Skip to main content
Erschienen in: The International Journal of Cardiovascular Imaging 8/2016

Open Access 11.05.2016 | Original Paper

The role of experience in echocardiographic identification of location and extent of mitral valve prolapse with 2D and 3D echocardiography

verfasst von: Lotte E. de Groot-de Laat, Ben Ren, Jacky McGhie, Frans B. S. Oei, Mihai Strachinaru, Sharon W. M. Kirschbaum, Sakir Akin, Chris M. Kievit, Ad J. J. C. Bogers, Marcel L. Geleijnse

Erschienen in: The International Journal of Cardiovascular Imaging | Ausgabe 8/2016

Abstract

Contradiction exists on the incremental value of two-dimensional (2D) and 3D transoesophageal echocardiography (TOE) over 2D transthoracic echocardiography (TTE) for the detection of mitral valve (MV) prolapse in readers with different echocardiographic experience. Twenty patients and five healthy persons were retrospectively identified who had undergone 2D-TTE, 2D-TOE and 3D-TOE. Fifteen (75 %) patients had surgical evidence of prolapse of the posterior MV leaflet and five patients (25 %) had a dilated MV annulus without prolapse. Three reader groups with different echocardiographic expertise (novice, trainees, cardiologists) scored thus in total 675 posterior scallops. Overall there was an improvement in agreement and Kappa values from novice to trainees to cardiologists. Diagnostic accuracies of 2D-TOE were higher than those of 2D-TTE mainly in novice readers. The incremental value of 3D-TOE over 2D-TOE was mainly seen in specificities. Time to diagnosis was dramatically reduced from 2D to 3D-TEE in all reader groups (all P < 0.001). 3D-TOE also improved the agreement (+12 to +16 %) and Kappa values (+0.14 to +0.21) in all reader groups for the exact description of P2 prolapse. Differences between readers with variable experience in determining the precise localization and extent of the prolapsing posterior MV scallops exist in particular in 2D-TTE analysis. 3D-TOE analysis was extremely fast compared to the 2D analysis methods and showed the best diagnostic accuracy (mainly driven by specificity) with identification of P1 and P3 prolapse still improving from novice to trainees to cardiologists and provided optimal description of P2 prolapse extent.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s10554-016-0895-z) contains supplementary material, which is available to authorized users.

Introduction

Mitral valve (MV) prolapse is the leading cause of mitral regurgitation and the most frequent reason for MV surgery in the industrialized world [1]. Localisation of the prolapse is crucial for planning surgical management [2]. Two-dimensional (2D) transthoracic and transoesophageal echocardiography (TTE and TOE) are at this moment in most hospitals still the imaging modality of choice for assessment of the MV scallop(s). It is well recognized that a high level of expertise is required for accurate acquisition and interpretation of the 2D images. More recently, in several studies it has been demonstrated that 3D-TOE may be more easy and accurate to identify the locations of MV prolapse [36]. However, the generalizability of 3D-TOE publications has been questioned since the observers were usually highly experienced experts working in academic referral centers. Reproducibility is crucial for validation of the general concept that 3D-TOE is the superior imaging technique in non-experts. Currently, sparse data are available on this topic with contradictory results [7, 8]. The current study was undertaken to assess the value of 2D-TTE, 2D-TOE and 3D-TOE in three groups of readers with different experience in TOE for the identification of posterior MV scallop prolapse.

Methods

Patients population

Twenty patients who had undergone 2D-TTE, 2D-TOE and 3D-TOE before MV repair were retrospectively identified. Also five persons with suspected cardiac embolic source but normal MV anatomy who had undergone the same echocardiographic research were identified. The localization and extent of MV pathology (prolapse) in the 20 patients was defined by surgical exploration: isolated P1 in 0 patients, P1–P2 in 2 patients, P2 in 12 patients, P2–P3 in 2 patients, and isolated P3 in 4 patients.

Image acquisition and analysis

All TTE and TOE studies were performed by one single expert echocardiographer (JMcG and MLG respectively) using a Philips iE 33 ultrasound system (Philips Medical Systems, Best, The Netherlands), equipped with a S5-1 transducer for TTE and X7-2t matrix array transducer for TOE. 2D-TTE imaging included at least all the standard MV cross-sections as published by Monin et al. [9], 2D-TOE imaging included at least all the standard MV cross-sections as published by Foster et al. [10].
The 3D-TOE images were acquired in the zoomed mode, with a pyramidal volume allowing the highest temporal and spatial resolution, apart from a few patients in whom only a full volume dataset was available. The 3D loops were presented to the observers as the surgical intraoperative “en-face” left atrial view of the MV, with the aortic valve rotated to the 12 o’clock position (Video 1; Fig. 1a).

Observers

Nine readers with different echocardiographic expertise scored all the 2D-TTE, 2D-TOE and 3D-TOE images in a random order. For all cases the observers noted the location of MV prolapse according to the Carpentier nomenclature: P1, P2 and P3 for the lateral, middle and medial scallops, respectively [11]. In addition, in case of identified P2 prolapse it was noted whether only the central part of P2 was prolapsing (small central P2 prolapse) or also the centro-medial and/or centro-lateral parts (broad P2 prolapse or asymmetric P2 prolapse). The time for scoring the study was also noted in seconds.
Group 1 (novice) consisted of three medical students with no experience in echocardiography. These students were given a lecture on the anatomy of the MV scallops, in particular discussing schematic images of the MV anatomy displaying the scallops in standard recordings in 2D-TTE [9], 2D-TOE [10], and 3D-TOE (see Fig. 1b).
Group 2 (trainees) consisted of three cardiologists in training with basic knowledge of 2D-TTE and 2D-TOE (but not 3D-TOE) echocardiography (number of 2D-TOE studies <75). These trainees received no formal lecture but the same schematic images as mentioned above of the 2D and 3D MV anatomy were provided.
Group 3 (cardiologists) consisted of three cardiologists with advanced knowledge of 2D-TTE, 2D-TOE and 3D-TOE echocardiography (number of independent 2D/3D-TOE studies >75).

Statistical analysis

Statistical analysis was performed using SPSS version 21.0.0.1 (SPSS, IBM, Armonk, NY). Categorical data are presented as numbers and percentages, whereas continuous data are summarized as mean ± standard deviation (SD) or median value with range. Comparisons of proportions (sensitivities, specificities, accuracies) were done with a one-sided Z test. A Wilcoxon signed ranks test was done for comparisons of time. P values <0.05 were considered significant.

Results

The study population of 20 patients and five normal subjects consisted of 15 men and 10 woman with mean age 60 ± 14 years. Six persons (including five normal MV) were in NYHA class I, 7 persons in NYHA class II and 11 and 1 person in NYHA class III and class IV, respectively. Six patients had also significant coronary artery disease.

Diagnostic accuracies of the different readers

The diagnostic sensitivities, specificities, accuracies (or agreement) and Kappa values are all displayed in Table 1. Overall (when all individual scallops were summated) there was an improvement in agreement and Kappa values from novice to trainees to cardiologists. This was most clearly seen for 2D-TTE and least clearly for 2D-TOE. With 2D-TTE sensitivity improved from novice to experts from 58 to 82 % (P < 0.005), specificity from 78 to 90 % (P < 0.005) and diagnostic accuracy from 72 to 88 % (P < 0.001). With 3D-TOE specificity increased from 89 to 95 % (P < 0.05) and diagnostic accuracy from 86 to 92 % (P < 0.05). The diagnostic improvement seen in more experienced readers was in particular caused by better identification of P3 prolapse (Kappa values increased from 0.19 to 0.47 to 0.73 for 2D-TTE, from 0.45 to 0.65 to 0.70 for 2D-TOE and from 0.52 to 0.72 to 0.85 for 3D-TOE). With 2D-TTE sensitivity increased from 33 to 72 % (P < 0.05), specificity from 84 to 96 % (P < 0.05) and diagnostic accuracy from 81 to 95 % (P < 0.005). With 3D-TOE specificity increased from 84 to 96 % (P < 0.05) and diagnostic accuracy from 81 to 95 % (P < 0.01). For the other scallops results were more ambiguous, apart from a better diagnostic accuracy in P1 scallop prolapse detection with 3D-TOE (Kappa values increased from 0.53 and 0.41 to 0.71).
Table 1
Diagnostic accuracy (agreement) and Kappa values for the detection of mitral valve scallop prolapse localization
 
Sensitivity
Specificity
Accuracy
Kappa
N
T
C
N
T
C
N
T
C
N
T
C
P1
 2D-TTE
67
33
67
77
86
91
75
81
89
0.21
0.13
0.44
 2D-TOE
67
50
50
83
88
91
81
85
88
0.28
0.28
0.34
 3D-TOE
67
50
67
94
94
99
92
91
96
0.53
0.41
0.71
P2
 2D-TTE
67
88
88
70
74
74
68
83
83
0.35
0.62
0.62
 2D-TOE
94
79
79
63
74
74
83
81
77
0.60
0.60
0.52
 3D-TOE
85
85
85
85
96
85
85
88
85
0.69
0.75
0.69
P3
 2D-TTE
33
72
72
84
89
96
72
81
91
0.19
0.47
0.73
 2D-TOE
44
89
89
95
89
88
83
87
88
0.45
0.65
0.70
 3D-TOE
72
89
89
84
91
96
81
89
95
0.52
0.72
0.85
All
 2D-TTE
58
75
82
78
85
90
72
82
88
0.36
0.59
0.72
 2D-TOE
79
81
79
84
86
87
82
84
84
0.61
0.65
0.65
 3D-TOE
81
81
85
89
93
95
86
89
92
0.69
0.75
0.81
C cardiologist, N novice, T trainee

Value of 2D-TOE over 2D-TTE in the different observer groups

The incremental value of 2D-TOE over 2D-TTE can also be appreciated from Table 1. Sensitivities, specificities and accuracies of 2D-TOE were higher than those of 2D-TTE in novice readers. The increments in these readers were 21 % (P < 0.01), 6 % (P = NS), and 10 % (P < 0.01), respectively. Kappa values increased from 0.36 to 0.61. The increment in sensitivity was driven by better detection of both P2 (increment 27 %, P < 0.001) and P3 (increment 11 %, P = NS) scallop prolapse, the increment in specificity was driven by better exclusion of both P3 (increment 11 %, P < 0.05) and P1 (increment 6 %, P = NS) scallop prolapse. The respective increments in intermediate readers were 6, 1, and 2 % (all P = NS). The non-significant increment in sensitivity was driven by better detection of P1 and P3 scallop prolapse (all P = NS). In cardiologists no incremental value was seen.

Value of 3D-TOE over 2D-TOE in the different observer groups

The incremental value of 3D-TOE over 2D-TOE can also be appreciated from Table 1. Kappa values increased from 0.61 to 0.69 in novice, from 0.59 to 0.65 in trainees and from 0.65 to 0.81 in cardiologists. Minor non-significant improvements were seen in sensitivity to detect scallop prolapse [a significant effect on sensitivity was only seen in the novice group for P3 prolapse (increment 28 %, P < 0.05)]. The respective increments in specificity were: for novice readers 5 % (P < 0.10), for intermediate readers 7 % (P < 0.05) and for cardiologists 8 % (P < 0.01). The increments in specificity were in all groups driven by better exclusion of P1 and P2 scallop prolapse (it was only in cardiologists also driven by better exclusion of P3 scallop prolapse). In Fig. 2 the standard views of all three echocardiographic techniques in a patient are shown. In the 2D-TTE views it was difficult to see the prolapse. The P3 prolapse was clearly visualized with 2D-TOE (Fig. 2b) and optimal with 3D-TOE (Fig. 2c).

Value of 3D-TOE over 2D-TOE in identification of exact P2 prolapse localization and extent

In the 16 patients with P2 prolapse the prolapse was defined by the surgeon as small centrally located in three patients, a broad (involving the centro-medial and central and centro-lateral parts) in six patients and asymmetric (involving the centro-medial or centro-lateral part with or without central location) in seven patients. As seen in Table 2, 3D-TOE improved the agreement and Kappa values in all reader groups. An example of improved identification of the P2 prolapse localization and extent is given in Fig. 3.
Table 2
Identification of P2 prolapse according to the precise localization or extent (broad, small central, or eccentric)
Readers
2D agreement (%)
3D agreement (%)
2D Kappa
3D Kappa
Novice
47
59 (+12)
0.28
0.42 (+ 0.14)
Trainees
55
67 (+12)
0.36
0.53 (+ 0.17)
Cardiologists
48
64 (+16)
0.29
0.50 (+ 0.21)

Analysis time

As seen in Table 3, students needed more time to diagnose the lesion for both 2D-TTE (107 ± 57 vs. 65 ± 33 ms in trainees, P < 0.001 and 86 ± 62 ms in cardiologists, P < 0.02) and 2D-TEE (99 ± 64 vs 62 ± 26 ms in trainees, P < 0.001 and 82 ± 57 ms in cardiologists, P < 0.10). The time to diagnosis was dramatically reduced from 2D to 3D-TEE in all reader groups (all P < 0.001). No differences in time to diagnosis existed for 3D-TEE between the reader groups (students 15 ± 11 ms, trainees 16 ± 12 ms and cardiologists 17 ± 13 ms).
Table 3
Time in seconds to diagnosis for the different observer groups
Readers
Novice
Trainee
Cardiologist
2D-TTE
107 ± 57
65 ± 33
86 ± 62
2D-TOE
99 ± 64
62 ± 26
82 ± 57
3D-TOE
15 ± 11
16 ± 12
17 ± 13

Discussion

In this study we sought to assess the advantage of 2D and 3D-TOE over 2D-TTE to determine the precise localization and extent of the prolapsing segments of the posterior MV leaflet in readers with different levels of experience in echocardiography. The main findings of the present study were (1) the diagnostic accuracy of 2D-TTE for the identification of posterior MV scallop prolapse increased from novice to trainees to cardiologists, (2) the diagnostic accuracy of 2D-TOE was higher than that of 2D-TTE for novice readers only, (3) with 3D-TOE time to diagnosis was much shorter and best diagnostic accuracy (mainly driven by specificity) was seen, and (4) identification of P1 and P3 prolapse with 3D-TOE still improved from novice to trainees to cardiologists.
The presence, location and extent of prolapse is of crucial importance in defining the likelihood of successful MV repair [2, 12]. As seen in this study, more experienced observers—but not less experienced—may identify the prolapsing MV scallops quite satisfactorily with 2D-TTE. Others and us also have shown that experts, certainly in patients with good transthoracic windows, with current transducer technology and standardized acquisition and analysis of planes may have an excellent diagnostic accuracy in assessment of posterior MV leaflet prolapse [9, 13]. Traditionally, however, 2D-TOE has been regarded as the gold standard to define MV anatomy. However, it should be recognized that multiplane 2D-TOE is highly operator dependent since it requires manual manipulation of the transducer in the esophagus to acquire views of all parts of the MV leaflets. This process may even be complicated by factors such as distortion of left ventricular geometry, mitral annular dilatation, and aortic root enlargement that can change all of the orientation of the ultrasound plane in relation to MV anatomy, resulting in scallop misidentification. More important, identification of the prolapsed segment is also highly operator dependent, because it requires the operator to be skilled at mentally reconstructing the MV in three dimensions from multiple 2D-TOE images to understand the underlying MV anatomy. This mental reconstruction often requires information obtained through live probe manipulation that is not permanently recorded. Thus, once the TOE study is completed, this information is not available to another reviewer at a later time as only limited views are saved. The importance of this limitation is difficult to assess but it should be noticed that in our study even novice readers showed good diagnostic results with 2D-TOE, albeit not optimal. With 3D-TOE, the entire MV can be visualized in a single image, making it possible to examine both leaflets from the left atrial (surgical) perspective, allowing more definitive identification of prolapse of individual scallops and segments. Thus, mental reconstruction is no longer critical for localization of MV pathology.
Compared with 2D-TOE, 3D-TOE is less operator dependent and does not require the finesse of probe manipulation to delineate MV pathology. Good quality 3D-TOE “en-face” views of the MV obviate the need for the process of mentally reconstructing the MV and therefore such images may be very helpful, in particular, in less-experienced observers.
However, interpretation of 3D echocardiographic images also requires a learning curve and even with 3D images false identification of segmental lesions may occur, in particular in the commissural regions [14]. The generalizability of 3D-TOE publications has also been questioned since the observers (usually only a single one) were highly experienced experts working in academic referral centers. Reproducibility is crucial for validation of the general concept that 3D-TOE is superior to 2D-TOE in non-experts. Unfortunately, conflicting data were reported for the incremental value of 3D “en-face” analysis of MV scallops. In the study of Hien et al. six patient cases were analyzed by 21 physicians without clinical experience in TOE and 15 physicians certified at an expert level. Significant benefits were seen for 3D-TOE in both novice persons without experience with TOE and experts [7]. In contrast, in a study by Tsang et al. 50 patient cases were scored by ten readers with different experience in echocardiography but sensitivity nor specificity for the detection of MV scallop prolapse improved, actually the observers had even greater difficulty with 3D-TOE compared with 2D-TOE data (in their study only 3D parametric maps made by experts improved diagnostic accuracy) [8]. In our study small improvements were seen in all reader groups, mainly based on improvements in diagnostic specificity. Importantly, 3D-TOE also improved the agreement and Kappa values in all reader groups for the exact description of P2 prolapse.

Limitations

The images used for this study were acquired by expert TTE and TOE echocardiographers resulting in high-quality images. This may have influenced both the lack of additional value of 2D-TOE over 2D-TTE in the more-experienced readers, as reported also by others [9], and the relatively high diagnostic accuracy of the less-experienced observers. Also, only posterior scallop prolapse was analyzed in this study. This was done because such lesions constitute the most common localized form of prolapse and most importantly a scallop subdivision of the anterior MV leaflet is artificial since this leaflet has no indentations. The study population was composed of persons without any MV disorder and patients who were referred for MV repair, which give a bias of including pathology that is severe and also more amenable to surgical repair. However, this cannot be avoided when an independent gold standard is necessary. It should also be recognized that a surgical gold standard may overcall prolapse because when the MV is inspected and the heart volume is small. However, the results of this study in comparing different expertise would still be valid.
3D-TTE images were not included in the present study because it is well agreed that even in the hand of experts 3D-TTE has limited accuracy in prolapse identification [3, 1315]. Finally, each reader group consisted of only a small number of readers. However, the total number of analyses scallops was with 675 analyses not small.

Conclusion

Differences between readers with variable experience in determining the precise localization and extent of the prolapsing posterior MV scallops exist in particular in 2D-TTE analysis. 3D-TOE analysis was extremely fast compared to the 2D analysis methods and showed the best diagnostic accuracy (mainly driven by specificity) with identification of P1 and P3 prolapse still improving from novice to trainees to cardiologists and provided optimal description of P2 prolapse extent.

Compliance with ethical standards

Conflict of interest

None declared.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​),which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Barwolf C, Levang OW et al (2003) A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on valvular heart disease. Eur Heart J 24:1231–1243CrossRefPubMed Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Barwolf C, Levang OW et al (2003) A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on valvular heart disease. Eur Heart J 24:1231–1243CrossRefPubMed
2.
Zurück zum Zitat Adams DH, Anyanwu AC (2008) The cardiologist’s role in increasing the rate of mitral valve repair in degenerative disease. Curr Opin Cardiol 23:105–110CrossRefPubMed Adams DH, Anyanwu AC (2008) The cardiologist’s role in increasing the rate of mitral valve repair in degenerative disease. Curr Opin Cardiol 23:105–110CrossRefPubMed
3.
Zurück zum Zitat Ben Zekry S, Nagueh SF, Little SH, Quinones MA, McCulloch ML, Karanbir S et al (2011) Comparative accuracy of two- and three-dimensional transthoracic and transesophageal echocardiography in identifying mitral valve pathology in patients undergoing mitral valve repair: initial observations. J Am Soc Echocardiogr 24:1079–1085CrossRefPubMed Ben Zekry S, Nagueh SF, Little SH, Quinones MA, McCulloch ML, Karanbir S et al (2011) Comparative accuracy of two- and three-dimensional transthoracic and transesophageal echocardiography in identifying mitral valve pathology in patients undergoing mitral valve repair: initial observations. J Am Soc Echocardiogr 24:1079–1085CrossRefPubMed
4.
Zurück zum Zitat Izumo M, Shiota M, Kar S, Gurudevan SV, Tolstrup K, Siegel RJ et al (2013) Comparison of real-time three-dimensional transesophageal echocardiography to two-dimensional transesophageal echocardiography for quantification of mitral valve prolapse in patients with severe mitral regurgitation. Am J Cardiol 111:588–594CrossRefPubMed Izumo M, Shiota M, Kar S, Gurudevan SV, Tolstrup K, Siegel RJ et al (2013) Comparison of real-time three-dimensional transesophageal echocardiography to two-dimensional transesophageal echocardiography for quantification of mitral valve prolapse in patients with severe mitral regurgitation. Am J Cardiol 111:588–594CrossRefPubMed
5.
Zurück zum Zitat La Canna G, Arendar I, Maisano F, Monaco F, Collu E, Benussi S et al (2011) Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol 107:1365–1374CrossRefPubMed La Canna G, Arendar I, Maisano F, Monaco F, Collu E, Benussi S et al (2011) Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol 107:1365–1374CrossRefPubMed
6.
Zurück zum Zitat Pepi M, Tamborini G, Maltagliati A, Galli CA, Sisillo E, Salvi L et al (2006) Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol 48:2524–2530CrossRefPubMed Pepi M, Tamborini G, Maltagliati A, Galli CA, Sisillo E, Salvi L et al (2006) Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol 48:2524–2530CrossRefPubMed
7.
Zurück zum Zitat Hien MD, Grossgasteiger M, Med C, Rauch H, Weymann A, Bekeredjian R et al (2013) Experts and beginners benefit from three-dimensional echocardiography: a multicenter study on the assessment of mitral valve prolapse. J Am Soc Echocardiogr 26:828–834CrossRefPubMed Hien MD, Grossgasteiger M, Med C, Rauch H, Weymann A, Bekeredjian R et al (2013) Experts and beginners benefit from three-dimensional echocardiography: a multicenter study on the assessment of mitral valve prolapse. J Am Soc Echocardiogr 26:828–834CrossRefPubMed
8.
Zurück zum Zitat Tsang W, Weinert L, Sugeng L, Chandra S, Ahmad H, Spencer K et al (2011) The value of three-dimensional echocardiography derived mitral valve parametric maps and the role of experience in the diagnosis of pathology. J Am Soc Echocardiogr 24:860–867CrossRefPubMed Tsang W, Weinert L, Sugeng L, Chandra S, Ahmad H, Spencer K et al (2011) The value of three-dimensional echocardiography derived mitral valve parametric maps and the role of experience in the diagnosis of pathology. J Am Soc Echocardiogr 24:860–867CrossRefPubMed
9.
Zurück zum Zitat Monin JL, Dehant P, Roiron C, Monchi M, Tabet JY, Clerc P et al (2005) Functional assessment of mitral regurgitation by transthoracic echocardiography using standardized imaging planes diagnostic accuracy and outcome implications. J Am Coll Cardiol 46:302–309CrossRefPubMed Monin JL, Dehant P, Roiron C, Monchi M, Tabet JY, Clerc P et al (2005) Functional assessment of mitral regurgitation by transthoracic echocardiography using standardized imaging planes diagnostic accuracy and outcome implications. J Am Coll Cardiol 46:302–309CrossRefPubMed
10.
Zurück zum Zitat Foster GP, Isselbacher EM, Rose GA, Torchiana DF, Akins CW, Picard MH (1998) Accurate localization of mitral regurgitant defects using multiplane transesophageal echocardiography. Ann Thorac Surg 65:1025–1031CrossRefPubMed Foster GP, Isselbacher EM, Rose GA, Torchiana DF, Akins CW, Picard MH (1998) Accurate localization of mitral regurgitant defects using multiplane transesophageal echocardiography. Ann Thorac Surg 65:1025–1031CrossRefPubMed
11.
Zurück zum Zitat Carpentier AF, Lessana A, Relland JY, Belli E, Mihaileanu S, Berrebi AJ et al (1995) The “physio-ring”: an advanced concept in mitral valve annuloplasty. Ann Thorac Surg 60:1177–1185; discussion 85–6CrossRefPubMed Carpentier AF, Lessana A, Relland JY, Belli E, Mihaileanu S, Berrebi AJ et al (1995) The “physio-ring”: an advanced concept in mitral valve annuloplasty. Ann Thorac Surg 60:1177–1185; discussion 85–6CrossRefPubMed
12.
Zurück zum Zitat Adams DH, Anyanwu AC (2008) Seeking a higher standard for degenerative mitral valve repair: begin with etiology. J Thorac Cardiovasc Surg 136:551–556CrossRefPubMed Adams DH, Anyanwu AC (2008) Seeking a higher standard for degenerative mitral valve repair: begin with etiology. J Thorac Cardiovasc Surg 136:551–556CrossRefPubMed
13.
Zurück zum Zitat McGhie JS, de Groot-de Laat L, Ren B, Vletter W, Frowijn R, Oei F et al (2015) Transthoracic two-dimensional xPlane and three-dimensional echocardiographic analysis of the site of mitral valve prolapse. Int J Cardiovasc Imaging 31:1553–1560CrossRefPubMedPubMedCentral McGhie JS, de Groot-de Laat L, Ren B, Vletter W, Frowijn R, Oei F et al (2015) Transthoracic two-dimensional xPlane and three-dimensional echocardiographic analysis of the site of mitral valve prolapse. Int J Cardiovasc Imaging 31:1553–1560CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Gutierrez-Chico JL, Zamorano Gomez JL, Rodrigo-Lopez JL, Mataix L, Perez de Isla L, Almeria-Valera C et al (2008) Accuracy of real-time 3-dimensional echocardiography in the assessment of mitral prolapse. Is transesophageal echocardiography still mandatory? Am Heart J 155:694–698CrossRefPubMed Gutierrez-Chico JL, Zamorano Gomez JL, Rodrigo-Lopez JL, Mataix L, Perez de Isla L, Almeria-Valera C et al (2008) Accuracy of real-time 3-dimensional echocardiography in the assessment of mitral prolapse. Is transesophageal echocardiography still mandatory? Am Heart J 155:694–698CrossRefPubMed
15.
Zurück zum Zitat Beraud AS, Schnittger I, Miller DC, Liang DH (2009) Multiplanar reconstruction of three-dimensional transthoracic echocardiography improves the presurgical assessment of mitral prolapse. J Am Soc Echocardiogr 22:907–913CrossRefPubMed Beraud AS, Schnittger I, Miller DC, Liang DH (2009) Multiplanar reconstruction of three-dimensional transthoracic echocardiography improves the presurgical assessment of mitral prolapse. J Am Soc Echocardiogr 22:907–913CrossRefPubMed
Metadaten
Titel
The role of experience in echocardiographic identification of location and extent of mitral valve prolapse with 2D and 3D echocardiography
verfasst von
Lotte E. de Groot-de Laat
Ben Ren
Jacky McGhie
Frans B. S. Oei
Mihai Strachinaru
Sharon W. M. Kirschbaum
Sakir Akin
Chris M. Kievit
Ad J. J. C. Bogers
Marcel L. Geleijnse
Publikationsdatum
11.05.2016
Verlag
Springer Netherlands
Erschienen in
The International Journal of Cardiovascular Imaging / Ausgabe 8/2016
Print ISSN: 1569-5794
Elektronische ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-016-0895-z

Weitere Artikel der Ausgabe 8/2016

The International Journal of Cardiovascular Imaging 8/2016 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.