Skip to main content
Erschienen in: Urolithiasis 1/2017

02.12.2016 | Invited Review

The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man

verfasst von: Jonathan M. Whittamore, Marguerite Hatch

Erschienen in: Urolithiasis | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Osswald H, Hautmann R (1979) Renal elimination kinetics and plasma half-life of oxalate in man. Urol Int 34(6):440–450PubMedCrossRef Osswald H, Hautmann R (1979) Renal elimination kinetics and plasma half-life of oxalate in man. Urol Int 34(6):440–450PubMedCrossRef
2.
Zurück zum Zitat Prenen JAC, Boer P, Mees EJD, Endeman HJ, Spoor SM, Oei HY (1982) Renal clearance of C-14-labeled oxalate—comparison of constant-infusion with single-injection techniques. Clin Sci 63(1):47–51PubMedCrossRef Prenen JAC, Boer P, Mees EJD, Endeman HJ, Spoor SM, Oei HY (1982) Renal clearance of C-14-labeled oxalate—comparison of constant-infusion with single-injection techniques. Clin Sci 63(1):47–51PubMedCrossRef
3.
Zurück zum Zitat Costello JF, Smith M, Stolarski C, Sadovnic MJ (1992) Extrarenal clearance of oxalate increases with progression of renal-failure in the rat. J Am Soc Nephrol 3(5):1098–1104PubMed Costello JF, Smith M, Stolarski C, Sadovnic MJ (1992) Extrarenal clearance of oxalate increases with progression of renal-failure in the rat. J Am Soc Nephrol 3(5):1098–1104PubMed
5.
Zurück zum Zitat Hatch M, Freel RW, Vaziri ND (1994) Intestinal excretion of oxalate in chronic-renal-failure. J Am Soc Nephrol 5(6):1339–1343PubMed Hatch M, Freel RW, Vaziri ND (1994) Intestinal excretion of oxalate in chronic-renal-failure. J Am Soc Nephrol 5(6):1339–1343PubMed
8.
Zurück zum Zitat Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300(3):G461–G469. doi:10.1152/ajpgi.00434.2010 PubMedCrossRef Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300(3):G461–G469. doi:10.​1152/​ajpgi.​00434.​2010 PubMedCrossRef
9.
11.
Zurück zum Zitat Hatch M, Freel RW, Goldner AM, Earnest DL (1984) Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut 25(3):232–237PubMedPubMedCentralCrossRef Hatch M, Freel RW, Goldner AM, Earnest DL (1984) Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut 25(3):232–237PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Hatch M, Freel RW, Vaziri ND (1993) Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pflug Archiv Eur J Physiol 423(3–4):206–212. doi:10.1007/bf00374396 CrossRef Hatch M, Freel RW, Vaziri ND (1993) Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pflug Archiv Eur J Physiol 423(3–4):206–212. doi:10.​1007/​bf00374396 CrossRef
13.
Zurück zum Zitat Hatch M, Freel RW, Vaziri ND (1994) Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflug Archiv Eur J Physiol 426(1–2):101–109. doi:10.1007/bf00374677 CrossRef Hatch M, Freel RW, Vaziri ND (1994) Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflug Archiv Eur J Physiol 426(1–2):101–109. doi:10.​1007/​bf00374677 CrossRef
14.
Zurück zum Zitat Dawson KA, Allison MJ, Hartman PA (1980) Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 40(4):833–839PubMedPubMedCentral Dawson KA, Allison MJ, Hartman PA (1980) Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 40(4):833–839PubMedPubMedCentral
15.
Zurück zum Zitat Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141(1):1–7PubMedCrossRef Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141(1):1–7PubMedCrossRef
16.
17.
18.
Zurück zum Zitat Jiang ZR, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38(4):474–478. doi:10.1038/ng1762 PubMedCrossRef Jiang ZR, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38(4):474–478. doi:10.​1038/​ng1762 PubMedCrossRef
19.
22.
Zurück zum Zitat Powell DW (1981) Barrier function of epithelia. Am J Physiol Gastrointest Liver Physiol 241(4):G275–G288 Powell DW (1981) Barrier function of epithelia. Am J Physiol Gastrointest Liver Physiol 241(4):G275–G288
24.
Zurück zum Zitat Pappenheimer JR (1990) Paracellular intestinal-absorption of glucose, creatinine, and mannitol in normal animals—relation to body size. Am J Physiol Gastrointest Liver Physiol 259(2):G290–G299 Pappenheimer JR (1990) Paracellular intestinal-absorption of glucose, creatinine, and mannitol in normal animals—relation to body size. Am J Physiol Gastrointest Liver Physiol 259(2):G290–G299
26.
Zurück zum Zitat Singh AK, Riederer B, Chen MM, Xiao F, Krabbenhoft A, Engelhardt R, Nylander O, Soleimani M, Seidler U (2010) The switch of intestinal Slc26 exchangers from anion absorptive to HCO3 − secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 298(5):C1057–C1065. doi:10.1152/ajpcell.00454.2009 PubMedPubMedCentralCrossRef Singh AK, Riederer B, Chen MM, Xiao F, Krabbenhoft A, Engelhardt R, Nylander O, Soleimani M, Seidler U (2010) The switch of intestinal Slc26 exchangers from anion absorptive to HCO3 secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 298(5):C1057–C1065. doi:10.​1152/​ajpcell.​00454.​2009 PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Liu XM, Li TL, Riederer B, Lenzen H, Ludolph L, Yeruva S, Tuo BG, Soleimani M, Seidler U (2015) Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3 − transport and reduces survival in CFTR-deficient mice. Pflug Archiv Eur J Physiol 467(6):1261–1275. doi:10.1007/s00424-014-1543-x CrossRef Liu XM, Li TL, Riederer B, Lenzen H, Ludolph L, Yeruva S, Tuo BG, Soleimani M, Seidler U (2015) Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3 transport and reduces survival in CFTR-deficient mice. Pflug Archiv Eur J Physiol 467(6):1261–1275. doi:10.​1007/​s00424-014-1543-x CrossRef
29.
Zurück zum Zitat Inagaki E, Natori Y, Ohgishi Y, Hayashi H, Suzuki Y (2005) Segmental difference of mucosal damage along the length of a mouse small intestine in an Ussing chamber. J Nutr Sci Vitaminol 51(6):406–412PubMedCrossRef Inagaki E, Natori Y, Ohgishi Y, Hayashi H, Suzuki Y (2005) Segmental difference of mucosal damage along the length of a mouse small intestine in an Ussing chamber. J Nutr Sci Vitaminol 51(6):406–412PubMedCrossRef
30.
Zurück zum Zitat Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M, Clarke LL (2007) PAT-1 (Slc26a6) is the predominant apical membrane Cl−/HCO3 − exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 292(4):G1079–G1088. doi:10.1152/ajpgi.00354.2006 PubMedCrossRef Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M, Clarke LL (2007) PAT-1 (Slc26a6) is the predominant apical membrane Cl/HCO3 exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 292(4):G1079–G1088. doi:10.​1152/​ajpgi.​00354.​2006 PubMedCrossRef
31.
Zurück zum Zitat Walker NM, Simpson JE, Hoover EE, Brazill JM, Schweinfest CW, Soleimani M, Clarke LL (2011) Functional activity of Pat-1 (Slc26a6) Cl−/HCO3 − exchange in the lower villus epithelium of murine duodenum. Acta Physiol 201(1):21–31. doi:10.1111/j.1748-1716.2010.02210.x CrossRef Walker NM, Simpson JE, Hoover EE, Brazill JM, Schweinfest CW, Soleimani M, Clarke LL (2011) Functional activity of Pat-1 (Slc26a6) Cl/HCO3 exchange in the lower villus epithelium of murine duodenum. Acta Physiol 201(1):21–31. doi:10.​1111/​j.​1748-1716.​2010.​02210.​x CrossRef
32.
Zurück zum Zitat Freel RW, Hatch M, Vaziri ND (1998) Conductive pathways for chloride and oxalate in rabbit ileal brush-border membrane vesicles. Am J Physiol Cell Physiol 275(3):C748–C757 Freel RW, Hatch M, Vaziri ND (1998) Conductive pathways for chloride and oxalate in rabbit ileal brush-border membrane vesicles. Am J Physiol Cell Physiol 275(3):C748–C757
36.
37.
Zurück zum Zitat Knauf F, Thomson RB, Heneghan JF, Jiang Z, Adebamiro A, Thomson CL, Barone C, Asplin JR, Egan ME, Alper SL, Aronson PS (2016) Loss of cystic fibrosis transmembrane regulator impairs intestinal oxalate secretion. J Am Soc Nephrol. doi:10.1681/asn.2016030279 PubMed Knauf F, Thomson RB, Heneghan JF, Jiang Z, Adebamiro A, Thomson CL, Barone C, Asplin JR, Egan ME, Alper SL, Aronson PS (2016) Loss of cystic fibrosis transmembrane regulator impairs intestinal oxalate secretion. J Am Soc Nephrol. doi:10.​1681/​asn.​2016030279 PubMed
38.
40.
Zurück zum Zitat Rossmann H, Jacob P, Baisch S, Hassoun R, Meier J, Natour D, Yahya K, Yun C, Biber J, Lackner KJ, Fiehn W, Gregor M, Seidler U, Lamprecht G (2005) The CFTR associated protein CAP70 interacts with the apical Cl−/HCO3 − exchanger DRA in rabbit small intestinal mucosa. Biochemistry 44(11):4477–4487. doi:10.1021/bi048828b PubMedCrossRef Rossmann H, Jacob P, Baisch S, Hassoun R, Meier J, Natour D, Yahya K, Yun C, Biber J, Lackner KJ, Fiehn W, Gregor M, Seidler U, Lamprecht G (2005) The CFTR associated protein CAP70 interacts with the apical Cl/HCO3 exchanger DRA in rabbit small intestinal mucosa. Biochemistry 44(11):4477–4487. doi:10.​1021/​bi048828b PubMedCrossRef
41.
Zurück zum Zitat Singh AK, Sjoblom M, Zheng W, Krabbenhoft A, Riederer B, Rausch B, Manns MP, Soleimani M, Seidler U (2008) CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3 − secretion. Acta Physiol 193(4):357–365. doi:10.1111/j.1748-1716.2008.01854.x CrossRef Singh AK, Sjoblom M, Zheng W, Krabbenhoft A, Riederer B, Rausch B, Manns MP, Soleimani M, Seidler U (2008) CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3 secretion. Acta Physiol 193(4):357–365. doi:10.​1111/​j.​1748-1716.​2008.​01854.​x CrossRef
42.
Zurück zum Zitat Singh AK, Riederer B, Krabbenhoft A, Rausch B, Bonhagen J, Lehmann U, de Jonge HR, Donowitz M, Yun C, Weinman EJ, Kocher O, Hogema BM, Seidler U (2009) Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice. J Clin Investig 119(3):540–550. doi:10.1172/jci35541 PubMedPubMedCentralCrossRef Singh AK, Riederer B, Krabbenhoft A, Rausch B, Bonhagen J, Lehmann U, de Jonge HR, Donowitz M, Yun C, Weinman EJ, Kocher O, Hogema BM, Seidler U (2009) Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice. J Clin Investig 119(3):540–550. doi:10.​1172/​jci35541 PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Whittamore JM, Frost SC, Hatch M (2015) Effects of acid-base variables and the role of carbonic anhydrase on oxalate secretion by the mouse intestine in vitro. Physiol Rep 3(2). doi:10.14814/phy2.12282 Whittamore JM, Frost SC, Hatch M (2015) Effects of acid-base variables and the role of carbonic anhydrase on oxalate secretion by the mouse intestine in vitro. Physiol Rep 3(2). doi:10.14814/phy2.12282
46.
Zurück zum Zitat Morozumi M, Green M, Freel RW, Hatch M (2004) The effect of oxalate loading or acidified media on the expression of mRNA encoding candidate oxalate transporters in Caco-2 monolayers. In: 10th international symposium on urolithiasis, Hong Kong, 2004. pp 178–180 Morozumi M, Green M, Freel RW, Hatch M (2004) The effect of oxalate loading or acidified media on the expression of mRNA encoding candidate oxalate transporters in Caco-2 monolayers. In: 10th international symposium on urolithiasis, Hong Kong, 2004. pp 178–180
51.
Zurück zum Zitat Shcheynikov N, Ohana E, Muallem S (2016) Properties and function of the solute carrier 26 family of anion transporters. In: Hamilton KL, Devor DC (eds) Ion channels and transporters of epithelia in health and disease. physiology in health and disease. Springer, New York, pp 465–490CrossRef Shcheynikov N, Ohana E, Muallem S (2016) Properties and function of the solute carrier 26 family of anion transporters. In: Hamilton KL, Devor DC (eds) Ion channels and transporters of epithelia in health and disease. physiology in health and disease. Springer, New York, pp 465–490CrossRef
52.
Zurück zum Zitat Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol Renal Physiol 275(1):F79–F87 Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol Renal Physiol 275(1):F79–F87
53.
Zurück zum Zitat Satoh H, Susaki M, Shukunami C, Iyama K, Negoro T, Hiraki Y (1998) Functional analysis of diastrophic dysplasia sulfate transporter—its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J Biol Chem 273(20):12307–12315. doi:10.1074/jbc.273.20.12307 PubMedCrossRef Satoh H, Susaki M, Shukunami C, Iyama K, Negoro T, Hiraki Y (1998) Functional analysis of diastrophic dysplasia sulfate transporter—its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J Biol Chem 273(20):12307–12315. doi:10.​1074/​jbc.​273.​20.​12307 PubMedCrossRef
55.
Zurück zum Zitat Lee A, Beck L, Markovich D (2003) The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation by thyroid hormone. DNA Cell Biol 22(1):19–31. doi:10.1089/104454903321112460 PubMedCrossRef Lee A, Beck L, Markovich D (2003) The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation by thyroid hormone. DNA Cell Biol 22(1):19–31. doi:10.​1089/​1044549033211124​60 PubMedCrossRef
57.
Zurück zum Zitat Quondamatteo F, Krick W, Hagos Y, Kruger MH, Neubauer-Saile K, Herken R, Ramadori G, Burckhardt G, Burckhardt BC (2006) Localization of the sulfate/anion exchanger in the rat liver. Am J Physiol Gastrointest Liver Physiol 290(5):G1075–G1081. doi:10.1152/ajpgi.00492.2005 PubMedCrossRef Quondamatteo F, Krick W, Hagos Y, Kruger MH, Neubauer-Saile K, Herken R, Ramadori G, Burckhardt G, Burckhardt BC (2006) Localization of the sulfate/anion exchanger in the rat liver. Am J Physiol Gastrointest Liver Physiol 290(5):G1075–G1081. doi:10.​1152/​ajpgi.​00492.​2005 PubMedCrossRef
58.
Zurück zum Zitat Brzica H, Breljak D, Krick W, Lovric M, Burckhardt G, Burckhardt BC, Sabolic I (2009) The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences. Pflug Archiv Eur J Physiol 457(6):1381–1392. doi:10.1007/s00424-008-0611-5 CrossRef Brzica H, Breljak D, Krick W, Lovric M, Burckhardt G, Burckhardt BC, Sabolic I (2009) The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences. Pflug Archiv Eur J Physiol 457(6):1381–1392. doi:10.​1007/​s00424-008-0611-5 CrossRef
59.
Zurück zum Zitat Breljak D, Brzica H, Vrhovac I, Micek V, Karaica D, Ljubojevic M, Sekovanic A, Jurasovic J, Rasic D, Peraica M, Lovric M, Schnedler N, Henjakovic M, Wegner W, Burckhardt G, Burckhardt BC, Sabolic I (2015) In female rats, ethylene glycol treatment elevates protein expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) without inducing hyperoxaluria. Croat Med J 56(5):447–459. doi:10.3325/cmj.2015.56.447 PubMedPubMedCentralCrossRef Breljak D, Brzica H, Vrhovac I, Micek V, Karaica D, Ljubojevic M, Sekovanic A, Jurasovic J, Rasic D, Peraica M, Lovric M, Schnedler N, Henjakovic M, Wegner W, Burckhardt G, Burckhardt BC, Sabolic I (2015) In female rats, ethylene glycol treatment elevates protein expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) without inducing hyperoxaluria. Croat Med J 56(5):447–459. doi:10.​3325/​cmj.​2015.​56.​447 PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Haila S, Hastbacka J, Bohling T, Karjalainen-Lindsberg ML, Kere J, Saarialho-Kere U (2001) SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J Histochem Cytochem 49(8):973–982PubMedCrossRef Haila S, Hastbacka J, Bohling T, Karjalainen-Lindsberg ML, Kere J, Saarialho-Kere U (2001) SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J Histochem Cytochem 49(8):973–982PubMedCrossRef
63.
Zurück zum Zitat Hastbacka J, Delachapelle A, Mahtani MM, Clines G, Reevedaly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter—positional cloning by fine-structure linkage disequilibrium mapping. Cell 78(6):1073–1087. doi:10.1016/0092-8674(94)90281-x PubMedCrossRef Hastbacka J, Delachapelle A, Mahtani MM, Clines G, Reevedaly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter—positional cloning by fine-structure linkage disequilibrium mapping. Cell 78(6):1073–1087. doi:10.​1016/​0092-8674(94)90281-x PubMedCrossRef
64.
65.
Zurück zum Zitat Rossi A, Superti-Furga A (2001) Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 Novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance. Hum Mutat 17(3):159–171. doi:10.1002/humu.1 PubMedCrossRef Rossi A, Superti-Furga A (2001) Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 Novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance. Hum Mutat 17(3):159–171. doi:10.​1002/​humu.​1 PubMedCrossRef
66.
Zurück zum Zitat Forlino A, Piazza R, Torre SD, Tatangelo L, Bonafe L, Gualeni B, Romano A, Pecora F, Superti-Furga A, Cetta G, Rossi A (2005) A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum Mol Genet 14(6):859–871. doi:10.1093/hmg/ddi079 PubMedCrossRef Forlino A, Piazza R, Torre SD, Tatangelo L, Bonafe L, Gualeni B, Romano A, Pecora F, Superti-Furga A, Cetta G, Rossi A (2005) A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum Mol Genet 14(6):859–871. doi:10.​1093/​hmg/​ddi079 PubMedCrossRef
67.
Zurück zum Zitat Haila S, Saarialho-Kere U, Karjalainen-Lindsberg ML, Lohi H, Airola K, Holmberg C, Hastbacka J, Kere J, Hoglund P (2000) The congenital chloride diarrhea gene is expressed in seminal vesicle, sweat gland, inflammatory colon epithelium, and in some dysplastic colon cells. Histochem Cell Biol 113(4):279–286PubMedCrossRef Haila S, Saarialho-Kere U, Karjalainen-Lindsberg ML, Lohi H, Airola K, Holmberg C, Hastbacka J, Kere J, Hoglund P (2000) The congenital chloride diarrhea gene is expressed in seminal vesicle, sweat gland, inflammatory colon epithelium, and in some dysplastic colon cells. Histochem Cell Biol 113(4):279–286PubMedCrossRef
70.
Zurück zum Zitat Ohana E, Shcheynikov N, Park M, Muallem S (2012) Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SO4 2−/OH−/Cl− exchanger regulated by extracellular Cl−. J Biol Chem 287(7):5122–5132. doi:10.1074/jbc.M111.297192 PubMedCrossRef Ohana E, Shcheynikov N, Park M, Muallem S (2012) Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SO4 2−/OH/Cl exchanger regulated by extracellular Cl. J Biol Chem 287(7):5122–5132. doi:10.​1074/​jbc.​M111.​297192 PubMedCrossRef
72.
Zurück zum Zitat Silberg DG, Wang W, Moseley RH, Traber PG (1995) The down-regulated in adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J Biol Chem 270(20):11897–11902PubMedCrossRef Silberg DG, Wang W, Moseley RH, Traber PG (1995) The down-regulated in adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J Biol Chem 270(20):11897–11902PubMedCrossRef
73.
Zurück zum Zitat Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14(3):316–319. doi:10.1038/ng1196-316 PubMedCrossRef Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14(3):316–319. doi:10.​1038/​ng1196-316 PubMedCrossRef
75.
77.
Zurück zum Zitat Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S, Worrell RT, Wang ZH, Soleimani M (2006) slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J Biol Chem 281(49):37962–37971. doi:10.1074/jbc.M607527200 PubMedCrossRef Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S, Worrell RT, Wang ZH, Soleimani M (2006) slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J Biol Chem 281(49):37962–37971. doi:10.​1074/​jbc.​M607527200 PubMedCrossRef
79.
Zurück zum Zitat Byeon MK, Westerman MA, Maroulakou IG, Henderson KW, Suster S, Zhang XK, Papas TS, Vesely J, Willingham MC, Green JE, Schweinfest CW (1996) The down-regulated in adenoma (DRA) gene encodes an intestine-specific membrane glycoprotein. Oncogene 12(2):387–396PubMed Byeon MK, Westerman MA, Maroulakou IG, Henderson KW, Suster S, Zhang XK, Papas TS, Vesely J, Willingham MC, Green JE, Schweinfest CW (1996) The down-regulated in adenoma (DRA) gene encodes an intestine-specific membrane glycoprotein. Oncogene 12(2):387–396PubMed
80.
Zurück zum Zitat Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, Gregor M, Groneberg DA, Kere J, Seidler U (2002) Down-regulated in adenoma mediates apical Cl−/HCO3 − exchange in rabbit, rat, and human duodenum. Gastroenterology 122(3):709–724. doi:10.1053/gast.2002.31875 PubMedCrossRef Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, Gregor M, Groneberg DA, Kere J, Seidler U (2002) Down-regulated in adenoma mediates apical Cl/HCO3 exchange in rabbit, rat, and human duodenum. Gastroenterology 122(3):709–724. doi:10.​1053/​gast.​2002.​31875 PubMedCrossRef
81.
Zurück zum Zitat Wang ZH, Wang T, Petrovic S, Tuo BG, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M (2005) Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol 288(4):C957–C965. doi:10.1152/ajpcell.00505.2004 PubMedCrossRef Wang ZH, Wang T, Petrovic S, Tuo BG, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M (2005) Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol 288(4):C957–C965. doi:10.​1152/​ajpcell.​00505.​2004 PubMedCrossRef
82.
Zurück zum Zitat Barmeyer C, Ye JHQ, Sidani S, Geibel J, Binder HJ, Rajendran VM (2007) Characteristics of rat downregulated in adenoma (rDRA) expressed in HEK 293 cells. Pflug Archiv Eur J Physiol 454(3):441–450. doi:10.1007/s00424-007-0213-7 CrossRef Barmeyer C, Ye JHQ, Sidani S, Geibel J, Binder HJ, Rajendran VM (2007) Characteristics of rat downregulated in adenoma (rDRA) expressed in HEK 293 cells. Pflug Archiv Eur J Physiol 454(3):441–450. doi:10.​1007/​s00424-007-0213-7 CrossRef
83.
Zurück zum Zitat Wedenoja S, Ormala T, Berg UB, Halling SFE, Jalanko H, Karikoski R, Kere J, Holmberg C, Hoglund P (2008) The impact of sodium chloride and volume depletion in the chronic kidney disease of congenital chloride diarrhea. Kidney Int 74(8):1085–1093. doi:10.1038/ki.2008.401 PubMedCrossRef Wedenoja S, Ormala T, Berg UB, Halling SFE, Jalanko H, Karikoski R, Kere J, Holmberg C, Hoglund P (2008) The impact of sodium chloride and volume depletion in the chronic kidney disease of congenital chloride diarrhea. Kidney Int 74(8):1085–1093. doi:10.​1038/​ki.​2008.​401 PubMedCrossRef
85.
Zurück zum Zitat Clark JS, Vandorpe DH, Chernova MN, Heneghan JF, Stewart AK, Alper SL (2008) Species differences in Cl− affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol Lond 586(5):1291–1306. doi:10.1113/jphysiol.2007.143222 PubMedPubMedCentralCrossRef Clark JS, Vandorpe DH, Chernova MN, Heneghan JF, Stewart AK, Alper SL (2008) Species differences in Cl affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol Lond 586(5):1291–1306. doi:10.​1113/​jphysiol.​2007.​143222 PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Lamprecht G, Baisch S, Schoenleber E, Gregor M (2005) Transport properties of the human intestinal anion exchanger DRA (down-regulated in adenoma) in transfected HEK293 cells. Pflug Archiv Eur J Physiol 449(5):479–490. doi:10.1007/s00424-004-1342-x CrossRef Lamprecht G, Baisch S, Schoenleber E, Gregor M (2005) Transport properties of the human intestinal anion exchanger DRA (down-regulated in adenoma) in transfected HEK293 cells. Pflug Archiv Eur J Physiol 449(5):479–490. doi:10.​1007/​s00424-004-1342-x CrossRef
87.
Zurück zum Zitat Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL (2011) SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am J Physiol Cell Physiol 301(2):C289–C303. doi:10.1152/ajpcell.00089.2011 PubMedPubMedCentralCrossRef Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL (2011) SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am J Physiol Cell Physiol 301(2):C289–C303. doi:10.​1152/​ajpcell.​00089.​2011 PubMedPubMedCentralCrossRef
91.
94.
Zurück zum Zitat Xia WL, Yu Q, Riederer B, Singh AK, Engelhardt R, Yeruva S, Song PH, Tian DA, Soleimani M, Seidler U (2014) The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflug Archiv Eur J Physiol 466(8):1541–1556. doi:10.1007/s00424-013-1381-2 CrossRef Xia WL, Yu Q, Riederer B, Singh AK, Engelhardt R, Yeruva S, Song PH, Tian DA, Soleimani M, Seidler U (2014) The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflug Archiv Eur J Physiol 466(8):1541–1556. doi:10.​1007/​s00424-013-1381-2 CrossRef
95.
96.
Zurück zum Zitat Anderle P, Sengstag T, Mutch DM, Rumbo M, Praz V, Mansourian R, Delorenzi M, Williamson G, Roberts MA (2005) Changes in the transcriptional profile of transporters in the intestine along the anterior–posterior and crypt-villus axes. BMC Genom 6. doi:10.1186/1471-2164-6-69 Anderle P, Sengstag T, Mutch DM, Rumbo M, Praz V, Mansourian R, Delorenzi M, Williamson G, Roberts MA (2005) Changes in the transcriptional profile of transporters in the intestine along the anterior–posterior and crypt-villus axes. BMC Genom 6. doi:10.​1186/​1471-2164-6-69
100.
Zurück zum Zitat Monico CG, Weinstein A, Jiang ZR, Rohlinger AL, Cogal AG, Bjornson BB, Olson JB, Bergstralh EJ, Milliner DS, Aronson PS (2008) Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am J Kidney Dis 52(6):1096–1103. doi:10.1053/j.ajkd.2008.07.041 PubMedPubMedCentralCrossRef Monico CG, Weinstein A, Jiang ZR, Rohlinger AL, Cogal AG, Bjornson BB, Olson JB, Bergstralh EJ, Milliner DS, Aronson PS (2008) Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am J Kidney Dis 52(6):1096–1103. doi:10.​1053/​j.​ajkd.​2008.​07.​041 PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Corbetta S, Eller-Vainicher C, Frigerio M, Vataperta R, Costa E, Vicentini L, Baccarelli A, Beck-Peccoz P, Spada A (2009) Analysis of the 206M polymorphic variant of the SLC26A6 gene encoding a Cl− oxalate transporter in patients with primary hyperparathyroidism. Eur J Endocrinol 160(2):283–288. doi:10.1530/eje-08-0623 PubMedCrossRef Corbetta S, Eller-Vainicher C, Frigerio M, Vataperta R, Costa E, Vicentini L, Baccarelli A, Beck-Peccoz P, Spada A (2009) Analysis of the 206M polymorphic variant of the SLC26A6 gene encoding a Cl oxalate transporter in patients with primary hyperparathyroidism. Eur J Endocrinol 160(2):283–288. doi:10.​1530/​eje-08-0623 PubMedCrossRef
117.
Zurück zum Zitat Tuo BG, Chow JYC, Barrett KE, Isenberg JI (2004) Protein kinase C potentiates cAMP-stimulated mouse duodenal mucosal bicarbonate secretion in vitro. Am J Physiol Gastrointest Liver Physiol 286(5):G814–G821. doi:10.1152/ajpgi.00251.2003 PubMedCrossRef Tuo BG, Chow JYC, Barrett KE, Isenberg JI (2004) Protein kinase C potentiates cAMP-stimulated mouse duodenal mucosal bicarbonate secretion in vitro. Am J Physiol Gastrointest Liver Physiol 286(5):G814–G821. doi:10.​1152/​ajpgi.​00251.​2003 PubMedCrossRef
118.
119.
Zurück zum Zitat Song JC, Hanson CM, Tsai V, Farokhzad OC, Lotz M, Matthews JB (2001) Regulation of epithelial transport and barrier function by distinct protein kinase C isoforms. Am J Physiol Cell Physiol 281(2):C649–C661PubMed Song JC, Hanson CM, Tsai V, Farokhzad OC, Lotz M, Matthews JB (2001) Regulation of epithelial transport and barrier function by distinct protein kinase C isoforms. Am J Physiol Cell Physiol 281(2):C649–C661PubMed
120.
Zurück zum Zitat Del Castillo IC, Fedor-Chaiken M, Song JC, Starlinger V, Yoo J, Matlin KS, Matthews JB (2005) Dynamic regulation of Na+−K+−2Cl− cotransporter surface expression by PKC-ε in Cl−secretory epithelia. Am J Physiol Cell Physiol 289(5):C1332–C1342. doi:10.1152/ajpcell.00580.2004 PubMedCrossRef Del Castillo IC, Fedor-Chaiken M, Song JC, Starlinger V, Yoo J, Matlin KS, Matthews JB (2005) Dynamic regulation of Na+−K+−2Cl cotransporter surface expression by PKC-ε in Clsecretory epithelia. Am J Physiol Cell Physiol 289(5):C1332–C1342. doi:10.​1152/​ajpcell.​00580.​2004 PubMedCrossRef
121.
Zurück zum Zitat Heneghan JF, Alper SL (2012) This, too, shall pass—like a kidney stone: a possible path to prophylaxis of nephrolithiasis? Focus on “Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells”. Am J Physiol Cell Physiol 302(1):C18–C20. doi:10.1152/ajpcell.00389.2011 PubMedCrossRef Heneghan JF, Alper SL (2012) This, too, shall pass—like a kidney stone: a possible path to prophylaxis of nephrolithiasis? Focus on “Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells”. Am J Physiol Cell Physiol 302(1):C18–C20. doi:10.​1152/​ajpcell.​00389.​2011 PubMedCrossRef
122.
Zurück zum Zitat Field M, McColl I (1973) Ion-transport in rabbit ileal mucosa 3. Effects of catecholamines. Am J Physiol 225(4):852–857PubMed Field M, McColl I (1973) Ion-transport in rabbit ileal mucosa 3. Effects of catecholamines. Am J Physiol 225(4):852–857PubMed
123.
Zurück zum Zitat Hubel KA (1976) Intestinal ion-transport—effect of norepinephrine, pilocarpine, and atropine. Am J Physiol 231(1):252–257PubMed Hubel KA (1976) Intestinal ion-transport—effect of norepinephrine, pilocarpine, and atropine. Am J Physiol 231(1):252–257PubMed
124.
Zurück zum Zitat Chang EB, Field M, Miller RJ (1982) Alpha-2-adrenergic receptor regulation of ion-transport in rabbit ileum. Am J Physiol Gastrointest Liver Physiol 242(3):G237–G242 Chang EB, Field M, Miller RJ (1982) Alpha-2-adrenergic receptor regulation of ion-transport in rabbit ileum. Am J Physiol Gastrointest Liver Physiol 242(3):G237–G242
125.
Zurück zum Zitat Sellin JH, Desoignie R (1987) Regulation of Na-Cl absorption in rabbit proximal colon in vitro. Am J Physiol Gastroint Liver Physiol 252(1):G45–G51 Sellin JH, Desoignie R (1987) Regulation of Na-Cl absorption in rabbit proximal colon in vitro. Am J Physiol Gastroint Liver Physiol 252(1):G45–G51
131.
Zurück zum Zitat Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKC-η regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci USA 106(1):61–66. doi:10.1073/pnas.0802741106 PubMedCrossRef Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKC-η regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci USA 106(1):61–66. doi:10.​1073/​pnas.​0802741106 PubMedCrossRef
132.
Zurück zum Zitat Alrefai WA, Scaglione-Sewell B, Tyagi S, Wartman L, Brasitus TA, Ramaswamy K, Dudeja PK (2001) Differential regulation of the expression of Na+/H+ exchanger isoform NHE3 by PKC-alpha in Caco-2 cells. Am J Physiol Cell Physiol 281(5):C1551–C1558PubMed Alrefai WA, Scaglione-Sewell B, Tyagi S, Wartman L, Brasitus TA, Ramaswamy K, Dudeja PK (2001) Differential regulation of the expression of Na+/H+ exchanger isoform NHE3 by PKC-alpha in Caco-2 cells. Am J Physiol Cell Physiol 281(5):C1551–C1558PubMed
133.
Zurück zum Zitat Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK (2002) Inhibition of apical Cl−/OH− exchange activity in Caco-2 cells by phorbol esters is mediated by PKC-ε. Am J Physiol Cell Physiol 283(5):C1492–C1500. doi:10.1152/ajpcell.00473.2001 PubMedCrossRef Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK (2002) Inhibition of apical Cl/OH exchange activity in Caco-2 cells by phorbol esters is mediated by PKC-ε. Am J Physiol Cell Physiol 283(5):C1492–C1500. doi:10.​1152/​ajpcell.​00473.​2001 PubMedCrossRef
134.
Zurück zum Zitat Stenson WF, Easom RA, Riehl TE, Turk J (1993) Regulation of paracellular permeability in Caco-2 cell monolayers by protein-kinase-C. Am J Physiol Gastrointest Liver Physiol 265(5):G955–G962 Stenson WF, Easom RA, Riehl TE, Turk J (1993) Regulation of paracellular permeability in Caco-2 cell monolayers by protein-kinase-C. Am J Physiol Gastrointest Liver Physiol 265(5):G955–G962
135.
Zurück zum Zitat Turner JR, Angle JM, Black ED, Joyal JL, Sacks DB, Madara JL (1999) PKC-dependent regulation of transepithelial resistance: roles of MLC and MLC kinase. Am J Physiol Cell Physiol 277(3):C554–C562 Turner JR, Angle JM, Black ED, Joyal JL, Sacks DB, Madara JL (1999) PKC-dependent regulation of transepithelial resistance: roles of MLC and MLC kinase. Am J Physiol Cell Physiol 277(3):C554–C562
136.
Zurück zum Zitat Ohana E, Shcheynikov N, Moe OW, Muallem S (2013) SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol 24(10):1617–1626PubMedPubMedCentralCrossRef Ohana E, Shcheynikov N, Moe OW, Muallem S (2013) SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol 24(10):1617–1626PubMedPubMedCentralCrossRef
139.
141.
Zurück zum Zitat Garcia-Perez I, Villasenor A, Wijeyesekera A, Posma JM, Jiang ZR, Stamler J, Aronson P, Unwin R, Barbas C, Elliott P, Nicholson J, Holmes E (2012) Urinary metabolic phenotyping the slc26a6 (Chloride-oxalate exchanger) null mouse model. J Proteome Res 11(9):4425–4435. doi:10.1021/pr2012544 PubMedPubMedCentralCrossRef Garcia-Perez I, Villasenor A, Wijeyesekera A, Posma JM, Jiang ZR, Stamler J, Aronson P, Unwin R, Barbas C, Elliott P, Nicholson J, Holmes E (2012) Urinary metabolic phenotyping the slc26a6 (Chloride-oxalate exchanger) null mouse model. J Proteome Res 11(9):4425–4435. doi:10.​1021/​pr2012544 PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Charney AN, Goldfarb DS, Dagher PC (1995) Metabolic disorders associated with gastrointestinal disease. In: Arieff AI, DeFronzo RA (eds) Fluid, electrolyte, and acid-base disorders, 2nd edn. Churchill Livingstone, New York, pp 813–836 Charney AN, Goldfarb DS, Dagher PC (1995) Metabolic disorders associated with gastrointestinal disease. In: Arieff AI, DeFronzo RA (eds) Fluid, electrolyte, and acid-base disorders, 2nd edn. Churchill Livingstone, New York, pp 813–836
145.
Zurück zum Zitat Charney AN, Feldman GM (1984) Systemic acid-base-disorders and intestinal electrolyte transport. Am J Physiol Gastrointest Liver Physiol 247(1):G1–G12 Charney AN, Feldman GM (1984) Systemic acid-base-disorders and intestinal electrolyte transport. Am J Physiol Gastrointest Liver Physiol 247(1):G1–G12
152.
Zurück zum Zitat Osther PJ, Bollerslev J, Norgard JR, Engel K, Kildeberg P (1994) Effects of acute acid loading on the risk of calcium-phosphate and calcium-oxalate crystallization in urine. Scanning Microsc 8(1):63–69 Osther PJ, Bollerslev J, Norgard JR, Engel K, Kildeberg P (1994) Effects of acute acid loading on the risk of calcium-phosphate and calcium-oxalate crystallization in urine. Scanning Microsc 8(1):63–69
153.
Zurück zum Zitat Ahlstrand C, Tiselius HG (1987) Urine composition and stone formation during treatment with acetazolamide. Scand J Urol Nephrol 21(3):225–228PubMedCrossRef Ahlstrand C, Tiselius HG (1987) Urine composition and stone formation during treatment with acetazolamide. Scand J Urol Nephrol 21(3):225–228PubMedCrossRef
154.
Zurück zum Zitat Higashihara E, Nutahara K, Takeuchi T, Shoji N, Araie M, Aso Y (1991) Calcium-metabolism in acidotic patients induced by carbonic-anhydrase inhibitors—responses to citrate. J Urol 145(5):942–948PubMed Higashihara E, Nutahara K, Takeuchi T, Shoji N, Araie M, Aso Y (1991) Calcium-metabolism in acidotic patients induced by carbonic-anhydrase inhibitors—responses to citrate. J Urol 145(5):942–948PubMed
156.
160.
Zurück zum Zitat Dawson KA, Allison MJ, Hartman PA (1980) Characteristics of anaerobic oxalate-degrading enrichment cultures from the rumen. Appl Environ Microbiol 40(4):840–846PubMedPubMedCentral Dawson KA, Allison MJ, Hartman PA (1980) Characteristics of anaerobic oxalate-degrading enrichment cultures from the rumen. Appl Environ Microbiol 40(4):840–846PubMedPubMedCentral
164.
Zurück zum Zitat Abratt VR, Reid SJ (2010) Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol 72:63–87PubMedCrossRef Abratt VR, Reid SJ (2010) Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol 72:63–87PubMedCrossRef
165.
Zurück zum Zitat Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26(11):3609–3615. doi:10.1093/ndt/gfr107 PubMedCrossRef Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26(11):3609–3615. doi:10.​1093/​ndt/​gfr107 PubMedCrossRef
167.
170.
Zurück zum Zitat Hassan H, Arvans D, Cheng M, Musch MW, Chang EB (2011) Oxalobacter formigenes conditioned medium stimulates oxalate transport by human intestinal cells. J Am Soc Nephrol 22:383A (Abstract) Hassan H, Arvans D, Cheng M, Musch MW, Chang EB (2011) Oxalobacter formigenes conditioned medium stimulates oxalate transport by human intestinal cells. J Am Soc Nephrol 22:383A (Abstract)
171.
Zurück zum Zitat Arvans D, Musch M, Chang E, Hassan H, Cheng M (2012) Oxalobacter formigenes conditioned medium stimulates oxalate transport by human intestinal cells. J Investig Med 60(4):738–738 (Abstract) Arvans D, Musch M, Chang E, Hassan H, Cheng M (2012) Oxalobacter formigenes conditioned medium stimulates oxalate transport by human intestinal cells. J Investig Med 60(4):738–738 (Abstract)
172.
Zurück zum Zitat Raheja G, Singh V, Ma K, Boumendjel R, Borthakur A, Gill RK, Saksena S, Alrefai WA, Ramaswamy K, Dudeja PK (2010) Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol 298(3):G395–G401. doi:10.1152/ajpgi.00465.2009 PubMedCrossRef Raheja G, Singh V, Ma K, Boumendjel R, Borthakur A, Gill RK, Saksena S, Alrefai WA, Ramaswamy K, Dudeja PK (2010) Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol 298(3):G395–G401. doi:10.​1152/​ajpgi.​00465.​2009 PubMedCrossRef
173.
Zurück zum Zitat Borthakur A, Gill RK, Tyagi S, Koutsouris A, Alrefai WA, Hecht GA, Ramaswamy K, Dudeja PK (2008) The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 138(7):1355–1359PubMedPubMedCentral Borthakur A, Gill RK, Tyagi S, Koutsouris A, Alrefai WA, Hecht GA, Ramaswamy K, Dudeja PK (2008) The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 138(7):1355–1359PubMedPubMedCentral
174.
Zurück zum Zitat Singh V, Kumar A, Raheja G, Anbazhagan AN, Priyamvada S, Saksena S, Jhandier MN, Gill RK, Alrefai WA, Borthakur A, Dudeja PK (2014) Lactobacillus acidophilus attenuates downregulation of DRA function and expression in inflammatory models. Am J Physiol Gastrointest Liver Physiol 307(6):G623–G631. doi:10.1152/ajpgi.00104.2014 PubMedPubMedCentralCrossRef Singh V, Kumar A, Raheja G, Anbazhagan AN, Priyamvada S, Saksena S, Jhandier MN, Gill RK, Alrefai WA, Borthakur A, Dudeja PK (2014) Lactobacillus acidophilus attenuates downregulation of DRA function and expression in inflammatory models. Am J Physiol Gastrointest Liver Physiol 307(6):G623–G631. doi:10.​1152/​ajpgi.​00104.​2014 PubMedPubMedCentralCrossRef
175.
176.
Zurück zum Zitat Kumar A, Hecht C, Priyamvada S, Anbazhagan AN, Alakkam A, Borthakur A, Alrefai WA, Gill RK, Dudeja PK (2014) Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells. Am J Physiol Cell Physiol 307(12):C1084–C1092. doi:10.1152/ajpcell.00194.2014 PubMedPubMedCentralCrossRef Kumar A, Hecht C, Priyamvada S, Anbazhagan AN, Alakkam A, Borthakur A, Alrefai WA, Gill RK, Dudeja PK (2014) Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells. Am J Physiol Cell Physiol 307(12):C1084–C1092. doi:10.​1152/​ajpcell.​00194.​2014 PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Sheldon RJ, Malarchik ME, Fox DA, Burks TF, Porreca F (1989) Pharmacological characterization of neural mechanisms regulating mucosal ion-transport in mouse jejunum. J Pharmacol Exp Ther 249(2):572–582PubMed Sheldon RJ, Malarchik ME, Fox DA, Burks TF, Porreca F (1989) Pharmacological characterization of neural mechanisms regulating mucosal ion-transport in mouse jejunum. J Pharmacol Exp Ther 249(2):572–582PubMed
Metadaten
Titel
The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man
verfasst von
Jonathan M. Whittamore
Marguerite Hatch
Publikationsdatum
02.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe 1/2017
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-016-0952-z

Weitere Artikel der Ausgabe 1/2017

Urolithiasis 1/2017 Zur Ausgabe

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.