Skip to main content
Erschienen in: Inflammation 1/2017

23.11.2016 | ORIGINAL ARTICLE

The Role of IL-33 on LPS-Induced Acute Lung Injury in Mice

verfasst von: Yaping Zhang, Ran Lv, Xuming Hu, Li Jiang, Dongju Xiao, Yv Sun, Jinning Zhao, Qi Bao, Junran Xie

Erschienen in: Inflammation | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

The objective of the study is to investigate the role and specific molecular mechanism of interleukin-33 (IL-33) acted on acute lung injury (ALI) induced by lipopolysaccharide (LPS). C57BL/6 mice intratracheally instilled LPS to induce ALI model. The mice were randomly divided into three groups: the sham operation group (Sham), ALI group (ALI), and pretreatment with IL-33 of ALI group (IL-33). By observing the survival rate, inflammatory cytokines in bronchoalveolar lavage fluid (BALF), myeloperoxidase (MPO) levels in lung tissue, lung histopathological examination, pulmonary capillary leakage, lung wet/dry (W/D) weight ratio, fibrosis levels in lung tissue, and associated pathways changes among the different groups, comparing to explore the role of IL-33 pretreatment on ALI mice and the possible molecular mechanisms. IL-33 pretreatment overall decreased the survival rate of ALI mice. IL-33 aggravated inflammation reaction showing as increasing the release of proinflammatory cytokines TNF-α and IL-6, increasing MPO levels in lung tissue, and aggravating lung pathology injury. In addition, IL-33 pretreatment further destroyed adherens junctions (AJs) by increasing the phosphorylation of VE-cadherin, resulting in the concomitantly pulmonary capillary barrier damage and pulmonary edema. During this process, mitogen-activated protein kinase (MAPK) pathways further activated. However, IL-33 pretreatment had no significant impact on collagen content of lung tissue. Our results indicated that IL-33 aggravated inflammatory reaction and increased microvascular permeability, but had little effect on pulmonary fibrosis, associated with the further activation of MAPK family proteins in the process. To sum up, IL-33 decreased survival rate and aggravated LPS-induced ALI.
Literatur
1.
Zurück zum Zitat Wheeler, A.P., and G.R. Bernard. 2007. Acute lung injury and the acute respiratory distress syndrome: A clinical review. Lancet 369: 1553–1564.CrossRefPubMed Wheeler, A.P., and G.R. Bernard. 2007. Acute lung injury and the acute respiratory distress syndrome: A clinical review. Lancet 369: 1553–1564.CrossRefPubMed
2.
Zurück zum Zitat Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of Clinical Investigation 122: 2731–2740.CrossRefPubMedPubMedCentral Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of Clinical Investigation 122: 2731–2740.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Parekh, D., R.C. Dancer, and D.R. Thickett. 2011. Acute lung injury. Clinical Medicine (Lond) 11: 615–618.CrossRef Parekh, D., R.C. Dancer, and D.R. Thickett. 2011. Acute lung injury. Clinical Medicine (Lond) 11: 615–618.CrossRef
4.
Zurück zum Zitat Espinassous, Q., E. Garcia-de-Paco, I. Garcia-Verdugo, M. Synguelakis, S. von Aulock, J.M. Sallenave, et al. 2009. IL-33 enhances lipopolysaccharide-induced inflammatory cytokine production from mouse macrophages by regulating lipopolysaccharide receptor complex. Journal of Immunology (Baltimore, Md. : 1950) 183: 1446–1455.CrossRef Espinassous, Q., E. Garcia-de-Paco, I. Garcia-Verdugo, M. Synguelakis, S. von Aulock, J.M. Sallenave, et al. 2009. IL-33 enhances lipopolysaccharide-induced inflammatory cytokine production from mouse macrophages by regulating lipopolysaccharide receptor complex. Journal of Immunology (Baltimore, Md. : 1950) 183: 1446–1455.CrossRef
5.
Zurück zum Zitat Tian, J., Y. Wang, Z. He, Y. Gao, J.E. Rundhaug, and X. Wang. 2011. Hydroxyethyl starch (130 kD) inhibits Toll-like receptor 4 signaling pathways in rat lungs challenged with lipopolysaccharide. Anesthesia and Analgesia 113: 112–119.CrossRefPubMed Tian, J., Y. Wang, Z. He, Y. Gao, J.E. Rundhaug, and X. Wang. 2011. Hydroxyethyl starch (130 kD) inhibits Toll-like receptor 4 signaling pathways in rat lungs challenged with lipopolysaccharide. Anesthesia and Analgesia 113: 112–119.CrossRefPubMed
6.
Zurück zum Zitat Biswas, S.K., P. Bist, M.K. Dhillon, T. Kajiji, C. Del Fresno, M. Yamamoto, et al. 2007. Role for MyD88-independent, TRIF pathway in lipid A/TLR4-induced endotoxin tolerance. Journal of Immunology (Baltimore, Md. : 1950) 179: 4083–4092.CrossRef Biswas, S.K., P. Bist, M.K. Dhillon, T. Kajiji, C. Del Fresno, M. Yamamoto, et al. 2007. Role for MyD88-independent, TRIF pathway in lipid A/TLR4-induced endotoxin tolerance. Journal of Immunology (Baltimore, Md. : 1950) 179: 4083–4092.CrossRef
7.
Zurück zum Zitat Brint, E.K., D. Xu, H. Liu, A. Dunne, A.N. McKenzie, L.A. O’Neill, et al. 2004. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nature Immunology 5: 373–379.CrossRefPubMed Brint, E.K., D. Xu, H. Liu, A. Dunne, A.N. McKenzie, L.A. O’Neill, et al. 2004. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nature Immunology 5: 373–379.CrossRefPubMed
8.
Zurück zum Zitat Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T.K. McClanahan, et al. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479–490.CrossRefPubMed Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T.K. McClanahan, et al. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479–490.CrossRefPubMed
9.
Zurück zum Zitat Alves-Filho, J.C., F. Sonego, F.O. Souto, A. Freitas, W.A. Verri Jr., M. Auxiliadora-Martins, et al. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nature Medicine 16: 708–712.CrossRefPubMed Alves-Filho, J.C., F. Sonego, F.O. Souto, A. Freitas, W.A. Verri Jr., M. Auxiliadora-Martins, et al. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nature Medicine 16: 708–712.CrossRefPubMed
10.
Zurück zum Zitat Roger, T., and T. Calandra. 2010. Interleukin-33 safeguards neutrophils in sepsis. Nature Medicine 16: 638–639.CrossRefPubMed Roger, T., and T. Calandra. 2010. Interleukin-33 safeguards neutrophils in sepsis. Nature Medicine 16: 638–639.CrossRefPubMed
11.
Zurück zum Zitat Oboki, K., T. Ohno, N. Kajiwara, K. Arae, H. Morita, A. Ishii, et al. 2010. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proceedings of the National Academy of Sciences of the United States of America 107: 18581–18586.CrossRefPubMedPubMedCentral Oboki, K., T. Ohno, N. Kajiwara, K. Arae, H. Morita, A. Ishii, et al. 2010. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proceedings of the National Academy of Sciences of the United States of America 107: 18581–18586.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lu, J., J. Kang, C. Zhang, and X. Zhang. 2015. The role of IL-33/ST2L signals in the immune cells. Immunology Letters 164: 11–17.CrossRefPubMed Lu, J., J. Kang, C. Zhang, and X. Zhang. 2015. The role of IL-33/ST2L signals in the immune cells. Immunology Letters 164: 11–17.CrossRefPubMed
13.
Zurück zum Zitat Nabe, T. 2014. Interleukin (IL)-33: New therapeutic target for atopic diseases. Journal of Pharmacological Sciences 126: 85–91.CrossRefPubMed Nabe, T. 2014. Interleukin (IL)-33: New therapeutic target for atopic diseases. Journal of Pharmacological Sciences 126: 85–91.CrossRefPubMed
14.
Zurück zum Zitat Yagami, A., K. Orihara, H. Morita, K. Futamura, N. Hashimoto, K. Matsumoto, et al. 2010. IL-33 mediates inflammatory responses in human lung tissue cells. Journal of Immunology (Baltimore, Md. : 1950) 185: 5743–5750.CrossRef Yagami, A., K. Orihara, H. Morita, K. Futamura, N. Hashimoto, K. Matsumoto, et al. 2010. IL-33 mediates inflammatory responses in human lung tissue cells. Journal of Immunology (Baltimore, Md. : 1950) 185: 5743–5750.CrossRef
15.
Zurück zum Zitat Dushianthan, A., M.P. Grocott, A.D. Postle, and R. Cusack. 2011. Acute respiratory distress syndrome and acute lung injury. Postgraduate Medical Journal 87: 612–622.CrossRefPubMed Dushianthan, A., M.P. Grocott, A.D. Postle, and R. Cusack. 2011. Acute respiratory distress syndrome and acute lung injury. Postgraduate Medical Journal 87: 612–622.CrossRefPubMed
16.
Zurück zum Zitat Piper, A., Y. Song, N.D. Eves, and T.M. Maher. 2014. Year in review 2013: Acute lung injury, interstitial lung diseases, sleep and physiology. Respirology (Carlton, Vic) 19: 428–437.CrossRef Piper, A., Y. Song, N.D. Eves, and T.M. Maher. 2014. Year in review 2013: Acute lung injury, interstitial lung diseases, sleep and physiology. Respirology (Carlton, Vic) 19: 428–437.CrossRef
17.
Zurück zum Zitat Liew, F.Y., N.I. Pitman, and I.B. McInnes. 2010. Disease-associated functions of IL-33: The new kid in the IL-1 family. Nature Reviews Immunology 10: 103–110.CrossRefPubMed Liew, F.Y., N.I. Pitman, and I.B. McInnes. 2010. Disease-associated functions of IL-33: The new kid in the IL-1 family. Nature Reviews Immunology 10: 103–110.CrossRefPubMed
18.
Zurück zum Zitat Lingel, A., T.M. Weiss, M. Niebuhr, B. Pan, B.A. Appleton, C. Wiesmann, et al. 2009. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors—Insight into heterotrimeric IL-1 signaling complexes. Structure 17: 1398–1410.CrossRefPubMedPubMedCentral Lingel, A., T.M. Weiss, M. Niebuhr, B. Pan, B.A. Appleton, C. Wiesmann, et al. 2009. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors—Insight into heterotrimeric IL-1 signaling complexes. Structure 17: 1398–1410.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Chichger, H., H. Duong, J. Braza, and E.O. Harrington. 2015. p18, a novel adaptor protein, regulates pulmonary endothelial barrier function via enhanced endocytic recycling of VE-cadherin. FASEB Journal 29: 868–881.CrossRefPubMed Chichger, H., H. Duong, J. Braza, and E.O. Harrington. 2015. p18, a novel adaptor protein, regulates pulmonary endothelial barrier function via enhanced endocytic recycling of VE-cadherin. FASEB Journal 29: 868–881.CrossRefPubMed
20.
Zurück zum Zitat Fainaru, O., I. Adini, O. Benny, L. Bazinet, E. Pravda, R. D’Amato, et al. 2008. Doxycycline induces membrane expression of VE-cadherin on endothelial cells and prevents vascular hyperpermeability. FASEB Journal 22: 3728–3735.CrossRefPubMed Fainaru, O., I. Adini, O. Benny, L. Bazinet, E. Pravda, R. D’Amato, et al. 2008. Doxycycline induces membrane expression of VE-cadherin on endothelial cells and prevents vascular hyperpermeability. FASEB Journal 22: 3728–3735.CrossRefPubMed
21.
Zurück zum Zitat Gong, H., J. Rehman, H. Tang, K. Wary, M. Mittal, P. Chaturvedi, et al. 2015. HIF2alpha signaling inhibits adherens junctional disruption in acute lung injury. The Journal of Clinical Investigation 125: 652–664.CrossRefPubMedPubMedCentral Gong, H., J. Rehman, H. Tang, K. Wary, M. Mittal, P. Chaturvedi, et al. 2015. HIF2alpha signaling inhibits adherens junctional disruption in acute lung injury. The Journal of Clinical Investigation 125: 652–664.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Semina, E.V., K.A. Rubina, V.Y. Sysoeva, P.N. Rutkevich, N.M. Kashirina, and V.A. Tkachuk. 2014. Novel mechanism regulating endothelial permeability via T-cadherin-dependent VE-cadherin phosphorylation and clathrin-mediated endocytosis. Molecular and Cellular Biochemistry 387: 39–53.CrossRefPubMed Semina, E.V., K.A. Rubina, V.Y. Sysoeva, P.N. Rutkevich, N.M. Kashirina, and V.A. Tkachuk. 2014. Novel mechanism regulating endothelial permeability via T-cadherin-dependent VE-cadherin phosphorylation and clathrin-mediated endocytosis. Molecular and Cellular Biochemistry 387: 39–53.CrossRefPubMed
23.
Zurück zum Zitat Li, Y.C., C.H. Yeh, M.L. Yang, and Y.H. Kuan. 2012. Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice. Evidence-based Complementary and Alternative Medicine 2012: 383608.PubMed Li, Y.C., C.H. Yeh, M.L. Yang, and Y.H. Kuan. 2012. Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice. Evidence-based Complementary and Alternative Medicine 2012: 383608.PubMed
24.
Zurück zum Zitat Reutershan, J., M.A. Morris, T.L. Burcin, D.F. Smith, D. Chang, M.S. Saprito, et al. 2006. Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. The Journal of Clinical Investigation 116: 695–702.CrossRefPubMedPubMedCentral Reutershan, J., M.A. Morris, T.L. Burcin, D.F. Smith, D. Chang, M.S. Saprito, et al. 2006. Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. The Journal of Clinical Investigation 116: 695–702.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Liu, G., Y.J. Park, Y. Tsuruta, E. Lorne, and E. Abraham. 2009. p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. Journal of Immunology (Baltimore, Md. : 1950) 182: 5063–5071.CrossRef Liu, G., Y.J. Park, Y. Tsuruta, E. Lorne, and E. Abraham. 2009. p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. Journal of Immunology (Baltimore, Md. : 1950) 182: 5063–5071.CrossRef
26.
Zurück zum Zitat Antonov, A., C. Snead, B. Gorshkov, G.N. Antonova, A.D. Verin, and J.D. Catravas. 2008. Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. American Journal of Respiratory Cell and Molecular Biology 39: 551–559.CrossRefPubMedPubMedCentral Antonov, A., C. Snead, B. Gorshkov, G.N. Antonova, A.D. Verin, and J.D. Catravas. 2008. Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. American Journal of Respiratory Cell and Molecular Biology 39: 551–559.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Okutani, D. 2006. Src protein tyrosine kinase family and acute lung injury. Nihon Rinsho Men’eki Gakkai kaishi = Japanese journal of clinical immunology 29: 334–341.CrossRefPubMed Okutani, D. 2006. Src protein tyrosine kinase family and acute lung injury. Nihon Rinsho Men’eki Gakkai kaishi = Japanese journal of clinical immunology 29: 334–341.CrossRefPubMed
28.
Zurück zum Zitat Gong, P., D.J. Angelini, S. Yang, G. Xia, A.S. Cross, D. Mann, et al. 2008. TLR4 signaling is coupled to SRC family kinase activation, tyrosine phosphorylation of zonula adherens proteins, and opening of the paracellular pathway in human lung microvascular endothelia. The Journal of Biological Chemistry 283: 13437–13449.CrossRefPubMedPubMedCentral Gong, P., D.J. Angelini, S. Yang, G. Xia, A.S. Cross, D. Mann, et al. 2008. TLR4 signaling is coupled to SRC family kinase activation, tyrosine phosphorylation of zonula adherens proteins, and opening of the paracellular pathway in human lung microvascular endothelia. The Journal of Biological Chemistry 283: 13437–13449.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Iikura, M., H. Suto, N. Kajiwara, K. Oboki, T. Ohno, Y. Okayama, et al. 2007. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Laboratory Investigation 87: 971–978.CrossRefPubMed Iikura, M., H. Suto, N. Kajiwara, K. Oboki, T. Ohno, Y. Okayama, et al. 2007. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Laboratory Investigation 87: 971–978.CrossRefPubMed
30.
Zurück zum Zitat Sui, X., N. Kong, L. Ye, W. Han, J. Zhou, Q. Zhang, et al. 2014. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Letters 344: 174–179.CrossRefPubMed Sui, X., N. Kong, L. Ye, W. Han, J. Zhou, Q. Zhang, et al. 2014. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Letters 344: 174–179.CrossRefPubMed
31.
Zurück zum Zitat Komai-Koma, M., D. Xu, Y. Li, A.N. McKenzie, I.B. McInnes, and F.Y. Liew. 2007. IL-33 is a chemoattractant for human Th2 cells. European Journal of Immunology 37: 2779–2786.CrossRefPubMed Komai-Koma, M., D. Xu, Y. Li, A.N. McKenzie, I.B. McInnes, and F.Y. Liew. 2007. IL-33 is a chemoattractant for human Th2 cells. European Journal of Immunology 37: 2779–2786.CrossRefPubMed
32.
Zurück zum Zitat Xu, D., W.L. Chan, B.P. Leung, F. Huang, R. Wheeler, D. Piedrafita, et al. 1998. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. The Journal of Experimental Medicine 187: 787–794.CrossRefPubMedPubMedCentral Xu, D., W.L. Chan, B.P. Leung, F. Huang, R. Wheeler, D. Piedrafita, et al. 1998. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. The Journal of Experimental Medicine 187: 787–794.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Smith, D.E. 2011. The biological paths of IL-1 family members IL-18 and IL-33. Journal of Leukocyte Biology 89: 383–392.CrossRefPubMed Smith, D.E. 2011. The biological paths of IL-1 family members IL-18 and IL-33. Journal of Leukocyte Biology 89: 383–392.CrossRefPubMed
Metadaten
Titel
The Role of IL-33 on LPS-Induced Acute Lung Injury in Mice
verfasst von
Yaping Zhang
Ran Lv
Xuming Hu
Li Jiang
Dongju Xiao
Yv Sun
Jinning Zhao
Qi Bao
Junran Xie
Publikationsdatum
23.11.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0479-z

Weitere Artikel der Ausgabe 1/2017

Inflammation 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.