Skip to main content
Erschienen in: BMC Nephrology 1/2018

Open Access 01.12.2018 | Review

The role of klotho in chronic kidney disease

verfasst von: Di Zou, Wen Wu, Yan He, Sichao Ma, Ji Gao

Erschienen in: BMC Nephrology | Ausgabe 1/2018

Abstract

Chronic kidney disease (CKD) is an inherently systemic disease that refers to a long-term loss of kidney function. The progression of CKD has repercussions for other organs, leading to many kinds of extrarenal complications. Intensive studies are now being undertaken to reveal the risk factors and pathophysiological mechanism of this disease. During the past 20 years, increasing evidence from clinical and basic studies has indicated that klotho, which was initially known as an anti-aging gene and is mainly expressed in the kidney, is significantly correlated with the development and progression of CKD and its complications. Here, we discuss in detail the role and pathophysiological implications of klotho in ion disorders, the inflammation response, vascular calcification, mineral bone disorders, and renal fibrosis in CKD. Based on the pathogenic mechanism of klotho deficiency and klotho decline in urine early in CKD stage 2 and even earlier in CKD stage 1, it is not difficult to understand that soluble klotho can serve as an early and sensitive marker of CKD. Moreover, the prevention of klotho decline by several mechanisms can attenuate renal injuries, retard CKD progression, ameliorate extrarenal complications, and improve renal function. In this review, we focus on the functions and pathophysiological implications of klotho in CKD and its extrarenal complications as well as its potential applications as a diagnostic and/or prognostic biomarker for CKD and as a novel treatment strategy to improve and decrease the burden of comorbidity in CKD.
Abkürzungen
1,25(OH)2D
1α,25-dihydroxyvitamin D3
AKI
Acute kidney injury
Ang II
Angiotensin II
CKD
Chronic kidney disease
ECM
Extracellular matrix
ERK
Extracellular signal-regulated kinase
ESRD
End-stage renal disease
FGF
Fibroblast growth factor
FGFR
FGF receptors
GFR
Glomerular filtration rate
ICAM-1
Intercellular adhesion molecule 1
IL
Interleukin
IκB
Inhibitory κB
MBD
Mineral bone disorder
NF-κB
Nuclear factor κB
NHERF
Na+/H+ exchange regulatory cofactor
Nox2
NAPDH oxidase 2
PTH
Parathyroid hormone
RIG-I
Acid-inducible gene-I
SGK
Serum/glucocorticoid-regulated kinase
SMCs
Smooth muscle cells
TGF-β
Transforming growth factor β
TNF
Tumour necrosis factor
TRPV5
Transient receptor potential vannilloid-5
TWEAK
TNF-related weak inducer of apoptosis
UUO
Unilateral ureteral obstruction
VC
Vascular calcification
VCAM-1
Vascular cell adhesion protein 1
WNK4
With-no-lysine kinase 4

Background

Chronic kidney disease (CKD) is a progressive systemic disease that irreversibly alters the function and structure of the kidney, over months or years. CKD progression has repercussions for other organs, exerting multiple negative systemic effects on numerous organs, including those of the cardiovascular system, leading to cardiovascular diseases, which increase the risk of mortality [1]. In the past 3 decades, Intensive studies in animals and humans have been performed to reveal the risk factors and pathophysiological mechanism of this disease. These studies have established that the original disease process causes an initial loss of nephron unit; then, renal diseases progress to renal failure as a consequence of functional adaptations intervening in the kidney, leading to injury in other organs. Moreover, many factors are involved in this process, including a variety of cytokines, growth factors and vasoactive substances [2, 3]. Recently, more evidences has suggested that the development and progression of CKD are significantly associated with a decline in klotho, which was initially described as an anti-aging gene [47].
The klotho gene is mainly expressed in the cell surface membrane of proximal and distal renal tubules [812]. Uder normal physiological conditions, the kidney is a major regulator that helps maintain klotho levels [6, 13, 14]. However, in individuals and in animal models with CKD, klotho levels decline and are accompanied by renal insufficiency [7, 15]. Experimentally, klotho-deficient mice and CKD subjects have similar phenotypes, suggesting that klotho is tightly correlated with the pathogenic mechanism of CKD [4, 7]. Furthermore, further evidence has shown that klotho is not only an early biomarker of CKD, but also a potential therapeutic target for CKD [14, 16, 17]. Thus, based on the relationship between klotho and CKD, we here systematically review the functions, physiopathological characteristics, and potential applications of klotho in the related signs and complications of CKD.

Main text

The klotho family and structure

Klotho family members include α-, β-, and γ-klotho genes based on their predicted primary sequences [18, 19]. β- and γ-klotho were discovered based on their homology with α-klotho, and they all share a single-pass transmembrane protein [20, 21]. β-Klotho is predominantly expressed in the liver but is also found in the kidney, gut, and spleen and mediates the activity of members of the fibroblast growth factor (FGF) family, such as FGF-19 and -21 [18, 22]. γ-Klotho is expressed in the kidney and skin and has undefined functions [18, 21]. In this review, we only focus on α-klotho; the term klotho in the following paragraphs refers to α-klotho.
α-Klotho is composed of five exons that correspond 1,012 amino acids in the human protein and 1,014 amino acids in the mouse protein (Fig. 1a) [23]. The protein consists of a large extracellular domain, including 980 N-terminal residues followed by a 21-amino-acid transmembrane domain and a small domain of 11 residues corresponding to the intracellular C-terminus [10, 24]. The extracellular domain of membrane klotho consists of two repeat sequences of 440 amino acids termed Kl1 and Kl2, which are generated by full-length transcript splicing and can be cleaved by the metalloproteinases ADAM-10 and ADAM-17 and released into circulation as soluble klotho (cleaved klotho) (Fig. 1b) [10, 2527]. In addition, an alternatively spliced klotho mRNA transcript has been hypothesized to code for a secreted klotho protein, which would equate to the Kl1 domain, but this putative protein has not been identified and has not been detected in human serum thus far; it has been observed only in in vitro systems [24, 28, 29]. Furthermore, a recent study showed that this alternative klotho mRNA was degraded by nonsense-mediated mRNA decay (NMD), finally resulting in no active protein translation [30]. Soluble klotho is the main functional form in the circulation [1, 31] and is detected in the blood, urine, and cerebrospinal fluid [3134], exerting its function by acting as a hormone. Additionally, another functional form of klotho occurs, termed membrane-bound klotho, which is mainly involved in FGF receptor signalling.

The function and pathophysiological implications of klotho in CKD

Co-receptor of FGF23

FGF23 belongs to the FGF family. Many studies have shown that FGF23 not only increases the urinary excretion of phosphate but also indirectly suppresses intestinal phosphate absorption by down-regulating the production of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D) [12, 3537]. FGF23 transduces signals by binding to its receptors to phosphorylate downstream signalling molecules [38]. There are four different FGF receptors (FGFRs), FGFR1-4; these proteins are tyrosine kinase receptors and have high or low affinity for FGFs. Because of their lack of a heparan sulfate-binding domain, FGF23 requires full-length klotho to convert the canonical FGFR into a specific high-affinity receptor to function in target tissues [39, 40]. Recently, research has shown that in the complex consisting of the shed extracellular domain of klotho, the FGFR1c ligand-binding domain, and FGF23, klotho simultaneously tethers FGFR1c by its D3 domain and FGF23 by its C-terminal tail, thus resulting in FGF23-FGFR1c proximity and conferring stability [41]. Thus, klotho is an essential co-receptor for the binding of FGF23 to its receptors.
In proximal renal tubules, blood-borne FGF23 binds to FGFR-klotho complexes and directly activates extracellular signal-regulated kinase (ERK)1/2 and serum/glucocorticoid-regulated kinase (SGK)-1 signals. Subsequently, SGK-1 phosphorylates the Na+/H+ exchange regulatory cofactor (NHERF)-1 to down-regulate membrane expression of the key sodium phosphate cotransporter NaPi-2a, thus leading to an increase in urinary phosphate excretion [12, 4244]. Loss of membrane-bound klotho expression limits FGF23-stimulated signal transduction through FGFR-klotho complexes. It has been shown that a specific deletion of klotho in proximal renal tubules was unable to increase renal phosphate excretion in vivo [45], suggesting that the effect of FGF23 on phosphate excretion is limited by proximal tubular klotho deficiency. Furthermore, FGF23 suppresses renal 1α-hydroxylase expression, which is the key enzyme responsible for 1,25(OH)2D production, by a klotho-dependent signalling mechanism in proximal renal tubules [4648]. In addition, soluble klotho directly regulates phosphorus excretion in the kidney and participates in systemic mineral homeostasis by regulating 1α-hydroxylase activity and parathyroid hormone (PTH) and FGF23 secretion [49, 50]. These results suggest that klotho deficiency limits its regulation of FGF23 production and hyperphosphataemia remains the principal regulator of FGF23 secretion in CKD [51]. The effect of FGF23 on both phosphate and 1,25(OH)2D is involved in FGFR1, FGFR3, and FGFR4, especially FGFR1 [52, 53]. In addition, it has been identified that as with the mineral parameters, FGF23 and phosphate are increased, while klotho and 1,25(OH)2D are decreased in CKD, especially in early stages, except serum phosphate [5456]. These changes in mineral parameters play a central role in the pathophysiology of CKD [19]. Notably, each disturbance in the mineral parameters can be pathogenic alone or can drive and exaggerate the disturbance of the other parameters [18, 19].
It was previously reported that soluble klotho is a regulator of the epithelial calcium channel transient receptor potential vannilloid-5 (TRPV5), a glycoprotein that is essential for the entry of calcium into calcium-transporting renal epithelial cells [57]. TRPV5 regulation by klotho is thought to operate as follows: soluble klotho specifically hydrolyses sugar residues from the glycan chains on TRPV5, which in turn stabilizes TRPV5 in the membrane through interaction of the sugar residues with extracellular galectin [57, 58]. However, the cellular secretion process of klotho is unclear. Recently, a decrease in renal calcium reabsorption and a renal membrane abundance of TRPV5 were observed in klotho-knockout mice, similar to the finding in FGF23-knockout mice, but klotho neither co-localizes with TRPV5 nor is regulated by FGF23. Rather, Andrukhova O et al. supported the notion that the apical membrane abundance of TRPV5 in renal distal tubules and renal calcium reabsorption are regulated by FGF23 through binding the FGFR-klotho complexes [59]. Based on these results, it can be propsed that FGF23 functions by binding to FGFR-klotho complexes, thus directly modulating calcium reabsorption in distal renal tubules. In contrast, hypocalcaemia (calcium deficiency) reduces the circulating concentrations of FGF23 [60]. This decrease in FGF23 might be a response that avoids a subsequent reduction in calcitriol, which could exacerbate hypocalcaemia. Additionally, Andrukhova O et al. found that FGF23 directly regulates sodium reabsorption in distal renal tubules by a signalling mechanism involving the FGFR-klotho complexes and the activation of ERK1/2, SGK1, and with-no-lysine kinase 4 (WNK4) signal cascades, suggesting that FGF23 is also a key regulator of renal sodium reabsorption and plasma volume [61]. This may explain the association of FGF23 with cardiovascular risk in CKD patients. Due to calcium and sodium disregulation in renal diseases [62], the novel link between FGF23 and the metabolism of these ions may have major pathophysiological implications in CKD [12].
Noticeably, membrane receptors of soluble klotho have not previously been identified. A recent study found that α2-3-sialyllactose, which is present in the glycan of monosialogangliosides, is a receptor of soluble klotho. Soluble klotho binds to ganglioside-enriched lipid rafts to regulate PI3K signalling [63]. Furthermore, another study identified the key protein residues in the Kl1 domain that are likely involved in binding to α2-3-sialyllactose, which down-regulates TRPC6 channels and protects against stress-induced cardiac hypertrophy [64]. These results provide new insight that targeting sialic acids may be a general mechanism underlying the pleiotropic actions of soluble klotho.

Anti-inflammation

Inflammation is multifactorial in CKD, and this disease is considered a prototypical example of inflammatory disease and premature ageing [65, 66]. There are many proinflammatory factors increased gradually in CKD as renal function fails, including interleukin (IL)-6, serum fetuin-A, and tumour necrosis factor (TNF) [66, 67]. Nuclear factor κB (NF-κB) controls many cellular processes, such as antiapoptotic responses, oxidative stress, and especially, inflammatory responses [68]. In normal situations, NF-κB is located in the cytoplasm in an inactive form, linked to its inhibitory proteins,termed inhibitory κB (IκB). In response to various stimuli, such as TNF, two serine residues at positions 32 and 36 in the N-terminal region of IκB are phosphorylated. This phosphorylation induces IκB ubiquitination by the E3-IκB ubiquitin ligase complex, causing its degradation by the 26S proteosome, thus leading to NF-κB translocation to the nucleus and the direct activation of downstream gene transcription [23, 68]. Greater NF-κB activity increases the expression of proinflammatory mediators, such as cytokines and adhesion molecules. Several studies have shown that NF-κB plays a pivotal role in the progression of chronic renal inflammation, whereby the inhibition of NF-κB reduces the levels of several proinflammatory cytokines and renal injury [6971].
One study has shown that there is a bidirectional relationship between klotho and NF-κB [23]. On the one hand, klotho expression is down-regulated by an NF-κB–dependent mechanism. Reduced klotho in the blood and urine has been observed in human CKD [72, 73]. In a nephrotoxic acute kidney injury (AKI) mouse model, klotho expression was also reduced, and blockage of TNF-related weak inducer of apoptosis (TWEAK), which is a member of the TNF superfamily, was able to revert kidney klotho levels and preserve renal function. Moreover, the inhibition of NF-κB prevents TWEAK-mediated decreases in klotho levels [74]. Thus, proinflammatory cytokines, such as TWEAK, negatively regulate the expression of klotho through an NF-κB–dependent mechanism, and NF-κB is a key contributor to the regulation of klotho expression [23].
On the other hand, klotho is an anti-inflammatory modulator that negatively regulated NF-κB, consequently leading to a decrease in proinflammatory gene transduction. It has been reported that TNF increases vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expressions in endothelial cells, while klotho can suppress TNF-induced increases in ICAM-1 and VCAM-1 expression by attenuating NF-κB activity [75]. Furthermore, in klotho-mutated mice, the exogenous addition of soluble klotho or the overexpression of membranous klotho in tissue culture suppresses NF-κB activation and NF-κB–mediated inflammatory cytokines via a mechanism that involves the phosphorylation of serine(536) in the transactivation domain of RelA [76]. Similarly, an excess of klotho inhibits the PDLIM2/NF-κB pathway to decrease the production of TNF-α, IL-6, and IL-12, and to ameliorate cyclosporine A-induced nephropathy in vivo and in vitro [77]. In addition, klotho can suppress NADPH oxidase 2 (Nox2) protein expression and attenuate oxidative stress in rat aortic smooth muscle cells and can also suppress retinoic acid-inducible gene-I (RIG-I)-mediated inflammation [78, 79]. Thus, klotho may act as an anti-inflammatory modulator in the kidney.

Protection against vascular calcification and mineral bone disorder

Vascular calcification (VC) appears early in the course of CKD but becomes much more prevalent as kidney function deteriorates, creating a strong risk of cardiovascular mortality and morbidity in patients with CKD and ESRD [80, 81]. VC can be classified based on the vascular site of abnormal mineral deposition, including intimal calcification, medial calcification, and valvular calcification, which are all highly prevalent in the CKD population [82, 83]. It is now clear that VC is a cell-regulated pathological process that involves many inhibitors and inducers [5]. Under normal conditions, several inhibitors protect against VC by calcium and phosphate supersaturation, such as pyrophosphate, matrix Gla protein, and fetuin-A [8488]. In the CKD population, the total function between inhibitors and inducers is unbalance, leading to the occurrence of VC in the vessel walls and valves. There are many inducers of VC in CKD, including hypercalcaemia, inflammatory cytokines, and especially, phosphate [88, 89]. Clinical evidence showed that the upregulation of serum phosphate is one of many risk factors for VC in the CKD population [90, 91]. Moreover, a growing amount of experimental research has revealed the mechanism of phosphate-induced VC, showing that PiT-1 which is phosphate cotransporter in vascular smooth muscle cells (SMCs), is involved in pathogenesis and promotes VC by induction of SMCs osteochondrogenic transformation and apoptosis and by regulation of extracellular vesicles release and stability [88, 9294]. These results suggest that elevated phosphate is a main inducer of VC.
The expression level of klotho decreases in patients with CKD and animal models, and is accompanied by renal disorders [7, 15]. It has been reported that klotho deficiency causes high circulating levels of Phosphate and VC occurrence in mice with CKD. Conversely, overexpression of klotho can enhance phosphaturia, improve renal function, and produce much less calcification in vivo as well as suppress the sodium-dependent uptake of Phosphate and Phosphate-induced calcification of rat vascular SMCs [7]. Zhang et al. reported that cleaved klotho protein attenuates the Phosphate-induced human bone marrow mesenchymal stem cells differentiation into osteoblast-like cells in vitro via inactivation of the FGFR1/ERK signalling pathway [95]. In addition, the up-regulation of klotho expression by the inhibition of rapamycin signalling also ameliorates VC and protects against vascular disease in CKD [96, 97]. Another study showed that Intermedin 1-53 attenuates VC in rats with CKD by up-regulating membrane-bound klotho expression in the vessel wall [98]. Recent studies have confirmed that the stable delivery of soluble klotho can reduce chronic hyperphosphataemia and VC in vitro and in vivo [99], and activating peroxisome proliferator-activated receptor γ enhanced the expression of klotho to inhibit Phosphate-induced VC in vascular SMCs [100]. These results suggested that klotho deficiency is closely associated with hyperphosphataemia and VC and that enhancing klotho activity plays a protective role in hyperphosphataemia and VC in CKD.
CKD-mineral bone disorder (MBD) is a newly termed systemic disorder that begins early in stage 2 of CKD and is characterized by abnormal serum biochemistries including hyperphosphataemia and hypercalacemia, bone disorders, and VC [88, 101]. The causes of VC and cardiovascular mortality associated with CKD are partly attributed to CKD-MBD [51, 102, 103]. Recent studies demonstrate that factors that are involved in renal injury and repair and that are released into the circulation contribute to the pathogenesis of CKD-MBD [51]; such factors include the Wnt signal inhibitors, Dickkopf 1 [104, 105] and sclerostin [106, 107], as well as activin A and ActRIIA [108, 109]. The pathogenic mechanisms of the components of CKD-MBD include VC, loss of renal klotho, hyperphosphataemia, osteodystrophy, vitamin D deficiency, increased FGF23, cardiovascular disease, and hyperparathyroidism [51]. In this review, we mainly focus on the aspects related to klotho. As described previously, the expression of klotho is significantly decreased in CKD. It has been reported that this decrease in klotho is partly related to activin and ActRIIA signalling. Furthermore, the activation of ActRIIA signalling by using a ligand trap for the receptor significantly stimulates klotho levels [108]. The resulting reduction in klotho limits its regulation of FGF23 production and leaves hyperphosphataemia as the principal regulator of FGF23 secretion in CKD [51]. Recently, researchers have identified that klotho loss is a key event in the renal and bone injuries in CKD-MBD mice, and endogenous klotho restoration by histone deacetylase inhibition attenuates CKD-associated bone complications in a mouse model of CKD-MBD [110]. Similarly, rhein-regulated klotho expression by promoter hypermethylation protects against renal and bone injuries in mice with CKD. When klotho is knocked down by RNA interference, the renal protective effects of rhein are largely abolished [111]. These data suggest that klotho deficiency is closely associated with the development of CKD-MBD and that klotho restoration is beneficial to the improvement of VC and CKD-MBD.

Amelioration of renal fibrosis

The final common pathological manifestation of many instances of CKD is renal fibrosis. Renal fibrosis represents the unsuccessful wound healing of kidney tissue after chronic, sustained injury and is characterized by glomerulosclerosis, tubular atrophy, and interstitial fibrosis [112]. The progression of CKD is evidenced by a loss of renal cells and their replacement by extracellular matrix (ECM) in the glomeruli and interstitium [66, 113]. The pathogeneses of glomerulosclerosis and tubulointerstitial fibrosis are extremely similar [113]. In essence, renal injury results in an inflammatory cascade involving macrophage activation and T-cells recruitment, triggering an immune response and causing interstitial nephritis. Then, several cell types including macrophages, T-cells, and tubular epithelial cells respond to this inflammatory process to produce profibrotic mediators, such as transforming growth factor β (TGF-β). Under the influence of profibrotic cytokines, injured tubular epithelial cells dedifferentiate and lose their polarity and transporter function, reorganize their cytoskeleton into stress fibres, disrupt the tubular basement membrane, and migrate into the interstitium, where they synthesize increasing amounts of ECM, finally leading to renal fibrosis [114116].
Many studies indicate that TGF-β is one of the most important profibrotic regulators of renal fibrosis in progressive CKD and stimulates the accumulation of matrix proteins to induce ECM, inhibits matrix degradation, and regulates myofibroblast activation [117120]. Based on the role of TGF-β, many therapeutic approaches involving the inhibition of TGF-β have been tested in experimental models of CKD and clinical trials, such as the administration of neutralizing anti-TGF-β antibodies and small interfering RNAs that target the TGF-β type II receptor, which can reduce structural renal injury and decrease renal fibrosis in CKD [121123]. It has been reported that klotho inhibition increases TGF-β1 expression in mice with renal fibrosis that has been induced by unilateral ureteral obstruction (UUO), and TGF-β1 reduces klotho expression in renal cultured epithelial cells, suggesting that decreased klotho expression enhances TGF-β1 activity and that klotho deficiency is not only a cause but also a result of renal fibrosis in CKD [124]. In contrast, soluble klotho protein directly binds to the TGF-β type-II receptor and inhibits TGF-β1 binding to cell surface receptors, thereby inhibiting TGF-β1 signalling in mice with UUO-induced renal fibrosis. Moreover, klotho decreases epithelial marker expression and increases mesenchymal marker expression to suppress the TGF-β1-induced epithelial-to-mesenchymal transition in renal epithelial cells [125]. These results indicate that klotho can suppress renal fibrosis by inhibiting TGF-β1 activity.
Another principal profibrotic molecule is named angiotensin II (Ang II); this molecule modulates fibrosis by direct effects on the matrix and by up-regulating the expression of other factors, such as TGF-β [126, 127], connective tissue growth factor [128], plasminogen activator inhibitor-1 [129], tumour necrosis factor-α, and NF-ĸB [113, 130]. Furthermore, data have shown that Ang II-induced renal damage suppresses klotho expression, whereas the induction of klotho gene expression mitigates Ang II-induced renal damage [131]. In addition, soluble klotho has been shown to inhibit Wnt and IGF-1 signalling, which can promote the epithelial-to-mesenchymal transition and myofibroblast activation [125, 132]. Recent studies also show that exogenous klotho decreases high glucose-induced fibronectin and cell hypertrophy via the ERK1/2-p38 kinase signalling pathway to attenuate diabetic nephropathy in vitro [133] and that the administration of klotho protein suppresses renal tubulo-interstitial fibrosis and UUO-induced renal fibrosis, at least partly, by controlling basic fibroblast growth factor-2 signalling in vivo [134]. These results raise the possibility that soluble klotho may function as a renal-protective factor against fibrosis by inhibiting multiple signalling pathways.

Potential use of klotho in human chronic kidney disease

A potential biomarker for CKD

CKD is not easy to detected at early stage of CKD and thus it is very difficult to make an early and accurate diagnosis. And there are no biomarkers which are able to be measured easily, sensitively, reliably, and specially, in correlation with presence, development, and complications of CKD [135]. As described previously, renal klotho deficiency is highly associated with ion disorders, VC, inflammation, renal fibrosis, and mineral bone disorder, which are all characteristics of CKD. It has been shown that soluble klotho in the circulation starts to decline early in stage 2 CKD and urinary klotho possibly declines even earlier 1 [14]. In addition, data show that klotho deficiency in CKD can enhance the renal tubular and vascular cell senescence induced by oxidative stress [136, 137] and can result in defective endothelial function and impaired vasculogenesis [138]. Together, these findings indicate that klotho deficiency is closely correlated with the development and progression of CKD and extrarenal complications. Thus, soluble klotho deficiency seems to have diagnostic potential, serving as an early and sensitive biomarker of CKD.
Many researchers have investigated the possibility of using klotho as a biomarker for CKD. CKD-MBD is one of the striking features associated with the high morbidity and mortality of cardiovascular events in CKD and ESRD [51, 139]. Abnormal mineral metabolism includes high serum phosphate, FGF23, and PTH levels, which are closely associated with or even induced by klotho deficiency [14, 140142]. Clinical studies in patients with CKD have shown that soluble klotho is lower than normal (519 ± 183 versus 845 ± 330 pg/mL, P < .0001) in renal patients, and soluble klotho is positively correlated with serum calcium and negatively correlated with serum phosphate, PTH, and FGF23, suggesting that soluble klotho might reflect the ensuing tubular resistance to FGF23, which could be an early marker of CKD-MBD [143, 144]. Recently, another clinical study suggested that soluble klotho is significantly associated with phosphate reabsorption independently of FGF-23, which may be a marker of phosphate reabsorption [145]. Therefore, soluble klotho seems to be a marker for disorders of phosphate and bone metabolism in CKD.
GFR, the gold standard for assessing kidney function, is significantly decreased in CKD [112]. Clinical and experimental studies have shown that this significant decrease in klotho in the kidneys is positively associated with estimated GFR (eGFR) in CKD samples [144147]. Several other studies have confirmed the positive correlation between klotho levels (in serum and urine) and eGFR in adult patients with CKD [7, 33]. Moreover, both serum and urine klotho levels are independently associated with eGFR in patients with CKD [33, 148]. Another study showed that serum klotho levels are progressively lower with advancing CKD stage, with an adjusted mean decrease of 3.2 pg/mL for each 1 mL/min/1.73 m2 eGFR decrease [149]. Consistently, a similar positive correlation between plasma klotho levels and eGFR was shown in children with CKD [150]. These results suggest that the decrease in soluble klotho may mirror an eGFR decrease in patients with CKD.
However, some researchers obtained adverse results. Sarah Seiler et al. analysed a large cohort of 312 patients with stage 2-4 CKD and found that plasma klotho levels were not significantly associated with eGFR or other calcium-phosphate metabolism parameters in these patients [151]. Similarly, in a prospective observational study among 444 patients with CKD stages 2-4, klotho levels were not significantly related to cardiovascular outcomes [152]. These results indicate that plasma klotho levels are not related to kidney function and do not predict adverse outcome in patients with CKD. There may be two reasons for this contradictory data. One is age. Yamazaki et al. suggested that soluble klotho levels are correlated with age, finding that klotho levels are higher in children (mean age 7.1±4.8 years) than in adults [153]. Shimamura et al. also reported significantly lower klotho levels in CKD stage 2-5 patients than in CKD stage 1 patients. Moreover, this finding was largely based on data from four young individuals with normal eGFR and extremely high klotho levels, whereas klotho levels in the remaining participants did not predict adverse outcome of CKD [143, 151]. Furthermore, a recent clinical study found that an allele of the G-395A klotho gene polymorphism has a significantly higher frequency among children with CKD, suggesting that this mutant allele of klotho can be used as a risk marker for the development of ESRD and as a predictor of CVD in children [154]. Another reason may be the differences in sample size. The results obtained from some studies with small cohorts of CKD patients [155157] were different from those obtained with a large cohort [151]. The idea of a decline in klotho levels with impaired kidney function has been further disputed by smaller studies [151, 155, 158].
Although the results of relations between circulating klotho levels and outcomes of CKD are contradictory, three commonly used commercial immunoassay products for measuring soluble klotho-- are available from IBL (IBL International GmbH, Hamburg, Germany), Cusabio (Cusabio Biotech, Wuhan, China), and USCN (USCN Life Science Inc., Wuhan, China) [159]. Only the IBL kit provides information on epitope specificity [159]. However, researchers have found that these assays exhibited poor performance, including a lack of unit standardization in readouts, and the assays have to be improved to produce accurate results before they can provide reliable conclusions [160].

As a potential treatment strategy for CKD

Although the causes of CKD are multifactorial, klotho deficiency is significantly associated with the development and progression of CKD and extrarenal complications. Many clinical and animal studies have suggested that when the klotho-deficient state in CKD is rescued, the renal function, morphologic lesion, and complications of CKD are obviously improved [4, 14, 16, 135, 148, 161]. For example, the administration of soluble klotho protein significantly attenuated UUO-induced renal fibrosis and suppressed the expression of fibrosis markers and TGF-β1 target genes, such as Snail and Twist [125]. Furthermore, klotho connected intermedin 1-53 to the suppression of VC in CKD rats [162], and klotho supplementation suppressed the renin-angiotensin system to ameliorate Adriamycin nephropathy. In addition, klotho protein appeared to suppress the epithelial-mesenchymal transition by inhibiting TGF-β and Wnt signalling [163]. Therefore, klotho deficiency may not only be a pathogenic intermediate in the acceleration of CKD progression but may also be a major contributor to chronic complications, such as CKD-MBD and cardiovascular diseases in CKD. Conceivably, any therapy that restores the klotho level by supplementation with exogenous klotho and/or the up-regulation of endogenous klotho production might be a novel treatment strategy for CKD [14].
Several methods are dependent on various mechanisms to increase klotho expression (Table 1) [14]; these includethe following: (1) Demethylation. Methylation of the klotho gene promoter reduces its activity by 30% to 40%, whereas DNA demethylation increases klotho expression 1.5-fold to threefold [164]. (2) Deacetylation. Data show that the TNF and TWEAK-induced down-regulation of klotho expression in the kidney and kidney cell lines can be blunted by the inhibition of histone deacetylase [74]. (3) Drugs. Several drugs on the market have been shown to up-regulate klotho expression in vivo and/or in vitro, including PPAR-γ agonists [165], angiotensin II-type I receptor antagonists [166], vitamin D active derivatives [167, 168], and intermedin [98]. (4) Klotho gene delivery. Klotho gene delivery through a viral carrier has been shown to effectively improve multiple pathophysiological phenotypes in klotho-deficient mice [169], thereby preventing the progression of kidney damage in rat models [170] and improving VC and endothelial function in CKD [80]. (5) Administration of soluble klotho protein. Increasing circulating klotho levels through the administration of soluble klotho protein, which is the cleaved, full-length extracellular domain of membrane klotho, is more direct, safer, and an easier modality to restore endocrine klotho deficiency [14, 72]. Animal studies have shown that the bolus administration of soluble klotho protein is a safe and effective means for protecting against kidney injury and preserving renal function [14, 72].
Table 1
Potential treatment strategies for CKD via the up-regulation of klotho
Methods
Mechanism
DNA demethylation
Methylation of the klotho gene promoter reduces its activity by 30-40%
Histone deacetylation
Hyperacetylation of histone in the klotho promoter down-regulates klotho expression
Drugs: PPAR-γ agonists, angiotensin II-type I receptor antagonists, statin, vitamin D active derivatives, intermedin
These drugs can up-regulate klotho expression in vitro and in vivo
Delivery of klotho cDNA
The klotho gene is transfected by viral carrier into target cells or animal models
Soluble klotho protein administration
Recombinant klotho protein, which is the cleaved, full-length extracellular domain of membrane klotho, can be injected
PPAR-γ: proliferator-activated receptor-gamma; statin: 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase inhibitors

Conclusions

As the FGF23 co-receptor, klotho mediates FGF23 to regulate mineral ion (such as calcium and phosphate) homeostasis via klotho-FGFR complexes. Moreover, a recent study acknowledged that klotho is an on-demand non-enzymatic molecular scaffold protein that promotes FGF23 signalling. The identification of lipid rafts and sialogangliosides as the membrane receptors of soluble klotho helps us to understand more about how klotho functions as a circulating hormone or local autocrine/paracrine factor. However, klotho functions exert pleiotropic actions in the circulation. Thus, the klotho crystal structure, secretion, and regulation mechanism should be clarified in detail. A further understanding of the relation between klotho levels and CKD as well as its potential applications in vivo is very important for future therapeutic application.

Acknowledgements

Not applicable.

Funding

There was no funding.

Availability of data and materials

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro OM, Moe OW. Recombinant alpha-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 2017;91(5):1104–14.PubMedPubMedCentralCrossRef Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro OM, Moe OW. Recombinant alpha-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 2017;91(5):1104–14.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: insights from animal models. Curr Opin Nephrol Hypertens. 2006;15(3):250–7.PubMedCrossRef Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: insights from animal models. Curr Opin Nephrol Hypertens. 2006;15(3):250–7.PubMedCrossRef
3.
Zurück zum Zitat Cortinovis M, Ruggenenti P, Remuzzi G. Progression, Remission and Regression of Chronic Renal Diseases. Nephron. 2016;134(1):20–4.PubMedCrossRef Cortinovis M, Ruggenenti P, Remuzzi G. Progression, Remission and Regression of Chronic Renal Diseases. Nephron. 2016;134(1):20–4.PubMedCrossRef
6.
Zurück zum Zitat Lindberg K, Amin R, Moe OW, Hu MC, Erben RG, Ostman Wernerson A, Lanske B, Olauson H, Larsson TE. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014;25(10):2169–75.PubMedPubMedCentralCrossRef Lindberg K, Amin R, Moe OW, Hu MC, Erben RG, Ostman Wernerson A, Lanske B, Olauson H, Larsson TE. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014;25(10):2169–75.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, Moe OW. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22(1):124–36.PubMedPubMedCentralCrossRef Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, Moe OW. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22(1):124–36.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Komaba H, Kaludjerovic J, Hu DZ, Nagano K, Amano K, Ide N, Sato T, Densmore MJ, Hanai JI, Olauson H, et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int. 2017. Komaba H, Kaludjerovic J, Hu DZ, Nagano K, Amano K, Ide N, Sato T, Densmore MJ, Hanai JI, Olauson H, et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int. 2017.
9.
Zurück zum Zitat Kato Y, Arakawa E, Kinoshita S, Shirai A, Furuya A, Yamano K, Nakamura K, Iida A, Anazawa H, Koh N, et al. Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochem Biophys Res Commun. 2000;267(2):597–602.PubMedCrossRef Kato Y, Arakawa E, Kinoshita S, Shirai A, Furuya A, Yamano K, Nakamura K, Iida A, Anazawa H, Koh N, et al. Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochem Biophys Res Commun. 2000;267(2):597–602.PubMedCrossRef
10.
Zurück zum Zitat Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.PubMedCrossRef Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.PubMedCrossRef
11.
Zurück zum Zitat Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.PubMedPubMedCentralCrossRef Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Erben RG, Andrukhova O. FGF23-Klotho signaling axis in the kidney. Bone. 2017;100:26–28.CrossRef Erben RG, Andrukhova O. FGF23-Klotho signaling axis in the kidney. Bone. 2017;100:26–28.CrossRef
13.
Zurück zum Zitat Hu MC, Shi M, Zhang J, Addo T, Cho HJ, Barker SL, Ravikumar P, Gillings N, Bian A, Sidhu SS, et al. Renal Production, Uptake, and Handling of Circulating alphaKlotho. J Am Soc Nephrol. 2016;27(1):79–90.PubMedCrossRef Hu MC, Shi M, Zhang J, Addo T, Cho HJ, Barker SL, Ravikumar P, Gillings N, Bian A, Sidhu SS, et al. Renal Production, Uptake, and Handling of Circulating alphaKlotho. J Am Soc Nephrol. 2016;27(1):79–90.PubMedCrossRef
15.
Zurück zum Zitat Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW, Giachelli CM. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261–70.PubMedPubMedCentralCrossRef Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW, Giachelli CM. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261–70.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Kottgen A, Levey AS, Levin A. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. 2013;382(9887):158–69.PubMedCrossRef Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Kottgen A, Levey AS, Levin A. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. 2013;382(9887):158–69.PubMedCrossRef
18.
Zurück zum Zitat Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33.PubMedPubMedCentralCrossRef Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Kuro OM, Moe OW. FGF23-alphaKlotho as a paradigm for a kidney-bone network. Bone. 2017;100:4–18.CrossRef Kuro OM, Moe OW. FGF23-alphaKlotho as a paradigm for a kidney-bone network. Bone. 2017;100:4–18.CrossRef
20.
Zurück zum Zitat Ito S, Fujimori T, Hayashizaki Y, Nabeshima Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim Biophys Acta. 2002;1576(3):341–5.PubMedCrossRef Ito S, Fujimori T, Hayashizaki Y, Nabeshima Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim Biophys Acta. 2002;1576(3):341–5.PubMedCrossRef
21.
Zurück zum Zitat Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev. 2000;98(1-2):115–9.PubMedCrossRef Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev. 2000;98(1-2):115–9.PubMedCrossRef
22.
Zurück zum Zitat Yahata K, Mori K, Arai H, Koide S, Ogawa Y, Mukoyama M, Sugawara A, Ozaki S, Tanaka I, Nabeshima Y, et al. Molecular cloning and expression of a novel klotho-related protein. J Mol Med (Berl). 2000;78(7):389–94.CrossRef Yahata K, Mori K, Arai H, Koide S, Ogawa Y, Mukoyama M, Sugawara A, Ozaki S, Tanaka I, Nabeshima Y, et al. Molecular cloning and expression of a novel klotho-related protein. J Mol Med (Berl). 2000;78(7):389–94.CrossRef
23.
Zurück zum Zitat Buendia P, Ramirez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFkappaB. Vitam Horm. 2016;101:119–50.PubMedCrossRef Buendia P, Ramirez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFkappaB. Vitam Horm. 2016;101:119–50.PubMedCrossRef
24.
Zurück zum Zitat Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242(3):626–30.PubMedCrossRef Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242(3):626–30.PubMedCrossRef
25.
Zurück zum Zitat Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, Kaether C. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009;583(19):3221–4.PubMedPubMedCentralCrossRef Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, Kaether C. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009;583(19):3221–4.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007;104(50):19796–801.PubMedPubMedCentralCrossRef Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007;104(50):19796–801.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Chen CD, Tung TY, Liang J, Zeldich E, Tucker Zhou TB, Turk BE, Abraham CR. Identification of cleavage sites leading to the shed form of the anti-aging protein klotho. Biochemistry. 2014;53(34):5579–87.PubMedCrossRef Chen CD, Tung TY, Liang J, Zeldich E, Tucker Zhou TB, Turk BE, Abraham CR. Identification of cleavage sites leading to the shed form of the anti-aging protein klotho. Biochemistry. 2014;53(34):5579–87.PubMedCrossRef
28.
Zurück zum Zitat Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima Y. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 1998;424(1-2):6–10.PubMedCrossRef Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima Y. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 1998;424(1-2):6–10.PubMedCrossRef
29.
Zurück zum Zitat Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2017;121:85–100.PubMedCrossRef Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2017;121:85–100.PubMedCrossRef
30.
Zurück zum Zitat Mencke R, Harms G, Moser J, van Meurs M, Diepstra A, Leuvenink HG, Hillebrands JL. Human alternative Klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease. JCI Insight. 2017;2(20):1–15. Mencke R, Harms G, Moser J, van Meurs M, Diepstra A, Leuvenink HG, Hillebrands JL. Human alternative Klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease. JCI Insight. 2017;2(20):1–15.
31.
Zurück zum Zitat Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–33.PubMedPubMedCentralCrossRef Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–33.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004;565(1-3):143–7.PubMedCrossRef Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004;565(1-3):143–7.PubMedCrossRef
33.
Zurück zum Zitat Akimoto T, Yoshizawa H, Watanabe Y, Numata A, Yamazaki T, Takeshima E, Iwazu K, Komada T, Otani N, Morishita Y, et al. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol. 2012;13:155.PubMedPubMedCentralCrossRef Akimoto T, Yoshizawa H, Watanabe Y, Numata A, Yamazaki T, Takeshima E, Iwazu K, Komada T, Otani N, Morishita Y, et al. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol. 2012;13:155.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, O'Brien R. Klotho in the cerebrospinal fluid of adults with and without Alzheimer's disease. Neurosci Lett. 2014;558:37–40.PubMedCrossRef Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, O'Brien R. Klotho in the cerebrospinal fluid of adults with and without Alzheimer's disease. Neurosci Lett. 2014;558:37–40.PubMedCrossRef
35.
Zurück zum Zitat Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5.PubMedPubMedCentralCrossRef Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35.PubMedCrossRef Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35.PubMedCrossRef
37.
Zurück zum Zitat Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55.PubMedCrossRef Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55.PubMedCrossRef
39.
Zurück zum Zitat Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.PubMedCrossRef Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.PubMedCrossRef
40.
Zurück zum Zitat Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120–3.PubMedCrossRef Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120–3.PubMedCrossRef
41.
Zurück zum Zitat Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, Moe OW, Liang G, Li X, Mohammadi M. alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature. 2018;553(7689):461–6.PubMedPubMedCentralCrossRef Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, Moe OW, Liang G, Li X, Mohammadi M. alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature. 2018;553(7689):461–6.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, Bacic D, O'Brien S, Biber J, Murer H. Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol. 2005;289(1):C159–67.PubMedCrossRef Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, Bacic D, O'Brien S, Biber J, Murer H. Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol. 2005;289(1):C159–67.PubMedCrossRef
43.
Zurück zum Zitat Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145(7):3087–94.PubMedCrossRef Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145(7):3087–94.PubMedCrossRef
44.
Zurück zum Zitat Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012;51(3):621–8.PubMedPubMedCentralCrossRef Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012;51(3):621–8.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai J, Larsson TE, Lanske B. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int. 2016;90(2):348–62.PubMedCrossRef Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai J, Larsson TE, Lanske B. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int. 2016;90(2):348–62.PubMedCrossRef
46.
Zurück zum Zitat Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology. 2002;143(2):683–9.PubMedCrossRef Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology. 2002;143(2):683–9.PubMedCrossRef
47.
Zurück zum Zitat Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.PubMedPubMedCentralCrossRef Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Murali SK, Roschger P, Zeitz U, Klaushofer K, Andrukhova O, Erben RG. FGF23 Regulates Bone Mineralization in a 1,25(OH)2 D3 and Klotho-Independent Manner. J Bone Miner Res. 2016;31(1):129–42.PubMedCrossRef Murali SK, Roschger P, Zeitz U, Klaushofer K, Andrukhova O, Erben RG. FGF23 Regulates Bone Mineralization in a 1,25(OH)2 D3 and Klotho-Independent Manner. J Bone Miner Res. 2016;31(1):129–42.PubMedCrossRef
49.
Zurück zum Zitat Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S, Iwamoto N, Kurumatani N, Iwano M, Nabeshima Y, et al. Reduced renal alpha-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PloS one. 2014;9(1):e86301.PubMedPubMedCentralCrossRef Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S, Iwamoto N, Kurumatani N, Iwano M, Nabeshima Y, et al. Reduced renal alpha-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PloS one. 2014;9(1):e86301.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Smith RC, O'Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, Cass TA, Saha J, Broderick C, Ma YL, et al. Circulating alphaKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710–5.PubMedPubMedCentralCrossRef Smith RC, O'Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, Cass TA, Saha J, Broderick C, Ma YL, et al. Circulating alphaKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710–5.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Hruska KA, Sugatani T, Agapova O, Fang Y. The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone. 2017;100:80–6.PubMedPubMedCentralCrossRef Hruska KA, Sugatani T, Agapova O, Fang Y. The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone. 2017;100:80–6.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009;297(2):F282–91.PubMedPubMedCentralCrossRef Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009;297(2):F282–91.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Han X, Yang J, Li L, Huang J, King G, Quarles LD. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport. PloS one. 2016;11(2):e0147845.PubMedPubMedCentralCrossRef Han X, Yang J, Li L, Huang J, King G, Quarles LD. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport. PloS one. 2016;11(2):e0147845.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.PubMedPubMedCentralCrossRef Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Barker SL, Pastor J, Carranza D, Quinones H, Griffith C, Goetz R, Mohammadi M, Ye J, Zhang J, Hu MC, et al. The demonstration of alphaKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant. 2015;30(2):223–33.PubMedCrossRef Barker SL, Pastor J, Carranza D, Quinones H, Griffith C, Goetz R, Mohammadi M, Ye J, Zhang J, Hu MC, et al. The demonstration of alphaKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant. 2015;30(2):223–33.PubMedCrossRef
56.
Zurück zum Zitat Dhayat NA, Ackermann D, Pruijm M, Ponte B, Ehret G, Guessous I, Leichtle AB, Paccaud F, Mohaupt M, Fiedler GM, et al. Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int. 2016;90(3):648–57.PubMedCrossRef Dhayat NA, Ackermann D, Pruijm M, Ponte B, Ehret G, Guessous I, Leichtle AB, Paccaud F, Mohaupt M, Fiedler GM, et al. Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int. 2016;90(3):648–57.PubMedCrossRef
57.
Zurück zum Zitat Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310(5747):490–3.PubMedCrossRef Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310(5747):490–3.PubMedCrossRef
58.
Zurück zum Zitat Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro OM, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A. 2008;105(28):9805–10.PubMedPubMedCentralCrossRef Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro OM, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A. 2008;105(28):9805–10.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33(3):229–46.PubMedPubMedCentral Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33(3):229–46.PubMedPubMedCentral
60.
Zurück zum Zitat Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, et al. Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol. 2012;23(7):1190–7.PubMedPubMedCentralCrossRef Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, et al. Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol. 2012;23(7):1190–7.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE, Erben RG. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6(6):744–59.PubMedPubMedCentral Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE, Erben RG. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6(6):744–59.PubMedPubMedCentral
62.
Zurück zum Zitat Langston C. Managing Fluid and Electrolyte Disorders in Kidney Disease. Vet Clin North Am Small Anim Pract. 2017;47(2):471–90.PubMedCrossRef Langston C. Managing Fluid and Electrolyte Disorders in Kidney Disease. Vet Clin North Am Small Anim Pract. 2017;47(2):471–90.PubMedCrossRef
63.
Zurück zum Zitat Dalton G, An SW, Al-Juboori SI, Nischan N, Yoon J, Dobrinskikh E, Hilgemann DW, Xie J, Luby-Phelps K, Kohler JJ, et al. Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. Proc Natl Acad Sci U S A. 2017;114(4):752–7.PubMedPubMedCentralCrossRef Dalton G, An SW, Al-Juboori SI, Nischan N, Yoon J, Dobrinskikh E, Hilgemann DW, Xie J, Luby-Phelps K, Kohler JJ, et al. Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. Proc Natl Acad Sci U S A. 2017;114(4):752–7.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Wright JD, An SW, Xie J, Yoon J, Nischan N, Kohler JJ, Oliver N, Lim C, Huang CL. Modeled structural basis for the recognition of alpha2-3-sialyllactose by soluble Klotho. FASEB J. 2017;31(8):3574–86.PubMedPubMedCentralCrossRef Wright JD, An SW, Xie J, Yoon J, Nischan N, Kohler JJ, Oliver N, Lim C, Huang CL. Modeled structural basis for the recognition of alpha2-3-sialyllactose by soluble Klotho. FASEB J. 2017;31(8):3574–86.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis. 2013;62(2):339–51.PubMedCrossRef Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis. 2013;62(2):339–51.PubMedCrossRef
66.
Zurück zum Zitat Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, Fliser D, Fouque D, Heine GH, Jager KJ, et al. The systemic nature of CKD. Nat Rev Nephrol. 2017;13(6):344–58.PubMedCrossRef Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, Fliser D, Fouque D, Heine GH, Jager KJ, et al. The systemic nature of CKD. Nat Rev Nephrol. 2017;13(6):344–58.PubMedCrossRef
67.
Zurück zum Zitat Mehrotra R, Westenfeld R, Christenson P, Budoff M, Ipp E, Takasu J, Gupta A, Norris K, Ketteler M, Adler S. Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification. Kidney Int. 2005;67(3):1070–7.PubMedCrossRef Mehrotra R, Westenfeld R, Christenson P, Budoff M, Ipp E, Takasu J, Gupta A, Norris K, Ketteler M, Adler S. Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification. Kidney Int. 2005;67(3):1070–7.PubMedCrossRef
68.
Zurück zum Zitat Ghosh S. Dass JF: Study of pathway cross-talk interactions with NF-kappaB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene. 2016;584(1):97–109.PubMedCrossRef Ghosh S. Dass JF: Study of pathway cross-talk interactions with NF-kappaB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene. 2016;584(1):97–109.PubMedCrossRef
69.
Zurück zum Zitat Volpini RA, Costa RS, da Silva CG, Coimbra TM. Inhibition of nuclear factor-kappaB activation attenuates tubulointerstitial nephritis induced by gentamicin. Nephron Physiol. 2004;98(4):p97–106.PubMedCrossRef Volpini RA, Costa RS, da Silva CG, Coimbra TM. Inhibition of nuclear factor-kappaB activation attenuates tubulointerstitial nephritis induced by gentamicin. Nephron Physiol. 2004;98(4):p97–106.PubMedCrossRef
70.
Zurück zum Zitat Fujihara CK, Antunes GR, Mattar AL, Malheiros DM, Vieira JM Jr, Zatz R. Chronic inhibition of nuclear factor-kappaB attenuates renal injury in the 5/6 renal ablation model. Am J Physiol Renal Physiol. 2007;292(1):F92–9.PubMedCrossRef Fujihara CK, Antunes GR, Mattar AL, Malheiros DM, Vieira JM Jr, Zatz R. Chronic inhibition of nuclear factor-kappaB attenuates renal injury in the 5/6 renal ablation model. Am J Physiol Renal Physiol. 2007;292(1):F92–9.PubMedCrossRef
71.
Zurück zum Zitat Ding W, Yang L, Zhang M, Gu Y. Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury. Life Sci. 2012;90(15-16):600–6.PubMedCrossRef Ding W, Yang L, Zhang M, Gu Y. Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury. Life Sci. 2012;90(15-16):600–6.PubMedCrossRef
72.
Zurück zum Zitat Hu MC, Shi M, Zhang J, Quinones H, Kuro-o M, Moe OW. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010;78(12):1240–51.PubMedPubMedCentralCrossRef Hu MC, Shi M, Zhang J, Quinones H, Kuro-o M, Moe OW. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010;78(12):1240–51.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Izquierdo MC, Perez-Gomez MV, Sanchez-Nino MD, Sanz AB, Ruiz-Andres O, Poveda J, Moreno JA, Egido J, Ortiz A. Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol Dial Transplant. 2012;27(Suppl 4):iv6–10.PubMedCrossRef Izquierdo MC, Perez-Gomez MV, Sanchez-Nino MD, Sanz AB, Ruiz-Andres O, Poveda J, Moreno JA, Egido J, Ortiz A. Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol Dial Transplant. 2012;27(Suppl 4):iv6–10.PubMedCrossRef
74.
Zurück zum Zitat Moreno JA, Izquierdo MC, Sanchez-Nino MD, Suarez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, et al. The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB. J Am Soc Nephrol. 2011;22(7):1315–25.PubMedPubMedCentralCrossRef Moreno JA, Izquierdo MC, Sanchez-Nino MD, Suarez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, et al. The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB. J Am Soc Nephrol. 2011;22(7):1315–25.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine. 2009;35(3):341–6.PubMedCrossRef Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine. 2009;35(3):341–6.PubMedCrossRef
76.
Zurück zum Zitat Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG, Choudhary S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011;60(7):1907–16.PubMedPubMedCentralCrossRef Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG, Choudhary S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011;60(7):1907–16.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Jin M, Lv P, Chen G, Wang P, Zuo Z, Ren L, Bi J, Yang CW, Mei X, Han D. Klotho ameliorates cyclosporine A-induced nephropathy via PDLIM2/NF-kB p65 signaling pathway. Biochem Biophys Res Commun. 2017;486(2):451–7.PubMedCrossRef Jin M, Lv P, Chen G, Wang P, Zuo Z, Ren L, Bi J, Yang CW, Mei X, Han D. Klotho ameliorates cyclosporine A-induced nephropathy via PDLIM2/NF-kB p65 signaling pathway. Biochem Biophys Res Commun. 2017;486(2):451–7.PubMedCrossRef
78.
Zurück zum Zitat Wang Y, Kuro-o M, Sun Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell. 2012;11(3):410–7.PubMedCrossRef Wang Y, Kuro-o M, Sun Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell. 2012;11(3):410–7.PubMedCrossRef
79.
Zurück zum Zitat Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol. 2011;13(3):254–62.PubMedCrossRef Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol. 2011;13(3):254–62.PubMedCrossRef
80.
Zurück zum Zitat Vervloet MG, Adema AY, Larsson TE, Massy ZA. The role of klotho on vascular calcification and endothelial function in chronic kidney disease. Semin Nephrol. 2014;34(6):578–85.PubMedCrossRef Vervloet MG, Adema AY, Larsson TE, Massy ZA. The role of klotho on vascular calcification and endothelial function in chronic kidney disease. Semin Nephrol. 2014;34(6):578–85.PubMedCrossRef
81.
Zurück zum Zitat Temmar M, Liabeuf S, Renard C, Czernichow S, Esper NE, Shahapuni I, Presne C, Makdassi R, Andrejak M, Tribouilloy C, et al. Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J Hypertens. 2010;28(1):163–9.PubMedCrossRef Temmar M, Liabeuf S, Renard C, Czernichow S, Esper NE, Shahapuni I, Presne C, Makdassi R, Andrejak M, Tribouilloy C, et al. Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J Hypertens. 2010;28(1):163–9.PubMedCrossRef
82.
Zurück zum Zitat Fox CS, Larson MG, Vasan RS, Guo CY, Parise H, Levy D, Leip EP, O'Donnell CJ, D'Agostino RB Sr, Benjamin EJ. Cross-sectional association of kidney function with valvular and annular calcification: the Framingham heart study. J Am Soc Nephrol. 2006;17(2):521–7.PubMedCrossRef Fox CS, Larson MG, Vasan RS, Guo CY, Parise H, Levy D, Leip EP, O'Donnell CJ, D'Agostino RB Sr, Benjamin EJ. Cross-sectional association of kidney function with valvular and annular calcification: the Framingham heart study. J Am Soc Nephrol. 2006;17(2):521–7.PubMedCrossRef
83.
Zurück zum Zitat London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18(9):1731–40.PubMedCrossRef London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18(9):1731–40.PubMedCrossRef
84.
Zurück zum Zitat Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. 2003;112(3):357–66.PubMedPubMedCentralCrossRef Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. 2003;112(3):357–66.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, Schwartz SM, Giachelli CM, Rosenfeld ME. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2117–24.PubMedCrossRef Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, Schwartz SM, Giachelli CM, Rosenfeld ME. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2117–24.PubMedCrossRef
86.
Zurück zum Zitat McCabe KM, Booth SL, Fu X, Shobeiri N, Pang JJ, Adams MA, Holden RM. Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int. 2013;83(5):835–44.PubMedCrossRef McCabe KM, Booth SL, Fu X, Shobeiri N, Pang JJ, Adams MA, Holden RM. Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int. 2013;83(5):835–44.PubMedCrossRef
87.
Zurück zum Zitat O'Neill WC, Lomashvili KA, Malluche HH, Faugere MC, Riser BL. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int. 2011;79(5):512–7.PubMedCrossRef O'Neill WC, Lomashvili KA, Malluche HH, Faugere MC, Riser BL. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int. 2011;79(5):512–7.PubMedCrossRef
88.
Zurück zum Zitat Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone. 2017;100:87–93.PubMedCrossRef Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone. 2017;100:87–93.PubMedCrossRef
89.
90.
Zurück zum Zitat Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML, Wiebe N, Muntner P. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation. 2009;120(18):1784–92.PubMedCrossRef Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML, Wiebe N, Muntner P. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation. 2009;120(18):1784–92.PubMedCrossRef
91.
Zurück zum Zitat Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208–18.PubMedCrossRef Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208–18.PubMedCrossRef
92.
Zurück zum Zitat Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7.PubMedCrossRef Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7.PubMedCrossRef
93.
Zurück zum Zitat Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015;333(1):39–48.PubMedPubMedCentralCrossRef Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015;333(1):39–48.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011;109(6):697–711.PubMedPubMedCentralCrossRef Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011;109(6):697–711.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Zhang W, Xue D, Hu D, Xie T, Tao Y, Zhu T, Chen E, Pan Z. Secreted klotho protein attenuates osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro via inactivation of the FGFR1/ERK signaling pathway. Growth factors. 2015;33(5-6):356–65.PubMedCrossRef Zhang W, Xue D, Hu D, Xie T, Tao Y, Zhu T, Chen E, Pan Z. Secreted klotho protein attenuates osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro via inactivation of the FGFR1/ERK signaling pathway. Growth factors. 2015;33(5-6):356–65.PubMedCrossRef
96.
Zurück zum Zitat Zhao Y, Zhao MM, Cai Y, Zheng MF, Sun WL, Zhang SY, Kong W, Gu J, Wang X, Xu MJ. Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney Int. 2015;88(4):711–21.PubMedCrossRef Zhao Y, Zhao MM, Cai Y, Zheng MF, Sun WL, Zhang SY, Kong W, Gu J, Wang X, Xu MJ. Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney Int. 2015;88(4):711–21.PubMedCrossRef
97.
Zurück zum Zitat Hamano T. Klotho upregulation by rapamycin protects against vascular disease in CKD. Kidney Int. 2015;88(4):660–2.PubMedCrossRef Hamano T. Klotho upregulation by rapamycin protects against vascular disease in CKD. Kidney Int. 2015;88(4):660–2.PubMedCrossRef
98.
Zurück zum Zitat Chang JR, Guo J, Wang Y, Hou YL, Lu WW, Zhang JS, Yu YR, Xu MJ, Liu XY, Wang XJ, et al. Intermedin1-53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of alpha-Klotho. Kidney Int. 2016;89(3):586–600.PubMedCrossRef Chang JR, Guo J, Wang Y, Hou YL, Lu WW, Zhang JS, Yu YR, Xu MJ, Liu XY, Wang XJ, et al. Intermedin1-53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of alpha-Klotho. Kidney Int. 2016;89(3):586–600.PubMedCrossRef
99.
Zurück zum Zitat Hum JM, O'Bryan LM, Tatiparthi AK, Cass TA, Clinkenbeard EL, Cramer MS, Bhaskaran M, Johnson RL, Wilson JM, Smith RC, et al. Chronic Hyperphosphatemia and Vascular Calcification Are Reduced by Stable Delivery of Soluble Klotho. J Am Soc Nephrol. 2017;28(4):1162–74.PubMedCrossRef Hum JM, O'Bryan LM, Tatiparthi AK, Cass TA, Clinkenbeard EL, Cramer MS, Bhaskaran M, Johnson RL, Wilson JM, Smith RC, et al. Chronic Hyperphosphatemia and Vascular Calcification Are Reduced by Stable Delivery of Soluble Klotho. J Am Soc Nephrol. 2017;28(4):1162–74.PubMedCrossRef
100.
Zurück zum Zitat Cheng L, Zhang L, Yang J, Hao L. Activation of peroxisome proliferator-activated receptor gamma inhibits vascular calcification by upregulating Klotho. Exp Ther Med. 2017;13(2):467–74.PubMedCrossRef Cheng L, Zhang L, Yang J, Hao L. Activation of peroxisome proliferator-activated receptor gamma inhibits vascular calcification by upregulating Klotho. Exp Ther Med. 2017;13(2):467–74.PubMedCrossRef
101.
Zurück zum Zitat Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.PubMedCrossRef Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.PubMedCrossRef
102.
Zurück zum Zitat Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142–50.PubMedCrossRef Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142–50.PubMedCrossRef
103.
Zurück zum Zitat Hruska KA, Seifert M, Sugatani T. Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens. 2015;24(4):303–9.PubMedPubMedCentral Hruska KA, Seifert M, Sugatani T. Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens. 2015;24(4):303–9.PubMedPubMedCentral
104.
Zurück zum Zitat Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere MC, Malluche H, Hruska KA. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25(8):1760–73.PubMedPubMedCentralCrossRef Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere MC, Malluche H, Hruska KA. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25(8):1760–73.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol. 2009;20(4):765–76.PubMedPubMedCentralCrossRef He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol. 2009;20(4):765–76.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Cejka D, Marculescu R, Kozakowski N, Plischke M, Reiter T, Gessl A, Haas M. Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab. 2014;99(1):248–55.PubMedCrossRef Cejka D, Marculescu R, Kozakowski N, Plischke M, Reiter T, Gessl A, Haas M. Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab. 2014;99(1):248–55.PubMedCrossRef
107.
Zurück zum Zitat Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol. 2013;8(5):819–23.PubMedPubMedCentralCrossRef Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol. 2013;8(5):819–23.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int. 2016;89(6):1231–43.PubMedPubMedCentralCrossRef Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int. 2016;89(6):1231–43.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Sugatani T, Agapova OA, Fang Y, Berman AG, Wallace JM, Malluche HH, Faugere MC, Smith W, Sung V, Hruska KA. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney Int. 2017;91(1):86–95.PubMedCrossRef Sugatani T, Agapova OA, Fang Y, Berman AG, Wallace JM, Malluche HH, Faugere MC, Smith W, Sung V, Hruska KA. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney Int. 2017;91(1):86–95.PubMedCrossRef
110.
Zurück zum Zitat Lin W, Li Y, Chen F, Yin S, Liu Z, Cao W. Klotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice. Sci Rep. 2017;7:46195.PubMedPubMedCentralCrossRef Lin W, Li Y, Chen F, Yin S, Liu Z, Cao W. Klotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice. Sci Rep. 2017;7:46195.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Zhang Q, Liu L, Lin W, Yin S, Duan A, Liu Z, Cao W. Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney Int. 2017;91(1):144–56.PubMedCrossRef Zhang Q, Liu L, Lin W, Yin S, Duan A, Liu Z, Cao W. Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney Int. 2017;91(1):144–56.PubMedCrossRef
112.
Zurück zum Zitat Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet. 2017;389(10075):1238–52.PubMedCrossRef Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet. 2017;389(10075):1238–52.PubMedCrossRef
113.
Zurück zum Zitat Nogueira A, Pires MJ, Oliveira PA. Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies. In Vivo. 2017;31(1):1–22.PubMedPubMedCentralCrossRef Nogueira A, Pires MJ, Oliveira PA. Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies. In Vivo. 2017;31(1):1–22.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014;10(9):493–503.PubMedCrossRef Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014;10(9):493–503.PubMedCrossRef
117.
Zurück zum Zitat Gagliardini E, Benigni A. Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine Growth Factor Rev. 2006;17(1-2):89–96.PubMedCrossRef Gagliardini E, Benigni A. Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine Growth Factor Rev. 2006;17(1-2):89–96.PubMedCrossRef
118.
Zurück zum Zitat Guan Q, Li S, Gao S, Chen H, Nguan CY, Du C. Reduction of chronic rejection of renal allografts by anti-transforming growth factor-beta antibody therapy in a rat model. Am J Physiol Renal Physiol. 2013;305(2):F199–207.PubMedCrossRef Guan Q, Li S, Gao S, Chen H, Nguan CY, Du C. Reduction of chronic rejection of renal allografts by anti-transforming growth factor-beta antibody therapy in a rat model. Am J Physiol Renal Physiol. 2013;305(2):F199–207.PubMedCrossRef
119.
Zurück zum Zitat Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, Chen S, TA MG, Sharma K. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A. 2000;97(14):8015–20.PubMedPubMedCentralCrossRef Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, Chen S, TA MG, Sharma K. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A. 2000;97(14):8015–20.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Border WA, Noble NA. Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis. Hypertension. 1998;31(1 Pt 2):181–8.PubMedCrossRef Border WA, Noble NA. Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis. Hypertension. 1998;31(1 Pt 2):181–8.PubMedCrossRef
121.
Zurück zum Zitat Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45(4):522–30.PubMedCrossRef Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45(4):522–30.PubMedCrossRef
122.
Zurück zum Zitat Kushibiki T, Nagata-Nakajima N, Sugai M, Shimizu A, Tabata Y. Delivery of plasmid DNA expressing small interference RNA for TGF-beta type II receptor by cationized gelatin to prevent interstitial renal fibrosis. J Control Release. 2005;105(3):318–31.PubMedCrossRef Kushibiki T, Nagata-Nakajima N, Sugai M, Shimizu A, Tabata Y. Delivery of plasmid DNA expressing small interference RNA for TGF-beta type II receptor by cationized gelatin to prevent interstitial renal fibrosis. J Control Release. 2005;105(3):318–31.PubMedCrossRef
123.
Zurück zum Zitat Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011;79(11):1236–43.PubMedPubMedCentralCrossRef Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011;79(11):1236–43.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Sugiura H, Yoshida T, Shiohira S, Kohei J, Mitobe M, Kurosu H, Kuro-o M, Nitta K, Tsuchiya K. Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis. Am J Physiol Renal Physiol. 2012;302(10):F1252–64.PubMedCrossRef Sugiura H, Yoshida T, Shiohira S, Kohei J, Mitobe M, Kurosu H, Kuro-o M, Nitta K, Tsuchiya K. Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis. Am J Physiol Renal Physiol. 2012;302(10):F1252–64.PubMedCrossRef
125.
Zurück zum Zitat Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–65.PubMedPubMedCentralCrossRef Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–65.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Fogo AB. Progression and potential regression of glomerulosclerosis. Kidney Int. 2001;59(2):804–19.PubMedCrossRef Fogo AB. Progression and potential regression of glomerulosclerosis. Kidney Int. 2001;59(2):804–19.PubMedCrossRef
127.
128.
Zurück zum Zitat Yang F, Chung AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension. 2009;54(4):877–84.PubMedCrossRef Yang F, Chung AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension. 2009;54(4):877–84.PubMedCrossRef
129.
Zurück zum Zitat Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. 2006;116(2):288–96.PubMedPubMedCentralCrossRef Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. 2006;116(2):288–96.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol. 2002;283(5):F861–75.PubMedCrossRef Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol. 2002;283(5):F861–75.PubMedCrossRef
131.
Zurück zum Zitat Mitani H, Ishizaka N, Aizawa T, Ohno M, Usui S, Suzuki T, Amaki T, Mori I, Nakamura Y, Sato M, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39(4):838–43.PubMedCrossRef Mitani H, Ishizaka N, Aizawa T, Ohno M, Usui S, Suzuki T, Amaki T, Mori I, Nakamura Y, Sato M, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39(4):838–43.PubMedCrossRef
132.
Zurück zum Zitat Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/beta-catenin signaling. J Am Soc Nephrol. 2013;24(5):771–85.PubMedPubMedCentralCrossRef Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/beta-catenin signaling. J Am Soc Nephrol. 2013;24(5):771–85.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Huang JS, Chuang CT, Liu MH, Lin SH, Guh JY, Chuang LY. Klotho attenuates high glucose-induced fibronectin and cell hypertrophy via the ERK1/2-p38 kinase signaling pathway in renal interstitial fibroblasts. Mol Cell Endocrinol. 2014;390(1-2):45–53.PubMedCrossRef Huang JS, Chuang CT, Liu MH, Lin SH, Guh JY, Chuang LY. Klotho attenuates high glucose-induced fibronectin and cell hypertrophy via the ERK1/2-p38 kinase signaling pathway in renal interstitial fibroblasts. Mol Cell Endocrinol. 2014;390(1-2):45–53.PubMedCrossRef
134.
Zurück zum Zitat Guan X, Nie L, He T, Yang K, Xiao T, Wang S, Huang Y, Zhang J, Wang J, Sharma K, et al. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol. 2014;234(4):560–72.PubMedCrossRef Guan X, Nie L, He T, Yang K, Xiao T, Wang S, Huang Y, Zhang J, Wang J, Sharma K, et al. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol. 2014;234(4):560–72.PubMedCrossRef
136.
Zurück zum Zitat Verbeke F, Van Biesen W, Vanholder R. The role of collagen metabolism in CKD-associated arterial senescence: underestimated and underappreciated. Nephrol Dial Transplant. 2011;26(9):2726–8.PubMedCrossRef Verbeke F, Van Biesen W, Vanholder R. The role of collagen metabolism in CKD-associated arterial senescence: underestimated and underappreciated. Nephrol Dial Transplant. 2011;26(9):2726–8.PubMedCrossRef
137.
Zurück zum Zitat Small DM, Bennett NC, Roy S, Gabrielli BG, Johnson DW, Gobe GC. Oxidative stress and cell senescence combine to cause maximal renal tubular epithelial cell dysfunction and loss in an in vitro model of kidney disease. Nephron Exp Nephrol. 2012;122(3-4):123–30.PubMedCrossRef Small DM, Bennett NC, Roy S, Gabrielli BG, Johnson DW, Gobe GC. Oxidative stress and cell senescence combine to cause maximal renal tubular epithelial cell dysfunction and loss in an in vitro model of kidney disease. Nephron Exp Nephrol. 2012;122(3-4):123–30.PubMedCrossRef
138.
Zurück zum Zitat Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S, Katsuda Y, Ikeda H, Nabeshima Y, Imaizumi T. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. 2004;110(9):1148–55.PubMedCrossRef Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S, Katsuda Y, Ikeda H, Nabeshima Y, Imaizumi T. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. 2004;110(9):1148–55.PubMedCrossRef
139.
Zurück zum Zitat Chen Z, Qureshi AR, Ripsweden J, Wennberg L, Heimburger O, Lindholm B, Barany P, Haarhaus M, Brismar TB, Stenvinkel P. Vertebral bone density associates with coronary artery calcification and is an independent predictor of poor outcome in end-stage renal disease patients. Bone. 2016;92:50–7.PubMedCrossRef Chen Z, Qureshi AR, Ripsweden J, Wennberg L, Heimburger O, Lindholm B, Barany P, Haarhaus M, Brismar TB, Stenvinkel P. Vertebral bone density associates with coronary artery calcification and is an independent predictor of poor outcome in end-stage renal disease patients. Bone. 2016;92:50–7.PubMedCrossRef
140.
Zurück zum Zitat Takenaka T, Inoue T, Miyazaki T, Hayashi M, Suzuki H. Xeno-Klotho Inhibits Parathyroid Hormone Signaling. J Bone Miner Res. 2016;31(2):455–62.PubMedCrossRef Takenaka T, Inoue T, Miyazaki T, Hayashi M, Suzuki H. Xeno-Klotho Inhibits Parathyroid Hormone Signaling. J Bone Miner Res. 2016;31(2):455–62.PubMedCrossRef
141.
Zurück zum Zitat Kuro OM. The FGF23 and Klotho system beyond mineral metabolism. Clin Exp Nephrol. 2017;21(Suppl 1):64–9.CrossRef Kuro OM. The FGF23 and Klotho system beyond mineral metabolism. Clin Exp Nephrol. 2017;21(Suppl 1):64–9.CrossRef
142.
Zurück zum Zitat Salanova Villanueva L, Sanchez Gonzalez C, Sanchez Tomero JA, Aguilera A, Ortega Junco E. Bone mineral disorder in chronic kidney disease: Klotho and FGF23; cardiovascular implications. Nefrologia. 2016;36(4):368–75.PubMedCrossRef Salanova Villanueva L, Sanchez Gonzalez C, Sanchez Tomero JA, Aguilera A, Ortega Junco E. Bone mineral disorder in chronic kidney disease: Klotho and FGF23; cardiovascular implications. Nefrologia. 2016;36(4):368–75.PubMedCrossRef
143.
Zurück zum Zitat Shimamura Y, Hamada K, Inoue K, Ogata K, Ishihara M, Kagawa T, Inoue M, Fujimoto S, Ikebe M, Yuasa K, et al. Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012;16(5):722–9.PubMedCrossRef Shimamura Y, Hamada K, Inoue K, Ogata K, Ishihara M, Kagawa T, Inoue M, Fujimoto S, Ikebe M, Yuasa K, et al. Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012;16(5):722–9.PubMedCrossRef
144.
Zurück zum Zitat Rotondi S, Pasquali M, Tartaglione L, Muci ML, Mandanici G, Leonangeli C, Sales S, Farcomeni A, Mazzaferro S. Soluble alpha -Klotho Serum Levels in Chronic Kidney Disease. Int J Endocrinol. 2015;2015:872193.PubMedPubMedCentralCrossRef Rotondi S, Pasquali M, Tartaglione L, Muci ML, Mandanici G, Leonangeli C, Sales S, Farcomeni A, Mazzaferro S. Soluble alpha -Klotho Serum Levels in Chronic Kidney Disease. Int J Endocrinol. 2015;2015:872193.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Tan SJ, Smith ER, Holt SG, Hewitson TD, Toussaint ND. Soluble klotho may be a marker of phosphate reabsorption. Clin Kidney J. 2017;10(3):397–404.PubMedPubMedCentralCrossRef Tan SJ, Smith ER, Holt SG, Hewitson TD, Toussaint ND. Soluble klotho may be a marker of phosphate reabsorption. Clin Kidney J. 2017;10(3):397–404.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. 2001;280(4):1015–20.PubMedCrossRef Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. 2001;280(4):1015–20.PubMedCrossRef
147.
Zurück zum Zitat Asai O, Nakatani K, Tanaka T, Sakan H, Imura A, Yoshimoto S, Samejima K, Yamaguchi Y, Matsui M, Akai Y, et al. Decreased renal alpha-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int. 2012;81(6):539–47.PubMedCrossRef Asai O, Nakatani K, Tanaka T, Sakan H, Imura A, Yoshimoto S, Samejima K, Yamaguchi Y, Matsui M, Akai Y, et al. Decreased renal alpha-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int. 2012;81(6):539–47.PubMedCrossRef
148.
Zurück zum Zitat Kim HR, Nam BY, Kim DW, Kang MW, Han JH, Lee MJ, Shin DH, Doh FM, Koo HM, Ko KI, et al. Circulating alpha-klotho levels in CKD and relationship to progression. Am J Kidney Dis. 2013;61(6):899–909.PubMedCrossRef Kim HR, Nam BY, Kim DW, Kang MW, Han JH, Lee MJ, Shin DH, Doh FM, Koo HM, Ko KI, et al. Circulating alpha-klotho levels in CKD and relationship to progression. Am J Kidney Dis. 2013;61(6):899–909.PubMedCrossRef
149.
Zurück zum Zitat Pavik I, Jaeger P, Ebner L, Wagner CA, Petzold K, Spichtig D, Poster D, Wuthrich RP, Russmann S, Serra AL. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant. 2013;28(2):352–9.PubMedCrossRef Pavik I, Jaeger P, Ebner L, Wagner CA, Petzold K, Spichtig D, Poster D, Wuthrich RP, Russmann S, Serra AL. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant. 2013;28(2):352–9.PubMedCrossRef
150.
Zurück zum Zitat Wan M, Smith C, Shah V, Gullet A, Wells D, Rees L, Shroff R. Fibroblast growth factor 23 and soluble klotho in children with chronic kidney disease. Nephrol Dial Transplant. 2013;28(1):153–61.PubMedCrossRef Wan M, Smith C, Shah V, Gullet A, Wells D, Rees L, Shroff R. Fibroblast growth factor 23 and soluble klotho in children with chronic kidney disease. Nephrol Dial Transplant. 2013;28(1):153–61.PubMedCrossRef
151.
Zurück zum Zitat Seiler S, Wen M, Roth HJ, Fehrenz M, Flugge F, Herath E, Weihrauch A, Fliser D, Heine GH. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013;83(1):121–8.PubMedCrossRef Seiler S, Wen M, Roth HJ, Fehrenz M, Flugge F, Herath E, Weihrauch A, Fliser D, Heine GH. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013;83(1):121–8.PubMedCrossRef
152.
Zurück zum Zitat Seiler S, Rogacev KS, Roth HJ, Shafein P, Emrich I, Neuhaus S, Floege J, Fliser D, Heine GH. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin J Am Soc Nephrol. 2014;9(6):1049–58.PubMedPubMedCentralCrossRef Seiler S, Rogacev KS, Roth HJ, Shafein P, Emrich I, Neuhaus S, Floege J, Fliser D, Heine GH. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin J Am Soc Nephrol. 2014;9(6):1049–58.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513–8.PubMedPubMedCentralCrossRef Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513–8.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Elghoroury EA, Fadel FI, Elshamaa MF, Kandil D, Salah DM, El-Sonbaty MM, Farouk H, Raafat M, Nasr S. Klotho G-395A gene polymorphism: impact on progression of end-stage renal disease and development of cardiovascular complications in children on dialysis. Pediatr Nephrol. 2018;33(6):1019–1027.PubMedCrossRef Elghoroury EA, Fadel FI, Elshamaa MF, Kandil D, Salah DM, El-Sonbaty MM, Farouk H, Raafat M, Nasr S. Klotho G-395A gene polymorphism: impact on progression of end-stage renal disease and development of cardiovascular complications in children on dialysis. Pediatr Nephrol. 2018;33(6):1019–1027.PubMedCrossRef
155.
Zurück zum Zitat Sugiura H, Tsuchiya K, Nitta K. Circulating levels of soluble alpha-Klotho in patients with chronic kidney disease. Clin Exp Nephrol. 2011;15(5):795–6.PubMedCrossRef Sugiura H, Tsuchiya K, Nitta K. Circulating levels of soluble alpha-Klotho in patients with chronic kidney disease. Clin Exp Nephrol. 2011;15(5):795–6.PubMedCrossRef
156.
Zurück zum Zitat Akimoto T, Shiizaki K, Sugase T, Watanabe Y, Yoshizawa H, Otani N, Numata A, Takeshima E, Yamazaki T, Miki T, et al. The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol. 2012;16(3):442–7.PubMedCrossRef Akimoto T, Shiizaki K, Sugase T, Watanabe Y, Yoshizawa H, Otani N, Numata A, Takeshima E, Yamazaki T, Miki T, et al. The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol. 2012;16(3):442–7.PubMedCrossRef
157.
Zurück zum Zitat Pavik I, Jaeger P, Ebner L, Poster D, Krauer F, Kistler AD, Rentsch K, Andreisek G, Wagner CA, Devuyst O, et al. Soluble klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7(2):248–57.PubMedPubMedCentralCrossRef Pavik I, Jaeger P, Ebner L, Poster D, Krauer F, Kistler AD, Rentsch K, Andreisek G, Wagner CA, Devuyst O, et al. Soluble klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7(2):248–57.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Devaraj S, Syed B, Chien A, Jialal I. Validation of an immunoassay for soluble Klotho protein: decreased levels in diabetes and increased levels in chronic kidney disease. Am J Clin Pathol. 2012;137(3):479–85.PubMedCrossRef Devaraj S, Syed B, Chien A, Jialal I. Validation of an immunoassay for soluble Klotho protein: decreased levels in diabetes and increased levels in chronic kidney disease. Am J Clin Pathol. 2012;137(3):479–85.PubMedCrossRef
159.
Zurück zum Zitat Tan SJ, Cai MM. Is there a role for newer biomarkers in chronic kidney disease-mineral and bone disorder management? Nephrology (Carlton). 2017;22(Suppl 2):14–8.CrossRef Tan SJ, Cai MM. Is there a role for newer biomarkers in chronic kidney disease-mineral and bone disorder management? Nephrology (Carlton). 2017;22(Suppl 2):14–8.CrossRef
160.
Zurück zum Zitat Heijboer AC, Blankenstein MA, Hoenderop J, de Borst MH, Vervloet MG. Laboratory aspects of circulating alpha-Klotho. Nephrol Dial Transplant. 2013;28(9):2283–7.PubMedCrossRef Heijboer AC, Blankenstein MA, Hoenderop J, de Borst MH, Vervloet MG. Laboratory aspects of circulating alpha-Klotho. Nephrol Dial Transplant. 2013;28(9):2283–7.PubMedCrossRef
161.
Zurück zum Zitat Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol. 2016;48(10):1657–66.PubMedCrossRef Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol. 2016;48(10):1657–66.PubMedCrossRef
162.
163.
Zurück zum Zitat Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol Dial Transplant. 2017;32(5):791–800.PubMed Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol Dial Transplant. 2017;32(5):791–800.PubMed
164.
Zurück zum Zitat Azuma M, Koyama D, Kikuchi J, Yoshizawa H, Thasinas D, Shiizaki K, Kuro-o M, Furukawa Y, Kusano E. Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. 2012;26(10):4264–74.PubMedPubMedCentralCrossRef Azuma M, Koyama D, Kikuchi J, Yoshizawa H, Thasinas D, Shiizaki K, Kuro-o M, Furukawa Y, Kusano E. Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. 2012;26(10):4264–74.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Zhang R, Zheng F. PPAR-gamma and aging: one link through klotho? Kidney Int. 2008;74(6):702–4.PubMedCrossRef Zhang R, Zheng F. PPAR-gamma and aging: one link through klotho? Kidney Int. 2008;74(6):702–4.PubMedCrossRef
166.
Zurück zum Zitat Yoon HE, Ghee JY, Piao S, Song JH, Han DH, Kim S, Ohashi N, Kobori H, Kuro-o M, Yang CW. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26(3):800–13.PubMedCrossRef Yoon HE, Ghee JY, Piao S, Song JH, Han DH, Kim S, Ohashi N, Kobori H, Kuro-o M, Yang CW. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26(3):800–13.PubMedCrossRef
167.
Zurück zum Zitat Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I, Haussler MR, Kerr Whitfield G. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun. 2011;414(3):557–62.PubMedPubMedCentralCrossRef Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I, Haussler MR, Kerr Whitfield G. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun. 2011;414(3):557–62.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Ritter CS, Zhang S, Delmez J, Finch JL, Slatopolsky E. Differential expression and regulation of Klotho by paricalcitol in the kidney, parathyroid. and aorta of uremic rats. Kidney Int. 2015;87(6):1141–52.PubMedCrossRef Ritter CS, Zhang S, Delmez J, Finch JL, Slatopolsky E. Differential expression and regulation of Klotho by paricalcitol in the kidney, parathyroid. and aorta of uremic rats. Kidney Int. 2015;87(6):1141–52.PubMedCrossRef
169.
Zurück zum Zitat Shiraki-Iida T, Iida A, Nabeshima Y, Anazawa H, Nishikawa S, Noda M, Kuro-o M. Improvement of multiple pathophysiological phenotypes of klotho (kl/kl) mice by adenovirus-mediated expression of the klotho gene. J Gene Med. 2000;2(4):233–42.PubMedCrossRef Shiraki-Iida T, Iida A, Nabeshima Y, Anazawa H, Nishikawa S, Noda M, Kuro-o M. Improvement of multiple pathophysiological phenotypes of klotho (kl/kl) mice by adenovirus-mediated expression of the klotho gene. J Gene Med. 2000;2(4):233–42.PubMedCrossRef
170.
Zurück zum Zitat Wang Y, Sun Z. Antiaging gene Klotho regulates endothelin-1 levels and endothelin receptor subtype B expression in kidneys of spontaneously hypertensive rats. J Hypertens. 2014;32(8):1629–36 discussion 1636.PubMedCrossRef Wang Y, Sun Z. Antiaging gene Klotho regulates endothelin-1 levels and endothelin receptor subtype B expression in kidneys of spontaneously hypertensive rats. J Hypertens. 2014;32(8):1629–36 discussion 1636.PubMedCrossRef
Metadaten
Titel
The role of klotho in chronic kidney disease
verfasst von
Di Zou
Wen Wu
Yan He
Sichao Ma
Ji Gao
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Nephrology / Ausgabe 1/2018
Elektronische ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-1094-z

Weitere Artikel der Ausgabe 1/2018

BMC Nephrology 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.