Skip to main content
main-content
Erschienen in: Brain Structure and Function 9/2021

04.06.2021 | Review

The role of feedback projections in feature tuning and neuronal excitability in the early primate visual system

verfasst von: A. R. A. Correia, A. K. J. Amorim, J. G. M. Soares, B. Lima, M. Fiorani, R. Gattass

Erschienen in: Brain Structure and Function | Ausgabe 9/2021

Einloggen, um Zugang zu erhalten

Abstract

A general assumption in visual neuroscience is that basic receptive field properties such as orientation and direction selectivity are constructed within intrinsic neuronal circuits and feedforward projections. In addition, it is assumed that general neuronal excitability and responsiveness in early visual areas is to a great extent independent of feedback input originating in areas higher in the stream. Here, we review the contribution of feedback projections from MT, V4 and pulvinar to the receptive field properties of V2 neurons in the anesthetized and paralyzed monkey. Importantly, our results contradict both of these assumptions. We separately inactivated each of these three brain regions using GABA pressure injections, while simultaneously recording V2 single unit activity before and hours after inactivation. Recordings and GABA injections were carried out in topographically corresponding regions of the visual field. We outline the changes in V2 activity, responsiveness and receptive field properties for early, mid and late post-injection phases. Immediately after injection, V2 activity is globally suppressed. Subsequently, there is an increase in stimulus-driven relative to spontaneous neuronal activity, which improves the signal-to-noise coding for the oriented moving bars. Notably, V2 tuning properties change substantially relative to its pre-injection selectivity profile. The resulting increase or decrease in selectivity could not be readily predicted based on the selectivity profile of the inactivated site. Finally, V2 activity rebounds before returning to it pre-injection profile Our results show that feedback projections profoundly impact neuronal circuits in early visual areas, and may have been heretofore largely underestimated in their physiological role.

Graphic abstract

Literatur
Zurück zum Zitat Adams MM, Webster MJ, Gattass R, Hof PR, Ungerleider LG (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol 419:377–393 PubMedCrossRef Adams MM, Webster MJ, Gattass R, Hof PR, Ungerleider LG (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol 419:377–393 PubMedCrossRef
Zurück zum Zitat Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130 PubMedCrossRef Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130 PubMedCrossRef
Zurück zum Zitat Allman JM, Kaas JH (1974a) The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. Brain Res 76:247–265 PubMedCrossRef Allman JM, Kaas JH (1974a) The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. Brain Res 76:247–265 PubMedCrossRef
Zurück zum Zitat Allman JM, Kaas JH (1974b) A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey ( Aotus trivirgatus). Brain Res 81:199–213 PubMedCrossRef Allman JM, Kaas JH (1974b) A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey ( Aotus trivirgatus). Brain Res 81:199–213 PubMedCrossRef
Zurück zum Zitat Alonso JM, Cudeiro J, Perez R, Gonzalez F, Acuna C (1993) Influence of layer V of area 18 of the cat visual cortex on responses of cells in layer V of area 17 to stimuli of high velocity. Exp Brain Res 93:363–366 PubMedCrossRef Alonso JM, Cudeiro J, Perez R, Gonzalez F, Acuna C (1993) Influence of layer V of area 18 of the cat visual cortex on responses of cells in layer V of area 17 to stimuli of high velocity. Exp Brain Res 93:363–366 PubMedCrossRef
Zurück zum Zitat Amorim AK, Picanco-Diniz CW (1996) Morphometric analysis of intrinsic axon terminals of Cebus monkey area 17. Braz J Med Biol Res 29:1363–1368 PubMed Amorim AK, Picanco-Diniz CW (1996) Morphometric analysis of intrinsic axon terminals of Cebus monkey area 17. Braz J Med Biol Res 29:1363–1368 PubMed
Zurück zum Zitat Amorim AK, Picanco-Diniz CW (1997) Horizontal projections of area 17 in Cebus monkeys: metric features, and modular and laminar distribution. Braz J Med Biol Res 30:1489–1501 PubMedCrossRef Amorim AK, Picanco-Diniz CW (1997) Horizontal projections of area 17 in Cebus monkeys: metric features, and modular and laminar distribution. Braz J Med Biol Res 30:1489–1501 PubMedCrossRef
Zurück zum Zitat Amorim AK, Picanço-Diniz CW (1998) Intrinsic projections of Cebus-monkey area 17: cell morphology and axon terminals. Rev Bras Biol, Sup 1(2):209–219 Amorim AK, Picanço-Diniz CW (1998) Intrinsic projections of Cebus-monkey area 17: cell morphology and axon terminals. Rev Bras Biol, Sup 1(2):209–219
Zurück zum Zitat Angelucci A, Levitt JB, Walton EJ, Hupé JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646 PubMedPubMedCentralCrossRef Angelucci A, Levitt JB, Walton EJ, Hupé JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646 PubMedPubMedCentralCrossRef
Zurück zum Zitat Borra E, Rockland KS (2011) Projections to early visual areas v1 and v2 in the calcarine fissure from parietal association areas in the macaque. Front Neuroanat 5:35 PubMedPubMedCentralCrossRef Borra E, Rockland KS (2011) Projections to early visual areas v1 and v2 in the calcarine fissure from parietal association areas in the macaque. Front Neuroanat 5:35 PubMedPubMedCentralCrossRef
Zurück zum Zitat Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765 PubMedPubMedCentralCrossRef Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765 PubMedPubMedCentralCrossRef
Zurück zum Zitat Casanova C, Michaud Y, Morin C, McKinley PA, Molotchnikoff S (1992) Visual responsiveness and direction selectivity of cells in area 18 during local reversible inactivation of area 17 in cats. Visual Neurosci 9:581–593 CrossRef Casanova C, Michaud Y, Morin C, McKinley PA, Molotchnikoff S (1992) Visual responsiveness and direction selectivity of cells in area 18 during local reversible inactivation of area 17 in cats. Visual Neurosci 9:581–593 CrossRef
Zurück zum Zitat Crook JM, Kisvarday ZF, Eysel UT (1996) GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on direction selectivity. J Neurophysiol 75:2071–2088 PubMedCrossRef Crook JM, Kisvarday ZF, Eysel UT (1996) GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on direction selectivity. J Neurophysiol 75:2071–2088 PubMedCrossRef
Zurück zum Zitat Crook JM, Kisvarday ZF, Eysel UT (1997) GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity. Vis Neurosci 14:141–158 PubMedCrossRef Crook JM, Kisvarday ZF, Eysel UT (1997) GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity. Vis Neurosci 14:141–158 PubMedCrossRef
Zurück zum Zitat Crook JM, Kisvarday ZF, Eysel UT (1998) Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. Eur J Neurosci 10:2056–2075 PubMedCrossRef Crook JM, Kisvarday ZF, Eysel UT (1998) Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. Eur J Neurosci 10:2056–2075 PubMedCrossRef
Zurück zum Zitat de Mello FG (1984) GABA-mediated control of glutamate decarboxylase (GAD) in cell aggregate culture of chick embryo retina. Brain Res 316:7–13 PubMedCrossRef de Mello FG (1984) GABA-mediated control of glutamate decarboxylase (GAD) in cell aggregate culture of chick embryo retina. Brain Res 316:7–13 PubMedCrossRef
Zurück zum Zitat Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35:528–532 PubMedCrossRef Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35:528–532 PubMedCrossRef
Zurück zum Zitat Fiorani M, Gattass R, Rosa MG, Sousa AP (1989) Visual area MT in the Cebus monkey: location, visuotopic organization, and variability. J Comp Neurol 287:98–118 PubMedCrossRef Fiorani M, Gattass R, Rosa MG, Sousa AP (1989) Visual area MT in the Cebus monkey: location, visuotopic organization, and variability. J Comp Neurol 287:98–118 PubMedCrossRef
Zurück zum Zitat Fiorani M, Azzi JCB, Soares JGM, Gattass R (2014) Automatic mapping of visual cortex receptive fields: a fast and precise algorithm. J Neurosci Methods 221:112–126 PubMedCrossRef Fiorani M, Azzi JCB, Soares JGM, Gattass R (2014) Automatic mapping of visual cortex receptive fields: a fast and precise algorithm. J Neurosci Methods 221:112–126 PubMedCrossRef
Zurück zum Zitat Galuske RA, Schmidt KE, Goebel R, Lomber SG, Payne BR (2002) The role of feedback in shaping neural representations in cat visual cortex. Proc Natl Acad Sci U S A 99:17083–17088 PubMedPubMedCentralCrossRef Galuske RA, Schmidt KE, Goebel R, Lomber SG, Payne BR (2002) The role of feedback in shaping neural representations in cat visual cortex. Proc Natl Acad Sci U S A 99:17083–17088 PubMedPubMedCentralCrossRef
Zurück zum Zitat Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638 PubMedCrossRef Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638 PubMedCrossRef
Zurück zum Zitat Gattass R, Oswaldo-Cruz E, Sousa AP (1978a) Visuotopic organization of the Cebus pulvinar: a double representation the contralateral hemifield. Brain Res 152:1–16 PubMedCrossRef Gattass R, Oswaldo-Cruz E, Sousa AP (1978a) Visuotopic organization of the Cebus pulvinar: a double representation the contralateral hemifield. Brain Res 152:1–16 PubMedCrossRef
Zurück zum Zitat Gattass R, Sousa AP, Oswaldo-Cruz E (1978b) Single unit response types in the pulvinar of the Cebus monkey to multisensory stimulation. Brain Res 158:75–87 PubMedCrossRef Gattass R, Sousa AP, Oswaldo-Cruz E (1978b) Single unit response types in the pulvinar of the Cebus monkey to multisensory stimulation. Brain Res 158:75–87 PubMedCrossRef
Zurück zum Zitat Gattass R, Oswaldo-Cruz E, Sousa AP (1979) Visual receptive fields of units in the pulvinar of cebus monkey. Brain Res 160:413–430 PubMedCrossRef Gattass R, Oswaldo-Cruz E, Sousa AP (1979) Visual receptive fields of units in the pulvinar of cebus monkey. Brain Res 160:413–430 PubMedCrossRef
Zurück zum Zitat Gattass R, Sousa AP, Rosa MG (1987) Visual topography of V1 in the Cebus monkey. J Comp Neurol 259:529–548 PubMedCrossRef Gattass R, Sousa AP, Rosa MG (1987) Visual topography of V1 in the Cebus monkey. J Comp Neurol 259:529–548 PubMedCrossRef
Zurück zum Zitat Gattass R, Rosa MG, Sousa AP, Piñon MCG, Fiorani M, Neuenschwander S (1990) Cortical streams of visual information processing in primates. Braz J Med Biol Res 23(375):393 Gattass R, Rosa MG, Sousa AP, Piñon MCG, Fiorani M, Neuenschwander S (1990) Cortical streams of visual information processing in primates. Braz J Med Biol Res 23(375):393
Zurück zum Zitat Gattass R, Nascimento-Silva S, Soares JG et al (2005) Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Philos Trans R Soc Lond B Biol Sci 360:709–731 PubMedPubMedCentralCrossRef Gattass R, Nascimento-Silva S, Soares JG et al (2005) Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Philos Trans R Soc Lond B Biol Sci 360:709–731 PubMedPubMedCentralCrossRef
Zurück zum Zitat Gattass R, Lima B, Soares JGM, Ungerleider LG (2015) Controversies about the visual áreas at the anterior border of área V2 in primates. Vis Neurosci 32:e019 PubMedPubMedCentralCrossRef Gattass R, Lima B, Soares JGM, Ungerleider LG (2015) Controversies about the visual áreas at the anterior border of área V2 in primates. Vis Neurosci 32:e019 PubMedPubMedCentralCrossRef
Zurück zum Zitat Gattass R, Soares JGM, Lima B (2018) The pulvinar thalamic nucleus of non-human primates: architectonic and functional subdivisions. Springer, Adv Anat Embryol Cell Biol CrossRef Gattass R, Soares JGM, Lima B (2018) The pulvinar thalamic nucleus of non-human primates: architectonic and functional subdivisions. Springer, Adv Anat Embryol Cell Biol CrossRef
Zurück zum Zitat Girard P, Salin PA, Bullier J (1992) Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J Neurophysiol 67:1437–1446 PubMedCrossRef Girard P, Salin PA, Bullier J (1992) Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J Neurophysiol 67:1437–1446 PubMedCrossRef
Zurück zum Zitat Hata Y, Tsumoto T, Sato H, Hagihara K, Tamura H (1988) Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335:815–817 PubMedCrossRef Hata Y, Tsumoto T, Sato H, Hagihara K, Tamura H (1988) Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335:815–817 PubMedCrossRef
Zurück zum Zitat Huang L, Chen X, Shou T (2004) Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res 998:194–201 PubMedCrossRef Huang L, Chen X, Shou T (2004) Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res 998:194–201 PubMedCrossRef
Zurück zum Zitat Hupé JM (1995) Role des connexions en feedback dans le cortex visuel du singe macaque mise au point d`une technique d`inativation locale. Université Claude Bernar Lyon I, Tese, p 35 Hupé JM (1995) Role des connexions en feedback dans le cortex visuel du singe macaque mise au point d`une technique d`inativation locale. Université Claude Bernar Lyon I, Tese, p 35
Zurück zum Zitat Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787 PubMedCrossRef Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787 PubMedCrossRef
Zurück zum Zitat Hupé JM, Chouvet G, Bullier J (1999) Spatial and temporal parameters of cortical inactivation by GABA. J Neurosci Methods 86:129–143 PubMedCrossRef Hupé JM, Chouvet G, Bullier J (1999) Spatial and temporal parameters of cortical inactivation by GABA. J Neurosci Methods 86:129–143 PubMedCrossRef
Zurück zum Zitat Hupé JM, James AC, Girard P, Bullier J (2001) Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. J Neurophysiol 85:146–163 PubMedCrossRef Hupé JM, James AC, Girard P, Bullier J (2001) Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. J Neurophysiol 85:146–163 PubMedCrossRef
Zurück zum Zitat Jansen-Amorim AK, Lima B, Fiorani M, Gattass R (2011) GABA inactivation of visual area MT modifies the responsiveness and direction selectivity of V2 neurons in Cebus monkeys. Vis Neurosci 28:513–527 PubMedCrossRef Jansen-Amorim AK, Lima B, Fiorani M, Gattass R (2011) GABA inactivation of visual area MT modifies the responsiveness and direction selectivity of V2 neurons in Cebus monkeys. Vis Neurosci 28:513–527 PubMedCrossRef
Zurück zum Zitat Jansen-Amorim AK, Fiorani M, Gattass R (2012) GABA inactivation of area V4 changes receptivefield properties of V2 neurons in Cebus monkeys. Exp Neurol 235:553–562 PubMedCrossRef Jansen-Amorim AK, Fiorani M, Gattass R (2012) GABA inactivation of area V4 changes receptivefield properties of V2 neurons in Cebus monkeys. Exp Neurol 235:553–562 PubMedCrossRef
Zurück zum Zitat Jansen-Amorim AK, Fiorani M, Gattass R (2013) GABA-induced Inactivation of Cebus apella V2 Neurons: effects on orientation tuning and direction selectivity. Braz J Med Biol Res 46:589–600 PubMedPubMedCentralCrossRef Jansen-Amorim AK, Fiorani M, Gattass R (2013) GABA-induced Inactivation of Cebus apella V2 Neurons: effects on orientation tuning and direction selectivity. Braz J Med Biol Res 46:589–600 PubMedPubMedCentralCrossRef
Zurück zum Zitat Johnson RR, Burkhalter A (1996) Microcircuitry of forward and feedback connections within rat visual cortex. J Comp Neurol 368:383–398 PubMedCrossRef Johnson RR, Burkhalter A (1996) Microcircuitry of forward and feedback connections within rat visual cortex. J Comp Neurol 368:383–398 PubMedCrossRef
Zurück zum Zitat Kaas JH, Collins CE (2001) The organization of sensory cortex. Curr Opin Neurobiol 11:498–504 PubMedCrossRef Kaas JH, Collins CE (2001) The organization of sensory cortex. Curr Opin Neurobiol 11:498–504 PubMedCrossRef
Zurück zum Zitat Lamme VA, Super H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535 PubMedCrossRef Lamme VA, Super H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535 PubMedCrossRef
Zurück zum Zitat Martin JH, Cooper SE, Ghez C (1993) Differential effects of local inactivation within motor cortex and red nucleus on performance of an elbow task in the cat. Exp Brain Res 94:418–428 PubMed Martin JH, Cooper SE, Ghez C (1993) Differential effects of local inactivation within motor cortex and red nucleus on performance of an elbow task in the cat. Exp Brain Res 94:418–428 PubMed
Zurück zum Zitat Mignard M, Malpeli JG (1991) Paths of information flow through visual cortex. Science 251:12491251 CrossRef Mignard M, Malpeli JG (1991) Paths of information flow through visual cortex. Science 251:12491251 CrossRef
Zurück zum Zitat Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434 PubMedCrossRef Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434 PubMedCrossRef
Zurück zum Zitat Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741 PubMedPubMedCentralCrossRef Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741 PubMedPubMedCentralCrossRef
Zurück zum Zitat Murthy A, Humphrey AL (1999) Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. J Neurophysiol 81:1212–1224 PubMedCrossRef Murthy A, Humphrey AL (1999) Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. J Neurophysiol 81:1212–1224 PubMedCrossRef
Zurück zum Zitat Nascimento-Silva S, Pinõn C, Soares JG, Gattass R (2014) Feedforward and feedback connections and their relation to the cytox modules of V2 in Cebus monkeys. J Comp Neurol 522:3091–3105 PubMedPubMedCentralCrossRef Nascimento-Silva S, Pinõn C, Soares JG, Gattass R (2014) Feedforward and feedback connections and their relation to the cytox modules of V2 in Cebus monkeys. J Comp Neurol 522:3091–3105 PubMedPubMedCentralCrossRef
Zurück zum Zitat Piñon MC, Gattass R, Sousa AP (1998) Area V4 in Cebus monkey: extent and visuotopic organization. Cereb Cortex 8:685–701 PubMedCrossRef Piñon MC, Gattass R, Sousa AP (1998) Area V4 in Cebus monkey: extent and visuotopic organization. Cereb Cortex 8:685–701 PubMedCrossRef
Zurück zum Zitat Rockland KS, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425:345–368 PubMedCrossRef Rockland KS, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425:345–368 PubMedCrossRef
Zurück zum Zitat Rockland KS, Saleem KS, Tanaka K (1994) Divergent feedback connections from areas V4 and TEO in the macaque. Vis Neurosci 11:579–600 PubMedCrossRef Rockland KS, Saleem KS, Tanaka K (1994) Divergent feedback connections from areas V4 and TEO in the macaque. Vis Neurosci 11:579–600 PubMedCrossRef
Zurück zum Zitat Rodman HR, Gross CG, Albright TD (1989) Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J Neurosci 9:2033–2050 PubMedPubMedCentralCrossRef Rodman HR, Gross CG, Albright TD (1989) Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J Neurosci 9:2033–2050 PubMedPubMedCentralCrossRef
Zurück zum Zitat Roerig B, Kao JP (1999) Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. J Neurosci 19:1–5 CrossRef Roerig B, Kao JP (1999) Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. J Neurosci 19:1–5 CrossRef
Zurück zum Zitat Rosa MG, Sousa AP, Gattass R (1988) Representation of the visual field in the second visual area in the Cebus monkey. J Comp Neurol 275:326–345 PubMedCrossRef Rosa MG, Sousa AP, Gattass R (1988) Representation of the visual field in the second visual area in the Cebus monkey. J Comp Neurol 275:326–345 PubMedCrossRef
Zurück zum Zitat Rosa MG, Soares JGM, Fiorani M Jr, Gattass R (1993) Cortical Afferents of Visual Area MT in the Cebus Monkey: possible homologies between new and old-world monkeys. Vis Neurosci 10:827–855 PubMedCrossRef Rosa MG, Soares JGM, Fiorani M Jr, Gattass R (1993) Cortical Afferents of Visual Area MT in the Cebus Monkey: possible homologies between new and old-world monkeys. Vis Neurosci 10:827–855 PubMedCrossRef
Zurück zum Zitat Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154 PubMedCrossRef Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154 PubMedCrossRef
Zurück zum Zitat Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J Neurophysiol 48:38–48 PubMedCrossRef Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J Neurophysiol 48:38–48 PubMedCrossRef
Zurück zum Zitat Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T (1995) Mechanisms underlying direction selectivity of neurons in the primary visual cortex of the macaque. J Neurophysiol 74:1382–1394 PubMedCrossRef Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T (1995) Mechanisms underlying direction selectivity of neurons in the primary visual cortex of the macaque. J Neurophysiol 74:1382–1394 PubMedCrossRef
Zurück zum Zitat Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T (1996) Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J Physiol 494:757–771 PubMedPubMedCentralCrossRef Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T (1996) Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J Physiol 494:757–771 PubMedPubMedCentralCrossRef
Zurück zum Zitat Sillito AM (1975a) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250:305–329 PubMedPubMedCentralCrossRef Sillito AM (1975a) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250:305–329 PubMedPubMedCentralCrossRef
Zurück zum Zitat Sillito AM (1975b) The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat’s striate cortex. J Physiol 250:287–304 PubMedPubMedCentralCrossRef Sillito AM (1975b) The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat’s striate cortex. J Physiol 250:287–304 PubMedPubMedCentralCrossRef
Zurück zum Zitat Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol 271:699–720 PubMedPubMedCentralCrossRef Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol 271:699–720 PubMedPubMedCentralCrossRef
Zurück zum Zitat Sillito AM, Kemp JA, Milson JA, Berardi N (1980a) A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res 194:517–520 PubMedCrossRef Sillito AM, Kemp JA, Milson JA, Berardi N (1980a) A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res 194:517–520 PubMedCrossRef
Zurück zum Zitat Sillito AM, Kemp JA, Patel H (1980b) Inhibitory interactions contributing to the ocular dominance of monocularly dominated cells in the normal cat striate cortex. Exp Brain Res 41:1–10 PubMedCrossRef Sillito AM, Kemp JA, Patel H (1980b) Inhibitory interactions contributing to the ocular dominance of monocularly dominated cells in the normal cat striate cortex. Exp Brain Res 41:1–10 PubMedCrossRef
Zurück zum Zitat Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128 PubMedCrossRef Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128 PubMedCrossRef
Zurück zum Zitat Soares JGM, Gattass R, Sousa APB, Rosa MGP, Fiorani M, Brandão BL (2001) Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys. Vis Neurosci 18:25–41 PubMedCrossRef Soares JGM, Gattass R, Sousa APB, Rosa MGP, Fiorani M, Brandão BL (2001) Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys. Vis Neurosci 18:25–41 PubMedCrossRef
Zurück zum Zitat Soares JG, Diogo AC, Fiorani M, Sousa AP, Gattass R (2004) Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys. Clin Exp Pharmacol Physiol 31:580–590 PubMedCrossRef Soares JG, Diogo AC, Fiorani M, Sousa AP, Gattass R (2004) Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys. Clin Exp Pharmacol Physiol 31:580–590 PubMedCrossRef
Zurück zum Zitat Sousa AP, Piñon MC, Gattass R, Rosa MG (1991) Topographic organization of cortical input to striate cortex in the Cebus monkey: a fluorescent tracer study. J Comp Neurol 308:665–682 PubMedCrossRef Sousa AP, Piñon MC, Gattass R, Rosa MG (1991) Topographic organization of cortical input to striate cortex in the Cebus monkey: a fluorescent tracer study. J Comp Neurol 308:665–682 PubMedCrossRef
Zurück zum Zitat Thiele A, Distler C, Korbmacher H, Hoffmann KP (2004) Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. Proc Natl Acad Sci U S A 101:9810–9815 PubMedPubMedCentralCrossRef Thiele A, Distler C, Korbmacher H, Hoffmann KP (2004) Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. Proc Natl Acad Sci U S A 101:9810–9815 PubMedPubMedCentralCrossRef
Zurück zum Zitat Thiele A, Herrero JL, Distler C, Hoffmann KP (2012) Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 32:16602–16615 PubMedPubMedCentralCrossRef Thiele A, Herrero JL, Distler C, Hoffmann KP (2012) Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 32:16602–16615 PubMedPubMedCentralCrossRef
Zurück zum Zitat Tigges J, Tigges M, Anschel S, Cross NA, Letbetter WD, McBride RL (1981) Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). J Comp Neurol 202:539–560 PubMedCrossRef Tigges J, Tigges M, Anschel S, Cross NA, Letbetter WD, McBride RL (1981) Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). J Comp Neurol 202:539–560 PubMedCrossRef
Zurück zum Zitat Tsumoto T, Eckart W, Creutzfeldt OD (1979) Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Exp Brain Res 34:351–363 PubMedCrossRef Tsumoto T, Eckart W, Creutzfeldt OD (1979) Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Exp Brain Res 34:351–363 PubMedCrossRef
Zurück zum Zitat Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18:477–499 PubMedCrossRef Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18:477–499 PubMedCrossRef
Zurück zum Zitat Vidyasagar TR, Eysel UT (2015) Origins of feature selectivities and maps in the mammalian primary visual cortex. Trends Neurosci 38:475–485 PubMedCrossRef Vidyasagar TR, Eysel UT (2015) Origins of feature selectivities and maps in the mammalian primary visual cortex. Trends Neurosci 38:475–485 PubMedCrossRef
Zurück zum Zitat Wang C, Waleszczyk WJ, Burke W, Dreher B (2000) Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat. Cereb Cortex 10:1217–1232 PubMedCrossRef Wang C, Waleszczyk WJ, Burke W, Dreher B (2000) Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat. Cereb Cortex 10:1217–1232 PubMedCrossRef
Zurück zum Zitat Zeki SM (1978) Functional specialization in the visual cortex of the rhesus monkey. Nature 274:423–428 PubMedCrossRef Zeki SM (1978) Functional specialization in the visual cortex of the rhesus monkey. Nature 274:423–428 PubMedCrossRef
Metadaten
Titel
The role of feedback projections in feature tuning and neuronal excitability in the early primate visual system
verfasst von
A. R. A. Correia
A. K. J. Amorim
J. G. M. Soares
B. Lima
M. Fiorani
R. Gattass
Publikationsdatum
04.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02311-x

Weitere Artikel der Ausgabe 9/2021

Brain Structure and Function 9/2021 Zur Ausgabe

Neu im Fachgebiet Neurologie

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Neurologie und bleiben Sie gut informiert – ganz bequem per eMail.