Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 2/2020

16.11.2019 | Review Article

The role of Müller cell glucocorticoid signaling in diabetic retinopathy

verfasst von: Farhad Ghaseminejad, Lew Kaplan, Anna M. Pfaller, Stefanie M. Hauck, Antje Grosche

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Diabetic retinopathy (DR) is a sight-threatening complication associated with the highly prevalent diabetes disorder. Both the microvascular damage and neurodegeneration detected in the retina caused by chronic hyperglycemia have brought special attention to Müller cells, the major macroglia of the retina that are responsible for retinal homeostasis. Given the role of glucocorticoid signaling in anti-inflammatory responses and the almost exclusive expression of glucocorticoid receptors (GRs) in retinal Müller cells, administration of corticosteroid agonists as a potential treatment option has been widely studied. Although these approaches have been moderately efficacious in treating or de-escalating DR pathomechanisms, there are various side effects and gaps of knowledge with regard to introducing exogenous glucocorticoids to the diseased retina. In this paper, we provide a review of the literature concerning the available evidence for the role of Müller cell glucocorticoid signaling in DR and we discuss previously investigated approaches in modulating this system as possible treatment options. Furthermore, we propose a novel alternative to the available choices of treatment by using gene therapy as a tool to regulate the expression of GR in retinal Müller cells. Upregulating GR expression allows for induced glucocorticoid signaling with more enduring effects compared to injection of agonists. Hence, repetitive injections would no longer be required. Lastly, side effects of glucocorticoid therapy such as glucocorticoid resistance of GR following chronic exposure to excess ligands or agonists can be avoided.
Literatur
1.
Zurück zum Zitat Emerging Risk Factors Collaboration (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222 Emerging Risk Factors Collaboration (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222
2.
Zurück zum Zitat Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564PubMedPubMedCentral Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564PubMedPubMedCentral
3.
Zurück zum Zitat Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vision 2(1):17PubMed Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vision 2(1):17PubMed
4.
Zurück zum Zitat Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diabetes Rep 17(10):93 Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diabetes Rep 17(10):93
5.
Zurück zum Zitat Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61(1):29–38PubMed Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61(1):29–38PubMed
6.
Zurück zum Zitat Tuomi T (2005) Type 1 and type 2 diabetes: what do they have in common? Diabetes. 54(suppl 2):S40–S45PubMed Tuomi T (2005) Type 1 and type 2 diabetes: what do they have in common? Diabetes. 54(suppl 2):S40–S45PubMed
8.
Zurück zum Zitat Lachin JM, Genuth S, Nathan DM (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes 57(4):995–1001PubMed Lachin JM, Genuth S, Nathan DM (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes 57(4):995–1001PubMed
9.
Zurück zum Zitat Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep 11(4):244–252 Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep 11(4):244–252
10.
Zurück zum Zitat Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188PubMed Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188PubMed
12.
Zurück zum Zitat Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9(4):315–327PubMed Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9(4):315–327PubMed
13.
Zurück zum Zitat Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348PubMed Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348PubMed
14.
Zurück zum Zitat Rabbani N, Xue M, Thornalley PJ (2016) Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 33(4):513–525PubMedPubMedCentral Rabbani N, Xue M, Thornalley PJ (2016) Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 33(4):513–525PubMedPubMedCentral
15.
Zurück zum Zitat Hidmark A, Fleming T, Vittas S (2014) A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 226(04):201–207 Hidmark A, Fleming T, Vittas S (2014) A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 226(04):201–207
16.
Zurück zum Zitat Sachdeva R, Schlotterer A, Schumacher D (2018) TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Mol Metab 9:156–167PubMedPubMedCentral Sachdeva R, Schlotterer A, Schumacher D (2018) TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Mol Metab 9:156–167PubMedPubMedCentral
17.
Zurück zum Zitat Malaguarnera L, Zorena K (2016) Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol 14(8):831–839PubMedPubMedCentral Malaguarnera L, Zorena K (2016) Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol 14(8):831–839PubMedPubMedCentral
18.
Zurück zum Zitat Reiter CE, Gardner TW (2003) Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res 22(4):545–562PubMed Reiter CE, Gardner TW (2003) Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res 22(4):545–562PubMed
19.
Zurück zum Zitat Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102(4):783–791PubMedPubMedCentral Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102(4):783–791PubMedPubMedCentral
20.
Zurück zum Zitat Fort PE, Losiewicz MK, Reiter CE et al (2011) Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. PLoS One 6(10):e26498PubMedPubMedCentral Fort PE, Losiewicz MK, Reiter CE et al (2011) Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. PLoS One 6(10):e26498PubMedPubMedCentral
21.
Zurück zum Zitat Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI insight 2(14) Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI insight 2(14)
22.
Zurück zum Zitat Zhang X, Zeng H, Bao S et al (2014) Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4(1):27PubMedPubMedCentral Zhang X, Zeng H, Bao S et al (2014) Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4(1):27PubMedPubMedCentral
23.
24.
Zurück zum Zitat Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83(3):473–483PubMed Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83(3):473–483PubMed
26.
Zurück zum Zitat Robinson R, Barathi VA, Chaurasia SS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5(4):444–456PubMedPubMedCentral Robinson R, Barathi VA, Chaurasia SS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5(4):444–456PubMedPubMedCentral
27.
Zurück zum Zitat Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia. 61(5):651–678PubMed Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia. 61(5):651–678PubMed
28.
Zurück zum Zitat Coughlin BA, Feenstra DJ, Mohr S (2017) Müller cells and diabetic retinopathy. Vis Res 139:93–100 Coughlin BA, Feenstra DJ, Mohr S (2017) Müller cells and diabetic retinopathy. Vis Res 139:93–100
29.
Zurück zum Zitat Reichenbach A, Wurm A, Pannicke T et al (2007) Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245(5):627–636PubMed Reichenbach A, Wurm A, Pannicke T et al (2007) Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245(5):627–636PubMed
30.
Zurück zum Zitat Lieth E, Barber AJ, Xu B et al (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47(5):815–820PubMed Lieth E, Barber AJ, Xu B et al (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47(5):815–820PubMed
31.
Zurück zum Zitat Kowluru RA, Engerman RL, Case GL et al (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390PubMed Kowluru RA, Engerman RL, Case GL et al (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390PubMed
32.
Zurück zum Zitat Li Q, Puro DG (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 43(9):3109–3116PubMed Li Q, Puro DG (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 43(9):3109–3116PubMed
33.
Zurück zum Zitat Eichler W, Kuhrt H, Hoffmann S et al (2000) VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport. 11(16):3533–3537PubMed Eichler W, Kuhrt H, Hoffmann S et al (2000) VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport. 11(16):3533–3537PubMed
34.
Zurück zum Zitat Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 55(3):633–639PubMed Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 55(3):633–639PubMed
35.
Zurück zum Zitat Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19(8):307–312PubMed Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19(8):307–312PubMed
36.
Zurück zum Zitat Pannicke T, Iandiev I, Uckermann O et al (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26(4):493–502PubMed Pannicke T, Iandiev I, Uckermann O et al (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26(4):493–502PubMed
37.
Zurück zum Zitat Iandiev I, Tenckhoff S, Pannicke T et al (2006) Differential regulation of Kir4. 1 and Kir2. 1 expression in the ischemic rat retina. Neurosci Lett 396(2):97–101PubMed Iandiev I, Tenckhoff S, Pannicke T et al (2006) Differential regulation of Kir4. 1 and Kir2. 1 expression in the ischemic rat retina. Neurosci Lett 396(2):97–101PubMed
38.
Zurück zum Zitat Pannicke T, Uckermann O, Iandiev I et al (2005) Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. J Neuroimmunol 161(1–2):145–154PubMed Pannicke T, Uckermann O, Iandiev I et al (2005) Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. J Neuroimmunol 161(1–2):145–154PubMed
39.
Zurück zum Zitat Krügel K, Wurm A, Pannicke T et al (2011) Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Exp Eye Res 92(1):87–93PubMed Krügel K, Wurm A, Pannicke T et al (2011) Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Exp Eye Res 92(1):87–93PubMed
40.
Zurück zum Zitat Wurm A, Iandiev I, Hollborn M et al (2008) Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina. Exp Eye Res 87(4):385–393PubMed Wurm A, Iandiev I, Hollborn M et al (2008) Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina. Exp Eye Res 87(4):385–393PubMed
41.
Zurück zum Zitat Pazdro R, Burgess JR (2010) The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 131(4):276–286PubMed Pazdro R, Burgess JR (2010) The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 131(4):276–286PubMed
42.
Zurück zum Zitat Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Phys Regul Integr Comp Phys 287(4):R735–R741 Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Phys Regul Integr Comp Phys 287(4):R735–R741
44.
Zurück zum Zitat Gallina D, Zelinka C, Fischer AJ (2014) Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors. Development. 141(17):3340–3351PubMedPubMedCentral Gallina D, Zelinka C, Fischer AJ (2014) Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors. Development. 141(17):3340–3351PubMedPubMedCentral
45.
Zurück zum Zitat Schaaf MJ, Cidlowski JA (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83(1–5):37–48PubMed Schaaf MJ, Cidlowski JA (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83(1–5):37–48PubMed
46.
Zurück zum Zitat Zhang X, Wang N, Schachat AP et al (2014) Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med 14(3):376–384PubMed Zhang X, Wang N, Schachat AP et al (2014) Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med 14(3):376–384PubMed
47.
Zurück zum Zitat Yeager MP, Pioli PA, Guyre PM (2011) Cortisol exerts bi-phasic regulation of inflammation in humans. Dose-Response. 9(3):332–347PubMed Yeager MP, Pioli PA, Guyre PM (2011) Cortisol exerts bi-phasic regulation of inflammation in humans. Dose-Response. 9(3):332–347PubMed
48.
Zurück zum Zitat Roy MS, Roy A, Brown S (1998) Increased urinary-free cortisol outputs in diabetic patients. J Diabetes Complicat 12(1):24–27PubMed Roy MS, Roy A, Brown S (1998) Increased urinary-free cortisol outputs in diabetic patients. J Diabetes Complicat 12(1):24–27PubMed
49.
Zurück zum Zitat Chiodini I, Adda G, Scillitani A et al (2007) Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care 30(1):83–88PubMed Chiodini I, Adda G, Scillitani A et al (2007) Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care 30(1):83–88PubMed
50.
Zurück zum Zitat Erickson RL, Browne CA, Lucki I (2017) Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. Physiol Behav 178:166–171PubMedPubMedCentral Erickson RL, Browne CA, Lucki I (2017) Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. Physiol Behav 178:166–171PubMedPubMedCentral
51.
Zurück zum Zitat Vandevyver S, Dejager L, Libert C (2014) Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 35(4):671–693PubMed Vandevyver S, Dejager L, Libert C (2014) Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 35(4):671–693PubMed
52.
Zurück zum Zitat Gallina D, Zelinka CP, Cebulla CM et al (2015) Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 273:114–125PubMedPubMedCentral Gallina D, Zelinka CP, Cebulla CM et al (2015) Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 273:114–125PubMedPubMedCentral
53.
Zurück zum Zitat Shen W, Lee SR, Araujo J et al (2014) Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation. Glia. 62(7):1110–1124PubMed Shen W, Lee SR, Araujo J et al (2014) Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation. Glia. 62(7):1110–1124PubMed
54.
Zurück zum Zitat Brooks HL, Caballero S, Newell CK et al (2004) Vitreous kevels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 122(12):1801–1807PubMed Brooks HL, Caballero S, Newell CK et al (2004) Vitreous kevels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 122(12):1801–1807PubMed
55.
Zurück zum Zitat Itakura H, Akiyama H, Hagimura N et al (2006) Triamcinolone acetonide suppresses interleukin-1 beta-mediated increase in vascular endothelial growth factor expression in cultured rat Müller cells. Graefes Arch Clin Exp Ophthalmol 244(2):226–231PubMed Itakura H, Akiyama H, Hagimura N et al (2006) Triamcinolone acetonide suppresses interleukin-1 beta-mediated increase in vascular endothelial growth factor expression in cultured rat Müller cells. Graefes Arch Clin Exp Ophthalmol 244(2):226–231PubMed
56.
Zurück zum Zitat Shen W, Fruttiger M, Zhu L et al (2012) Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727PubMedPubMedCentral Shen W, Fruttiger M, Zhu L et al (2012) Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727PubMedPubMedCentral
57.
Zurück zum Zitat Sulaiman RS, Kadmiel M, Cidlowski JA (2018) Glucocorticoid receptor signaling in the eye. Steroids. 133:60–66PubMed Sulaiman RS, Kadmiel M, Cidlowski JA (2018) Glucocorticoid receptor signaling in the eye. Steroids. 133:60–66PubMed
58.
Zurück zum Zitat Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin 42(1):15–31 Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin 42(1):15–31
59.
Zurück zum Zitat Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie. 85(8):747–752PubMed Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie. 85(8):747–752PubMed
60.
Zurück zum Zitat Rogatsky I, Zarember KA, Yamamoto KR (2001) Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 20(21):6071–6083PubMedPubMedCentral Rogatsky I, Zarember KA, Yamamoto KR (2001) Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 20(21):6071–6083PubMedPubMedCentral
61.
Zurück zum Zitat Chinenov Y, Gupte R, Dobrovolna J et al (2012) Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci 109(29):11776–11781PubMed Chinenov Y, Gupte R, Dobrovolna J et al (2012) Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci 109(29):11776–11781PubMed
62.
Zurück zum Zitat Nelson G, Wilde GJ, Spiller DG et al (2003) NF-κB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 116(12):2495–2503PubMed Nelson G, Wilde GJ, Spiller DG et al (2003) NF-κB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 116(12):2495–2503PubMed
63.
Zurück zum Zitat Liu T, Zhang L, Joo D et al (2017) NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2:17023PubMedPubMedCentral Liu T, Zhang L, Joo D et al (2017) NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2:17023PubMedPubMedCentral
64.
Zurück zum Zitat Caldenhoven E, Liden J, Wissink S et al (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoids. Mol Endocrinol 9(4):401–412PubMed Caldenhoven E, Liden J, Wissink S et al (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoids. Mol Endocrinol 9(4):401–412PubMed
65.
Zurück zum Zitat Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5):a021873PubMedPubMedCentral Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5):a021873PubMedPubMedCentral
67.
Zurück zum Zitat Yafai Y, Iandiev I, Lange J et al (2014) Müller glial cells inhibit proliferation of retinal endothelial cells via TGF-β2 and Smad signaling. Glia. 62(9):1476–1485PubMed Yafai Y, Iandiev I, Lange J et al (2014) Müller glial cells inhibit proliferation of retinal endothelial cells via TGF-β2 and Smad signaling. Glia. 62(9):1476–1485PubMed
68.
Zurück zum Zitat Gerhardinger C, Dagher Z, Sebastiani P et al (2009) The transforming growth factor-β pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes. 58(7):1659–1667PubMedPubMedCentral Gerhardinger C, Dagher Z, Sebastiani P et al (2009) The transforming growth factor-β pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes. 58(7):1659–1667PubMedPubMedCentral
69.
Zurück zum Zitat Song CZ, Tian X, Gelehrter TD (1999) Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci 96(21):11776–11781PubMed Song CZ, Tian X, Gelehrter TD (1999) Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci 96(21):11776–11781PubMed
70.
71.
Zurück zum Zitat Yun JH, Park SW, Kim KJ et al (2017) Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J Cell Physiol 232(5):1123–1134PubMed Yun JH, Park SW, Kim KJ et al (2017) Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J Cell Physiol 232(5):1123–1134PubMed
72.
Zurück zum Zitat Langlais D, Couture C, Balsalobre A et al (2012) The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol Cell 47(1):38–49PubMed Langlais D, Couture C, Balsalobre A et al (2012) The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol Cell 47(1):38–49PubMed
73.
Zurück zum Zitat Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161(5):1202–1214PubMedPubMedCentral Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161(5):1202–1214PubMedPubMedCentral
74.
Zurück zum Zitat Peng YR, Shekhar K, Yan W et al (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell. 176(5):1222–1237PubMed Peng YR, Shekhar K, Yan W et al (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell. 176(5):1222–1237PubMed
75.
Zurück zum Zitat Mages K, Grassmann F, Jägle H et al (2019) The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 16(1):43PubMedPubMedCentral Mages K, Grassmann F, Jägle H et al (2019) The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 16(1):43PubMedPubMedCentral
76.
Zurück zum Zitat Das A, Stroud S, Mehta A et al (2015) New treatments for diabetic retinopathy. Diabetes Obes Metab 17(3):219–230PubMed Das A, Stroud S, Mehta A et al (2015) New treatments for diabetic retinopathy. Diabetes Obes Metab 17(3):219–230PubMed
77.
Zurück zum Zitat Fong DS, Girach A, Boney A (2007) Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 27(7):816–824PubMed Fong DS, Girach A, Boney A (2007) Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 27(7):816–824PubMed
78.
Zurück zum Zitat Dugel PU, Bandello F, Loewenstein A (2015) Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol (Auckland, NZ) 9:1321 Dugel PU, Bandello F, Loewenstein A (2015) Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol (Auckland, NZ) 9:1321
80.
Zurück zum Zitat Van Wijngaarden P, Coster DJ, Williams KA (2005) Inhibitors of ocular neovascularization: promises and potential problems. JAMA. 293(12):1509–1513PubMed Van Wijngaarden P, Coster DJ, Williams KA (2005) Inhibitors of ocular neovascularization: promises and potential problems. JAMA. 293(12):1509–1513PubMed
81.
Zurück zum Zitat Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239PubMed Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239PubMed
82.
Zurück zum Zitat Le Meur G, Lebranchu P, Billaud F et al (2018) Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther 26(1):256–268PubMed Le Meur G, Lebranchu P, Billaud F et al (2018) Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther 26(1):256–268PubMed
83.
Zurück zum Zitat Wang JH, Ling D, Tu L et al (2017) Gene therapy for diabetic retinopathy: are we ready to make the leap from bench to bedside? Pharmacol Ther 173:1–18PubMed Wang JH, Ling D, Tu L et al (2017) Gene therapy for diabetic retinopathy: are we ready to make the leap from bench to bedside? Pharmacol Ther 173:1–18PubMed
84.
Zurück zum Zitat Ideno J, Mizukami H, Kakehashi A et al (2007) Prevention of diabetic retinopathy by intraocular soluble flt-1 gene transfer in a spontaneously diabetic rat model. Int J Mol Med 19(1):75–79PubMed Ideno J, Mizukami H, Kakehashi A et al (2007) Prevention of diabetic retinopathy by intraocular soluble flt-1 gene transfer in a spontaneously diabetic rat model. Int J Mol Med 19(1):75–79PubMed
85.
Zurück zum Zitat Pechan P, Rubin H, Lukason M et al (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16(1):10PubMed Pechan P, Rubin H, Lukason M et al (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16(1):10PubMed
86.
Zurück zum Zitat Jiang J, Xia XB, Xu HZ et al (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1α and VEGF. J Cell Physiol 218(1):66–74PubMed Jiang J, Xia XB, Xu HZ et al (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1α and VEGF. J Cell Physiol 218(1):66–74PubMed
87.
Zurück zum Zitat Haurigot V, Villacampa P, Ribera A et al (2012) Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One 7(7):e41511PubMedPubMedCentral Haurigot V, Villacampa P, Ribera A et al (2012) Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One 7(7):e41511PubMedPubMedCentral
88.
Zurück zum Zitat Shyong MP, Lee FL, Kuo PC et al (2007) Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis 13:133PubMedPubMedCentral Shyong MP, Lee FL, Kuo PC et al (2007) Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis 13:133PubMedPubMedCentral
89.
Zurück zum Zitat Gong Y, Chang ZP, Ren RT et al (2012) Protective effects of adeno-associated virus mediated brain-derived neurotrophic factor expression on retinal ganglion cells in diabetic rats. Cell Mol Neurobiol 32(3):467–475PubMed Gong Y, Chang ZP, Ren RT et al (2012) Protective effects of adeno-associated virus mediated brain-derived neurotrophic factor expression on retinal ganglion cells in diabetic rats. Cell Mol Neurobiol 32(3):467–475PubMed
90.
Zurück zum Zitat Ramírez M, Wu Z, Moreno-Carranza B et al (2011) Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF-and diabetes-induced retinal vasopermeability. Invest Ophthalmol Vis Sci 52(12):8944–8950PubMed Ramírez M, Wu Z, Moreno-Carranza B et al (2011) Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF-and diabetes-induced retinal vasopermeability. Invest Ophthalmol Vis Sci 52(12):8944–8950PubMed
91.
Metadaten
Titel
The role of Müller cell glucocorticoid signaling in diabetic retinopathy
verfasst von
Farhad Ghaseminejad
Lew Kaplan
Anna M. Pfaller
Stefanie M. Hauck
Antje Grosche
Publikationsdatum
16.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 2/2020
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-019-04521-w

Weitere Artikel der Ausgabe 2/2020

Graefe's Archive for Clinical and Experimental Ophthalmology 2/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.