Khosla S (2007) Characterization of circulating osteoblast lineage cells in humans. Bone 40:1370–1377CrossRefPubMed Eghbali-Fatourechi GZ, Modder UI, Charatcharoenwitthaya N, Sanyal A, Undale AH, Clowes JA, Tarara JE, Khosla S (2007) Characterization of circulating osteoblast lineage cells in humans. Bone 40:1370–1377CrossRefPubMed
7.
Zurück zum Zitat Pirro M, Leli C, Fabbriciani G, Manfredelli MR, Callarelli L, Bagaglia F, Scarponi AM, Mannarino E (2009) Association between circulating osteoprogenitor cell numbers and bone mineral density in postmenopausal osteoporosis. Osteoporos Int (in press) Pirro M, Leli C, Fabbriciani G, Manfredelli MR, Callarelli L, Bagaglia F, Scarponi AM, Mannarino E (2009) Association between circulating osteoprogenitor cell numbers and bone mineral density in postmenopausal osteoporosis. Osteoporos Int (in press)
8.
Zurück zum Zitat Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25CrossRefPubMed Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25CrossRefPubMed
9.
Zurück zum Zitat Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25CrossRefPubMed Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25CrossRefPubMed
10.
Zurück zum Zitat Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239CrossRefPubMed Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239CrossRefPubMed
11.
Zurück zum Zitat Shirley D, Marsh D, Jordan G, McQuaid S, Li G (2005) Systemic recruitment of osteoblastic cells in fracture healing. J Orthop Res 23:1013–1021CrossRefPubMed Shirley D, Marsh D, Jordan G, McQuaid S, Li G (2005) Systemic recruitment of osteoblastic cells in fracture healing. J Orthop Res 23:1013–1021CrossRefPubMed
12.
Zurück zum Zitat Kumagai K, Vasanji A, Drazba JA, Butler RS, Muschler GF (2008) Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res 26:165–175CrossRefPubMed Kumagai K, Vasanji A, Drazba JA, Butler RS, Muschler GF (2008) Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res 26:165–175CrossRefPubMed
13.
Zurück zum Zitat Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84-A:1032–1044PubMed Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84-A:1032–1044PubMed
14.
Zurück zum Zitat Sandberg MM, Aro HT, Vuorio EI (1993) Gene expression during bone repair. Clin Orthop Relat Res 289:292–312PubMed Sandberg MM, Aro HT, Vuorio EI (1993) Gene expression during bone repair. Clin Orthop Relat Res 289:292–312PubMed
15.
Zurück zum Zitat Pfeilschifter J, Oechsner M, Naumann A, Gronwald RG, Minne HW, Ziegler R (1990) Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, platelet-derived growth factor, and transforming growth factor beta. Endocrinology 127:69–75CrossRefPubMed Pfeilschifter J, Oechsner M, Naumann A, Gronwald RG, Minne HW, Ziegler R (1990) Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, platelet-derived growth factor, and transforming growth factor beta. Endocrinology 127:69–75CrossRefPubMed
16.
Zurück zum Zitat Frenz DA, Williams JD, Van de Water TR (1991) Initiation of chondrogenesis in cultured periotic mesenchyme. Synergistic action of transforming growth factor-beta and fibroblast growth factor. Ann NY Acad Sci 630:256–258CrossRefPubMed Frenz DA, Williams JD, Van de Water TR (1991) Initiation of chondrogenesis in cultured periotic mesenchyme. Synergistic action of transforming growth factor-beta and fibroblast growth factor. Ann NY Acad Sci 630:256–258CrossRefPubMed
17.
Zurück zum Zitat Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207CrossRefPubMed Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207CrossRefPubMed
18.
Zurück zum Zitat Cipriano CA, Issack PS, Shindle L, Werner CM, Helfet DL, Lane JM (2009) Recent advances toward the clinical application of PTH (1–34) in fracture healing. HSS J 5:149–153CrossRefPubMed Cipriano CA, Issack PS, Shindle L, Werner CM, Helfet DL, Lane JM (2009) Recent advances toward the clinical application of PTH (1–34) in fracture healing. HSS J 5:149–153CrossRefPubMed
19.
Zurück zum Zitat D’Amelio P, Grimaldi A, Pescarmona GP, Tamone C, Roato I, Isaia G (2005) Spontaneous osteoclast formation from peripheral blood mononuclear cells in postmenopausal osteoporosis. FASEB J 19:410–412PubMed D’Amelio P, Grimaldi A, Pescarmona GP, Tamone C, Roato I, Isaia G (2005) Spontaneous osteoclast formation from peripheral blood mononuclear cells in postmenopausal osteoporosis. FASEB J 19:410–412PubMed
20.
Zurück zum Zitat D’Amelio P, Grimaldi A, Di Bella S, Brianza SZ, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100CrossRefPubMed D’Amelio P, Grimaldi A, Di Bella S, Brianza SZ, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100CrossRefPubMed
21.
Zurück zum Zitat Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831PubMed Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831PubMed
22.
Zurück zum Zitat Dalbeth N, Smith T, Nicolson B, Clark B, Callon K, Naot D, Haskard DO, McQueen FM, Reid IR, Cornish J (2008) Enhanced osteoclastogenesis in patients with tophaceous gout: urate crystals promote osteoclast development through interactions with stromal cells. Arthritis Rheum 58:1854–1865CrossRefPubMed Dalbeth N, Smith T, Nicolson B, Clark B, Callon K, Naot D, Haskard DO, McQueen FM, Reid IR, Cornish J (2008) Enhanced osteoclastogenesis in patients with tophaceous gout: urate crystals promote osteoclast development through interactions with stromal cells. Arthritis Rheum 58:1854–1865CrossRefPubMed
23.
Zurück zum Zitat Ramnaraine M, Pan W, Clohisy DR (2006) Osteoclasts direct bystander killing of cancer cells in vitro. Bone 38:4–12CrossRefPubMed Ramnaraine M, Pan W, Clohisy DR (2006) Osteoclasts direct bystander killing of cancer cells in vitro. Bone 38:4–12CrossRefPubMed
24.
Zurück zum Zitat Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170CrossRefPubMed Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170CrossRefPubMed
25.
Zurück zum Zitat Shalhoub V, Elliott G, Chiu L, Manoukian R, Kelley M, Hawkins N, Davy E, Shimamoto G, Beck J, Kaufman SA, Van G, Scully S, Qi M, Grisanti M, Dunstan C, Boyle WJ, Lacey DL (2000) Characterization of osteoclast precursors in human blood. Br J Haematol 111:501–512CrossRefPubMed Shalhoub V, Elliott G, Chiu L, Manoukian R, Kelley M, Hawkins N, Davy E, Shimamoto G, Beck J, Kaufman SA, Van G, Scully S, Qi M, Grisanti M, Dunstan C, Boyle WJ, Lacey DL (2000) Characterization of osteoclast precursors in human blood. Br J Haematol 111:501–512CrossRefPubMed
26.
Zurück zum Zitat Faust J, Lacey DL, Hunt P, Burgess TL, Scully S, Van G, Eli A, Qian Y, Shalhoub V (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72:67–80CrossRefPubMed Faust J, Lacey DL, Hunt P, Burgess TL, Scully S, Van G, Eli A, Qian Y, Shalhoub V (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72:67–80CrossRefPubMed
27.
Zurück zum Zitat Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, Kuestner R, Pacifici R (1996) Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93:10785–10790CrossRefPubMed Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, Kuestner R, Pacifici R (1996) Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93:10785–10790CrossRefPubMed
28.
Zurück zum Zitat Roato I, Grano M, Brunetti G, Colucci S, Mussa A, Bertetto O, Ferracini R (2005) Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. FASEB J 19:228–230PubMed Roato I, Grano M, Brunetti G, Colucci S, Mussa A, Bertetto O, Ferracini R (2005) Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. FASEB J 19:228–230PubMed
29.
Zurück zum Zitat Meyer MH, Meyer RA Jr (2007) Genes with greater up-regulation in the fracture callus of older rats with delayed healing. J Orthop Res 25:488–494CrossRefPubMed Meyer MH, Meyer RA Jr (2007) Genes with greater up-regulation in the fracture callus of older rats with delayed healing. J Orthop Res 25:488–494CrossRefPubMed
30.
Zurück zum Zitat Meyer RA Jr, Meyer MH, Tenholder M, Wondracek S, Wasserman R, Garges P (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85-A:1243–1254PubMed Meyer RA Jr, Meyer MH, Tenholder M, Wondracek S, Wasserman R, Garges P (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85-A:1243–1254PubMed
31.
Zurück zum Zitat Bostrom MP (1998) Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res 355:S116–S123CrossRefPubMed Bostrom MP (1998) Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res 355:S116–S123CrossRefPubMed
32.
Zurück zum Zitat Connor JM, Evans DA (1982) Fibrodysplasia ossificans progressiva. The clinical features and natural history of 34 patients. J Bone Joint Surg Br 64:76–83PubMed Connor JM, Evans DA (1982) Fibrodysplasia ossificans progressiva. The clinical features and natural history of 34 patients. J Bone Joint Surg Br 64:76–83PubMed
33.
Zurück zum Zitat Bernstein A, Mayr HO, Hube R (2010) Can bone healing in distraction osteogenesis be accelerated by local application of IGF-1 and TGF-beta1? J Biomed Mater Res B Appl Biomater 92:215–225PubMed Bernstein A, Mayr HO, Hube R (2010) Can bone healing in distraction osteogenesis be accelerated by local application of IGF-1 and TGF-beta1? J Biomed Mater Res B Appl Biomater 92:215–225PubMed
34.
Zurück zum Zitat Meyer RA Jr, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435CrossRefPubMed Meyer RA Jr, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435CrossRefPubMed
Metadaten
Titel
The Role of Circulating Bone Cell Precursors in Fracture Healing
verfasst von
Patrizia D’Amelio
Maria Angela Cristofaro
Anastasia Grimaldi
Marco Ravazzoli
Fernanda Pluviano
Elena Grosso
Gian Piero Pescarmona
Giovanni Carlo Isaia
Publikationsdatum
01.06.2010
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 6/2010
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-010-9362-3

Weitere Artikel der Ausgabe 6/2010

Calcified Tissue International 6/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.