Skip to main content
Erschienen in: Obesity Surgery 10/2021

25.07.2021 | Review

The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review

verfasst von: Jason Bini, Mathieu Norcross, Maija Cheung, Andrew Duffy

Erschienen in: Obesity Surgery | Ausgabe 10/2021

Einloggen, um Zugang zu erhalten

Abstract

Bariatric surgery, initially understood as restricting or bypassing the amount of food that reaches the stomach to reduce food intake and/or increase malabsorption of food to promote weight loss, is now recognized to also affect incretin signaling in the gut and promote improvements in system-wide metabolism. Positron emission tomography (PET) is an imaging technique whereby patients are injected with picomolar concentrations of radioactive molecules, below the threshold of having physiological effects, to measure spatial distributions of blood flow, metabolism, receptor, and enzyme pharmacology. Recent advances in both whole-body PET imaging and radioligand development will allow for novel research that may help clarify the roles of peripheral and central receptor/enzyme systems in treating obesity with bariatric surgery.

Graphical abstract

Literatur
1.
Zurück zum Zitat Hales C, Carroll M, Fryar C, et al. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. Hyattsville, MD: Natl Cent Heal Stat; 2020. February:NCHS Data Brief, no 360 Hales C, Carroll M, Fryar C, et al. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. Hyattsville, MD: Natl Cent Heal Stat; 2020. February:NCHS Data Brief, no 360
2.
Zurück zum Zitat Narayan KM, Boyle JP, Thompson TJ, et al. Effect of BMI on lifetime risk for diabetes research design and. Diabetes Care. 2007;30:1562–6.PubMedCrossRef Narayan KM, Boyle JP, Thompson TJ, et al. Effect of BMI on lifetime risk for diabetes research design and. Diabetes Care. 2007;30:1562–6.PubMedCrossRef
3.
Zurück zum Zitat Secretan BL, Ph D, Scoccianti C, et al. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8.CrossRef Secretan BL, Ph D, Scoccianti C, et al. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8.CrossRef
4.
Zurück zum Zitat Gallagher EJ, Leroith D. Hyperinsulinaemia in cancer. Nat Rev Cancer. 2020;20(11):629–44. Gallagher EJ, Leroith D. Hyperinsulinaemia in cancer. Nat Rev Cancer. 2020;20(11):629–44.
5.
Zurück zum Zitat Alford S, Patel D, Perakakis N, et al. Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes Rev. 2018;19:269–80.PubMedCrossRef Alford S, Patel D, Perakakis N, et al. Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes Rev. 2018;19:269–80.PubMedCrossRef
6.
Zurück zum Zitat Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.PubMedCrossRef Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.PubMedCrossRef
8.
Zurück zum Zitat Colquitt JL, Pickett K, Loveman E, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8(8):CD003641. Colquitt JL, Pickett K, Loveman E, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8(8):CD003641.
9.
Zurück zum Zitat Pareek M, Schauer PR, Kaplan LM, et al. Metabolic surgery: weight loss, diabetes and beyond. J Am Coll Cardiol. 2018;71:670–87.PubMedCrossRef Pareek M, Schauer PR, Kaplan LM, et al. Metabolic surgery: weight loss, diabetes and beyond. J Am Coll Cardiol. 2018;71:670–87.PubMedCrossRef
10.
Zurück zum Zitat Gronroos S, Helmio M, Juuti A, et al. Effect of laparoscopic sleeve gastrectomy vs Roux-en-Y gastric bypass on weight loss and quality of life at 7 years in patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA Surg. 2021;156:137–46.PubMedCrossRef Gronroos S, Helmio M, Juuti A, et al. Effect of laparoscopic sleeve gastrectomy vs Roux-en-Y gastric bypass on weight loss and quality of life at 7 years in patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA Surg. 2021;156:137–46.PubMedCrossRef
11.
Zurück zum Zitat Valk P. In: Bailey D, Townsend D, Maisey M, editors. Positron emission tomography: basic science and clinical practice. 3rd ed: Springer; 2004. Valk P. In: Bailey D, Townsend D, Maisey M, editors. Positron emission tomography: basic science and clinical practice. 3rd ed: Springer; 2004.
12.
Zurück zum Zitat Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88.PubMedCrossRef Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88.PubMedCrossRef
13.
Zurück zum Zitat Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41:661–81.PubMed Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41:661–81.PubMed
14.
Zurück zum Zitat Charron M, Beyer T, Bohnen NN, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med. 2000;25:905–10.PubMedCrossRef Charron M, Beyer T, Bohnen NN, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med. 2000;25:905–10.PubMedCrossRef
15.
Zurück zum Zitat Sokoloff L, Reivich M, Kennedy C, et al. The [14 C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef Sokoloff L, Reivich M, Kennedy C, et al. The [14 C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef
16.
Zurück zum Zitat Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977;29:13–26.PubMedCrossRef Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977;29:13–26.PubMedCrossRef
17.
Zurück zum Zitat Mäkinen J, Hannukainen JC, Karmi A, et al. Obesity-associated intestinal insulin resistance is ameliorated after bariatric surgery. Diabetologia. 2015;58(5):1055–62.PubMedPubMedCentralCrossRef Mäkinen J, Hannukainen JC, Karmi A, et al. Obesity-associated intestinal insulin resistance is ameliorated after bariatric surgery. Diabetologia. 2015;58(5):1055–62.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Kellett GL, Brot-Laroche E. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes. 2005;54:3056–62.PubMedCrossRef Kellett GL, Brot-Laroche E. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes. 2005;54:3056–62.PubMedCrossRef
19.
Zurück zum Zitat Franquet E, Watts G, Kolodny GM, et al. PET-CT reveals increased intestinal glucose uptake after gastric surgery. Surg Obes Relat Dis Elsevier Inc. 2019;15:643–9.CrossRef Franquet E, Watts G, Kolodny GM, et al. PET-CT reveals increased intestinal glucose uptake after gastric surgery. Surg Obes Relat Dis Elsevier Inc. 2019;15:643–9.CrossRef
20.
Zurück zum Zitat Cavin J-B, Couvelard A, Lebtahi R, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose following Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology Elsevier Ltd. 2016;150:454–64.CrossRef Cavin J-B, Couvelard A, Lebtahi R, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose following Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology Elsevier Ltd. 2016;150:454–64.CrossRef
21.
Zurück zum Zitat Pahk K, Park S, Kim S, et al. [18F]-Fluorodeoxyglucose positron emission tomography combined with computed tomography imaging with remission of type 2 diabetes after gastric bypass surgery. J Diabetes. 2016;8:162–4.PubMedCrossRef Pahk K, Park S, Kim S, et al. [18F]-Fluorodeoxyglucose positron emission tomography combined with computed tomography imaging with remission of type 2 diabetes after gastric bypass surgery. J Diabetes. 2016;8:162–4.PubMedCrossRef
22.
Zurück zum Zitat Saeidi N, Meoli L, Nestroridi E, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341(80):406.PubMedPubMedCentralCrossRef Saeidi N, Meoli L, Nestroridi E, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341(80):406.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Iozzo P, Gastaldelli A, Järvisalo MJ, et al. 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. J Nucl Med. 2006;47:1016–22.PubMed Iozzo P, Gastaldelli A, Järvisalo MJ, et al. 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. J Nucl Med. 2006;47:1016–22.PubMed
24.
Zurück zum Zitat Iozzo P, Jarvisalo MJ, Kiss J, et al. Quantification of liver glucose metabolism by positron emission tomography: validation study in pigs. Gastroenterology. 2007;132:531–42.PubMedCrossRef Iozzo P, Jarvisalo MJ, Kiss J, et al. Quantification of liver glucose metabolism by positron emission tomography: validation study in pigs. Gastroenterology. 2007;132:531–42.PubMedCrossRef
25.
Zurück zum Zitat Immonen H, Hannukainen JC, Iozzo P, et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol European Association for the Study of the Liver. 2014;60:377–83. Immonen H, Hannukainen JC, Iozzo P, et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol European Association for the Study of the Liver. 2014;60:377–83.
26.
Zurück zum Zitat Kwon Y, Pahk K, Park S, et al. Metabolic surgery could restore hepatic glucose metabolism: results from F-18 fluorodeoxyglucose positron emission tomography. Obes Surg. 2016;26(1):156–7. Kwon Y, Pahk K, Park S, et al. Metabolic surgery could restore hepatic glucose metabolism: results from F-18 fluorodeoxyglucose positron emission tomography. Obes Surg. 2016;26(1):156–7.
27.
Zurück zum Zitat Cho A, Ph D, Kwon IG, et al. Altered systematic glucose utilization after gastrectomy: correlation with weight loss. Surg Obes Relat Dis. 2020;16:900–7.PubMedCrossRef Cho A, Ph D, Kwon IG, et al. Altered systematic glucose utilization after gastrectomy: correlation with weight loss. Surg Obes Relat Dis. 2020;16:900–7.PubMedCrossRef
28.
Zurück zum Zitat Liedtke AJ. Alterations of carbohydate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981;23:321–36.PubMedCrossRef Liedtke AJ. Alterations of carbohydate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981;23:321–36.PubMedCrossRef
29.
Zurück zum Zitat Morbelli S, Marini C, Adami GF, et al. Tissue specificity in fasting glucose utilization in slightly obese diabetic patients submitted to bariatric surgery. Obesity. 2013;21:175–81.CrossRef Morbelli S, Marini C, Adami GF, et al. Tissue specificity in fasting glucose utilization in slightly obese diabetic patients submitted to bariatric surgery. Obesity. 2013;21:175–81.CrossRef
30.
Zurück zum Zitat Hannukainen JC, Lautamaki R, Parkka J, et al. Reversibility of myocardial metabolism and remodeling in morbidly obese patients six months after bariatric surgery. Diabetes Obes Metab. 2018;20(4):963–73. Hannukainen JC, Lautamaki R, Parkka J, et al. Reversibility of myocardial metabolism and remodeling in morbidly obese patients six months after bariatric surgery. Diabetes Obes Metab. 2018;20(4):963–73.
31.
Zurück zum Zitat Huang X, Wu D, Cheng Y, et al. Restoration of myocardial glucose uptake with facilitated myocardial glucose transporter 4 translocation contributes to alleviation of diabetic cardiomyopathy in rats after duodenal- jejunal bypass. J Diabetes Investig. 2019;10:626–38.PubMedCrossRef Huang X, Wu D, Cheng Y, et al. Restoration of myocardial glucose uptake with facilitated myocardial glucose transporter 4 translocation contributes to alleviation of diabetic cardiomyopathy in rats after duodenal- jejunal bypass. J Diabetes Investig. 2019;10:626–38.PubMedCrossRef
32.
Zurück zum Zitat Rudd JHF, Myers KS, Bansilal S, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6.PubMedCrossRef Rudd JHF, Myers KS, Bansilal S, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6.PubMedCrossRef
33.
Zurück zum Zitat Bucerius J, Vijgen GHEJ, Brans B, et al. Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues. Medicine (Baltimore). 2015;94:1–9.CrossRef Bucerius J, Vijgen GHEJ, Brans B, et al. Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues. Medicine (Baltimore). 2015;94:1–9.CrossRef
34.
Zurück zum Zitat Bucerius J, Mani V, Moncrieff C, et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging. 2014;41:369–83.PubMedCrossRef Bucerius J, Mani V, Moncrieff C, et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging. 2014;41:369–83.PubMedCrossRef
35.
Zurück zum Zitat Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019;129:3990–4000.PubMedPubMedCentralCrossRef Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019;129:3990–4000.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Choe SS, Huh JY, Hwang IJ, et al. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:1–16.CrossRef Choe SS, Huh JY, Hwang IJ, et al. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:1–16.CrossRef
37.
Zurück zum Zitat Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol Nature Publishing Group. 2014;10:24–36.CrossRef Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol Nature Publishing Group. 2014;10:24–36.CrossRef
38.
Zurück zum Zitat Virtanen KA, Lönnroth P, Parkkola R, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002;87:3902–10.PubMedCrossRef Virtanen KA, Lönnroth P, Parkkola R, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002;87:3902–10.PubMedCrossRef
39.
Zurück zum Zitat Hany TF, Gharehpapagh E, Kamel EM, et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med. 2002;29:1393–8.CrossRef Hany TF, Gharehpapagh E, Kamel EM, et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med. 2002;29:1393–8.CrossRef
40.
Zurück zum Zitat Yeung HWD, Grewal RK, Gonen M, et al. Patterns of 18 F-FDG uptake in adipose tissue and muscle: a potential source of. J Nucl Med. 2003;44:1789–97.PubMed Yeung HWD, Grewal RK, Gonen M, et al. Patterns of 18 F-FDG uptake in adipose tissue and muscle: a potential source of. J Nucl Med. 2003;44:1789–97.PubMed
41.
Zurück zum Zitat Cohade C, Osman M, Pannu HK, et al. Uptake in supraclavicular area fat (“USA-Fat”). J Nucl Med. 2003;44:170–7.PubMed Cohade C, Osman M, Pannu HK, et al. Uptake in supraclavicular area fat (“USA-Fat”). J Nucl Med. 2003;44:170–7.PubMed
42.
Zurück zum Zitat Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.PubMedCrossRef Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.PubMedCrossRef
43.
Zurück zum Zitat van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.PubMedCrossRef van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.PubMedCrossRef
44.
Zurück zum Zitat Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.PubMedPubMedCentralCrossRef Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Chen KY, Cypess AM, Laughlin MR, et al. Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24:210–22.PubMedPubMedCentralCrossRef Chen KY, Cypess AM, Laughlin MR, et al. Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24:210–22.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Vijgen GHEJ, Bouvy ND, Teule GJJ, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97:1229–33.CrossRef Vijgen GHEJ, Bouvy ND, Teule GJJ, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97:1229–33.CrossRef
47.
Zurück zum Zitat Rachid B, Rodovalho S, Folli F, et al. Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes Nature Publishing Group. 2015;39:1515–22.CrossRef Rachid B, Rodovalho S, Folli F, et al. Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes Nature Publishing Group. 2015;39:1515–22.CrossRef
48.
Zurück zum Zitat Chen Y, Yang J, Nie X, et al. Effects of bariatric surgery on change of brown adipocyte tissue and energy metabolism in obese mice. Obes Surg 2018;28(3):820-830 Chen Y, Yang J, Nie X, et al. Effects of bariatric surgery on change of brown adipocyte tissue and energy metabolism in obese mice. Obes Surg 2018;28(3):820-830
49.
Zurück zum Zitat Hankir M, Bueter M, Gsell W, et al. Increased energy expenditure in gastric bypass rats is not caused by activated brown adipose tissue. Obes Facts. 2012;5:349–58.PubMedCrossRef Hankir M, Bueter M, Gsell W, et al. Increased energy expenditure in gastric bypass rats is not caused by activated brown adipose tissue. Obes Facts. 2012;5:349–58.PubMedCrossRef
50.
Zurück zum Zitat Rao RS, Rao V, Kini S. Animal models in bariatric surgery—a review of the surgical techniques and postsurgical physiology. Obes Surg. 2010;20:1293–305.PubMedCrossRef Rao RS, Rao V, Kini S. Animal models in bariatric surgery—a review of the surgical techniques and postsurgical physiology. Obes Surg. 2010;20:1293–305.PubMedCrossRef
51.
Zurück zum Zitat Rodovalho S, Rachid B, De-lima-junior J, et al. Impairment of body mass reduction-associated activation of brown/beige adipose tissue in patients with type 2 diabetes mellitus. Int J Obes Nature Publishing Group. 2017;41:1662–8.CrossRef Rodovalho S, Rachid B, De-lima-junior J, et al. Impairment of body mass reduction-associated activation of brown/beige adipose tissue in patients with type 2 diabetes mellitus. Int J Obes Nature Publishing Group. 2017;41:1662–8.CrossRef
52.
Zurück zum Zitat Dadson P, Landini L, Helmiö M, et al. Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care. 2016;39:292–9.PubMedCrossRef Dadson P, Landini L, Helmiö M, et al. Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care. 2016;39:292–9.PubMedCrossRef
53.
Zurück zum Zitat Suchacki KJ, Tavares AAS, Mattiucci D, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11:3097. Suchacki KJ, Tavares AAS, Mattiucci D, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11:3097.
54.
Zurück zum Zitat Pham TT, Ivaska KK, Hannukainen JC, et al. Human bone marrow adipose tissue is a metabolically active and insulin sensitive distinct fat depot. J Clin Endocrinol Metab. 2020;7:2300–10.CrossRef Pham TT, Ivaska KK, Hannukainen JC, et al. Human bone marrow adipose tissue is a metabolically active and insulin sensitive distinct fat depot. J Clin Endocrinol Metab. 2020;7:2300–10.CrossRef
55.
Zurück zum Zitat Savolainen AM, Karmi A, Immonen HM, et al. Physical activity associates with muscle insulin sensitivity postbariatric surgery. Med Sci Sports Exerc. 2019;51:278–87.PubMedCrossRef Savolainen AM, Karmi A, Immonen HM, et al. Physical activity associates with muscle insulin sensitivity postbariatric surgery. Med Sci Sports Exerc. 2019;51:278–87.PubMedCrossRef
56.
Zurück zum Zitat Silverman DHS. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45:594–607.PubMed Silverman DHS. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45:594–607.PubMed
57.
Zurück zum Zitat Makaronidis JM, Batterham RL. The role of imaging in obesity special feature: review article obesity, body weight regulation and the brain: insights from fMRI. Br J Radiol. 2018;91(1089):20170910. Makaronidis JM, Batterham RL. The role of imaging in obesity special feature: review article obesity, body weight regulation and the brain: insights from fMRI. Br J Radiol. 2018;91(1089):20170910.
58.
Zurück zum Zitat Marques EL, Halpern A, Mancini MC, et al. Metabolism after bariatric surgery. J Clin Endocrinol Metab. 2014;99:2347–52.CrossRef Marques EL, Halpern A, Mancini MC, et al. Metabolism after bariatric surgery. J Clin Endocrinol Metab. 2014;99:2347–52.CrossRef
59.
Zurück zum Zitat Hunt KF, Dunn JT, Roux CW, et al. Differences in regional brain responses to food ingestion after Roux-en-Y gastric bypass and the role of gut peptides: a neuroimaging study. Diabetes Care. 2016;39:1787–95.PubMedCrossRef Hunt KF, Dunn JT, Roux CW, et al. Differences in regional brain responses to food ingestion after Roux-en-Y gastric bypass and the role of gut peptides: a neuroimaging study. Diabetes Care. 2016;39:1787–95.PubMedCrossRef
60.
Zurück zum Zitat Rebelos E, Immonen H, Bucci M, et al. Brain glucose uptake is associated with endogenous glucose production in obese subjects before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes Metab. 2019;21:218–26.PubMedCrossRef Rebelos E, Immonen H, Bucci M, et al. Brain glucose uptake is associated with endogenous glucose production in obese subjects before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes Metab. 2019;21:218–26.PubMedCrossRef
61.
Zurück zum Zitat Thanos PK, Michaelides M, Subrize M, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS One. 2015;10:1–19.CrossRef Thanos PK, Michaelides M, Subrize M, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS One. 2015;10:1–19.CrossRef
62.
Zurück zum Zitat Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126:12–22.PubMedPubMedCentralCrossRef Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126:12–22.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Jensen MD, Haymond MW, Rizza RA, et al. Influence of body fat distribution free fatty acid metabolism in obesity. J Clin Invest. 1989;83:1168–73.PubMedPubMedCentralCrossRef Jensen MD, Haymond MW, Rizza RA, et al. Influence of body fat distribution free fatty acid metabolism in obesity. J Clin Invest. 1989;83:1168–73.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Bruce KD, Zsombok A, Eckel RH, et al. Lipid processing in the brain: a key regulator of systemic metabolism. Front Endocrinol (Lausanne). 2017;8:1–11.CrossRef Bruce KD, Zsombok A, Eckel RH, et al. Lipid processing in the brain: a key regulator of systemic metabolism. Front Endocrinol (Lausanne). 2017;8:1–11.CrossRef
65.
Zurück zum Zitat Degrado TR, Coenen HH, Stoã G. 14(R,S)-[18F-]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med. 1991;32:1888–96.PubMed Degrado TR, Coenen HH, Stoã G. 14(R,S)-[18F-]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med. 1991;32:1888–96.PubMed
66.
Zurück zum Zitat Honka H, Koffert J, Hannukainen JC, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015;100:2015–23.PubMedCrossRef Honka H, Koffert J, Hannukainen JC, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015;100:2015–23.PubMedCrossRef
67.
Zurück zum Zitat Dadson P, Ferrannini E, Landini L, et al. Fatty acid uptake and blood flow in adipose tissue compartments of morbidly obese subjects with or without type 2 diabetes: effects of bariatric surgery. Am J Physiol Metabolism and Endocrinology. 2017;313(2):E175–82. Dadson P, Ferrannini E, Landini L, et al. Fatty acid uptake and blood flow in adipose tissue compartments of morbidly obese subjects with or without type 2 diabetes: effects of bariatric surgery. Am J Physiol Metabolism and Endocrinology. 2017;313(2):E175–82.
68.
Zurück zum Zitat Dadson P, Hannukainen JC, Din MU, et al. Brown adipose tissue lipid metabolism in morbid obesity: effect of bariatric surgery-induced weight loss. Diabetes Obes Metab. 2018;20:1280–8.PubMedCrossRef Dadson P, Hannukainen JC, Din MU, et al. Brown adipose tissue lipid metabolism in morbid obesity: effect of bariatric surgery-induced weight loss. Diabetes Obes Metab. 2018;20:1280–8.PubMedCrossRef
69.
Zurück zum Zitat Immonen HM, Hannukainen JC, Kudomi N, et al. Increased liver fatty acid uptake is partly reversed and liver fat content normalized after bariatric surgery. Diabetes Care. 2018;41:368–71.PubMedCrossRef Immonen HM, Hannukainen JC, Kudomi N, et al. Increased liver fatty acid uptake is partly reversed and liver fat content normalized after bariatric surgery. Diabetes Care. 2018;41:368–71.PubMedCrossRef
70.
Zurück zum Zitat Lin CH, Kurup S, Herrero P, et al. Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity. 2011;19:1804–12.PubMedCrossRef Lin CH, Kurup S, Herrero P, et al. Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity. 2011;19:1804–12.PubMedCrossRef
71.
Zurück zum Zitat Koffert J, Stahle M, Karlsson H, et al. Morbid obesity and type 2 diabetes alter intestinal fatty acid uptake and blood flow. Diabetes Obes Metab. 2018;20:1384–90.PubMedPubMedCentralCrossRef Koffert J, Stahle M, Karlsson H, et al. Morbid obesity and type 2 diabetes alter intestinal fatty acid uptake and blood flow. Diabetes Obes Metab. 2018;20:1384–90.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Carreau A, Noll C, Blondin DP, et al. Bariatric surgery rapidly decreases cardiac dietary fatty acid partitioning and hepatic insulin resistance through increased intra-abdominal adipose tissue storage and reduced spillover in type 2 diabetes. Diabetes. 2020;69:567–77.PubMedCrossRef Carreau A, Noll C, Blondin DP, et al. Bariatric surgery rapidly decreases cardiac dietary fatty acid partitioning and hepatic insulin resistance through increased intra-abdominal adipose tissue storage and reduced spillover in type 2 diabetes. Diabetes. 2020;69:567–77.PubMedCrossRef
73.
Zurück zum Zitat Rebelos E, Iozzo P, Salminen P, et al. Brain free fatty acid uptake is elevated in morbid obesity, and is irreversible 6 months after bariatric surgery: a positron emission tomography study. Diabetes Obes Metab. 2020;22(7):1074–82. Rebelos E, Iozzo P, Salminen P, et al. Brain free fatty acid uptake is elevated in morbid obesity, and is irreversible 6 months after bariatric surgery: a positron emission tomography study. Diabetes Obes Metab. 2020;22(7):1074–82.
74.
Zurück zum Zitat Rowland N, Marshall JF, Antelman SM, et al. Hypothalamic hyperphagia prevented by damage to brain dopamine-containing neurons. Physiol Behav. 1979;22:635–40.PubMedCrossRef Rowland N, Marshall JF, Antelman SM, et al. Hypothalamic hyperphagia prevented by damage to brain dopamine-containing neurons. Physiol Behav. 1979;22:635–40.PubMedCrossRef
75.
Zurück zum Zitat Missale C, Russel Nash S, Robinson SW, et al. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.PubMedCrossRef Missale C, Russel Nash S, Robinson SW, et al. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.PubMedCrossRef
76.
Zurück zum Zitat Farde L, Hall H, Ehrin E, et al. Quantitative analysis of D2 dopamie receptor binding in the living human brain by PET. Science. 1986;231(80):258–61.PubMedCrossRef Farde L, Hall H, Ehrin E, et al. Quantitative analysis of D2 dopamie receptor binding in the living human brain by PET. Science. 1986;231(80):258–61.PubMedCrossRef
77.
Zurück zum Zitat Seeman P. Antipsychotic drugs, dopamine receptors, and schizophrenia. Clin Neurosci Res. 2001;1:53–60.CrossRef Seeman P. Antipsychotic drugs, dopamine receptors, and schizophrenia. Clin Neurosci Res. 2001;1:53–60.CrossRef
78.
79.
80.
Zurück zum Zitat Steele KE, Prokopowicz GP, Schweitzer MA, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20:369–74.PubMedCrossRef Steele KE, Prokopowicz GP, Schweitzer MA, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20:369–74.PubMedCrossRef
81.
Zurück zum Zitat Bäckman L, Ph D, Ginovart N, et al. Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry. 2000;157:635–7.PubMedCrossRef Bäckman L, Ph D, Ginovart N, et al. Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry. 2000;157:635–7.PubMedCrossRef
82.
Zurück zum Zitat Karrer TM, Josef AK, Mata R, et al. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging. 2018;57:36–46.CrossRef Karrer TM, Josef AK, Mata R, et al. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging. 2018;57:36–46.CrossRef
83.
Zurück zum Zitat Kapur S, Mann JJ. Role of the dopaminergic system in depression. Biol Psychiatry. 1992;32:1–17.PubMedCrossRef Kapur S, Mann JJ. Role of the dopaminergic system in depression. Biol Psychiatry. 1992;32:1–17.PubMedCrossRef
85.
Zurück zum Zitat Dunn JP, Cowan RL, Volkow ND, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res Elsevier BV. 2010;1350:123–30.CrossRef Dunn JP, Cowan RL, Volkow ND, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res Elsevier BV. 2010;1350:123–30.CrossRef
86.
Zurück zum Zitat Slifstein M, Kegeles LS, Xu X, et al. Striatal and extrastriatal dopamine release measured with PET and [18 F]fallypride. Synapse. 2010;64:350–62.PubMedPubMedCentralCrossRef Slifstein M, Kegeles LS, Xu X, et al. Striatal and extrastriatal dopamine release measured with PET and [18 F]fallypride. Synapse. 2010;64:350–62.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Karlsson HK, Tuulari JJ, Tuominen L, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry Nature Publishing Group. 2016;21:1057–62.CrossRef Karlsson HK, Tuulari JJ, Tuominen L, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry Nature Publishing Group. 2016;21:1057–62.CrossRef
88.
Zurück zum Zitat Kessler RM, Zald DH, Ansari MS, et al. Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse. 2014;68:317–20.PubMed Kessler RM, Zald DH, Ansari MS, et al. Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse. 2014;68:317–20.PubMed
89.
Zurück zum Zitat Suissa K, Schneeweiss S, Kim DW, et al. Prescribing trends and clinical characteristics of patients starting antiobesity drugs in the U.S. Diabetes Obes Metab. 2021;23(7):1542–51. Suissa K, Schneeweiss S, Kim DW, et al. Prescribing trends and clinical characteristics of patients starting antiobesity drugs in the U.S. Diabetes Obes Metab. 2021;23(7):1542–51.
90.
Zurück zum Zitat Donovan MH, Tecott LH, Horvath TL. Serotonin and the regulation of mammalian energy balance. Front Neurosci. 2013;7:1–15.CrossRef Donovan MH, Tecott LH, Horvath TL. Serotonin and the regulation of mammalian energy balance. Front Neurosci. 2013;7:1–15.CrossRef
91.
Zurück zum Zitat Haahr ME, Hansen DL, Fisher PM, et al. Central 5-HT neurotransmission modulates weight loss following gastric bypass surgery in obese individuals. J Neurosci. 2015;35:5884–9.PubMedPubMedCentralCrossRef Haahr ME, Hansen DL, Fisher PM, et al. Central 5-HT neurotransmission modulates weight loss following gastric bypass surgery in obese individuals. J Neurosci. 2015;35:5884–9.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat de Heide LJM, Glaudemans AWJM, Oomen PHN, et al. Functional imaging in hyperinsulinemic. J Clin Endocrinol Metab. 2012;97:963–7. de Heide LJM, Glaudemans AWJM, Oomen PHN, et al. Functional imaging in hyperinsulinemic. J Clin Endocrinol Metab. 2012;97:963–7.
93.
Zurück zum Zitat Eriksson O, Laughlin M, Brom M, et al. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia. 2016;59(7):1340–9. Eriksson O, Laughlin M, Brom M, et al. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia. 2016;59(7):1340–9.
94.
Zurück zum Zitat Eriksson O, Långström B, Antoni G. New ways of understanding the complex biology of diabetes. Nucl Med Biol. 2021;92:65–71. Eriksson O, Långström B, Antoni G. New ways of understanding the complex biology of diabetes. Nucl Med Biol. 2021;92:65–71.
95.
Zurück zum Zitat Gosnell BA, Levine AS. Reward systems and food intake: role of opioids. Int J Obes Nature Publishing Group. 2009;33:S54–8.CrossRef Gosnell BA, Levine AS. Reward systems and food intake: role of opioids. Int J Obes Nature Publishing Group. 2009;33:S54–8.CrossRef
96.
Zurück zum Zitat Peciña S, Smith KS. Pharmacology, biochemistry and behavior hedonic and motivational roles of opioids in food reward: implications for overeating disorders. Pharmacol Biochem Behav Elsevier Inc. 2010;97:34–46.CrossRef Peciña S, Smith KS. Pharmacology, biochemistry and behavior hedonic and motivational roles of opioids in food reward: implications for overeating disorders. Pharmacol Biochem Behav Elsevier Inc. 2010;97:34–46.CrossRef
98.
Zurück zum Zitat Hankir MK, Patt M, Patt JTW, et al. Suppressed fat appetite after Roux-en-Y gastric bypass surgery associates with reduced brain μ-opioid receptor availability in diet-induced obese male rats. Front Neurosci. 2017;10:1–9.CrossRef Hankir MK, Patt M, Patt JTW, et al. Suppressed fat appetite after Roux-en-Y gastric bypass surgery associates with reduced brain μ-opioid receptor availability in diet-induced obese male rats. Front Neurosci. 2017;10:1–9.CrossRef
99.
Zurück zum Zitat Honka H, Koffert J, Kauhanen S, et al. Bariatric surgery enhances splanchnic vascular responses in patients with type 2 diabetes. Diabetes. 2017;66:880–5.PubMedCrossRef Honka H, Koffert J, Kauhanen S, et al. Bariatric surgery enhances splanchnic vascular responses in patients with type 2 diabetes. Diabetes. 2017;66:880–5.PubMedCrossRef
100.
Zurück zum Zitat Honka H, Koffert J, Kauhanen S, et al. Liver blood dynamics after bariatric surgery: the effects of mixed-meal test and incretin infusions. Endocr Connect. 2018;7:888–96.PubMedPubMedCentralCrossRef Honka H, Koffert J, Kauhanen S, et al. Liver blood dynamics after bariatric surgery: the effects of mixed-meal test and incretin infusions. Endocr Connect. 2018;7:888–96.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Krivokapich J, Smith GT, Huang S. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers: quantification of absolute myocardial perfusion with positron emission tomography. Circulation. 1989;80:1328–37.PubMedCrossRef Krivokapich J, Smith GT, Huang S. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers: quantification of absolute myocardial perfusion with positron emission tomography. Circulation. 1989;80:1328–37.PubMedCrossRef
102.
Zurück zum Zitat Quercioli A, Montecucco F, Pataky Z, et al. Vascular medicine improvement in coronary circulatory function in morbidly obese individuals after gastric bypass-induced weight loss: relation to alterations in endocannabinoids and adipocytokines. European Heart Journal. 2013;34(27):2063–73. Quercioli A, Montecucco F, Pataky Z, et al. Vascular medicine improvement in coronary circulatory function in morbidly obese individuals after gastric bypass-induced weight loss: relation to alterations in endocannabinoids and adipocytokines. European Heart Journal. 2013;34(27):2063–73.
103.
Zurück zum Zitat Singhal T, Ding YS, Weinzimmer D, et al. Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol. 2011;13:973–84.PubMedCrossRef Singhal T, Ding YS, Weinzimmer D, et al. Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol. 2011;13:973–84.PubMedCrossRef
104.
Zurück zum Zitat Normandin MD, Petersen KF, Ding Y-S, et al. In vivo imaging of endogenous pancreatic-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med. 2012;53:908–16.PubMedCrossRef Normandin MD, Petersen KF, Ding Y-S, et al. In vivo imaging of endogenous pancreatic-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med. 2012;53:908–16.PubMedCrossRef
105.
Zurück zum Zitat Naganawa M, Lin S-F, Lim K, et al. Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of (18)F-FP-DTBZ in baboons. Nucl Med Biol Elsevier BV. 2016;43:743–51.CrossRef Naganawa M, Lin S-F, Lim K, et al. Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of (18)F-FP-DTBZ in baboons. Nucl Med Biol Elsevier BV. 2016;43:743–51.CrossRef
106.
Zurück zum Zitat Cline GW, Naganawa M, Chen L, et al. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia. 2018;61(12):2598–607. Cline GW, Naganawa M, Chen L, et al. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia. 2018;61(12):2598–607.
107.
Zurück zum Zitat Inabnet WB, Milone L, Harris PE, et al. The utility of [11 C] dihydrotetrabenazine positron emission tomography scanning in assessing β-cell performance after sleeve gastrectomy and duodenal-jejunal bypass. Surgery. 2010;147:303–9.PubMedCrossRef Inabnet WB, Milone L, Harris PE, et al. The utility of [11 C] dihydrotetrabenazine positron emission tomography scanning in assessing β-cell performance after sleeve gastrectomy and duodenal-jejunal bypass. Surgery. 2010;147:303–9.PubMedCrossRef
109.
Zurück zum Zitat Cherry SR, Jones T, Karp JS, et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.PubMedPubMedCentralCrossRef Cherry SR, Jones T, Karp JS, et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Methlie P, Dankel S, Myhra T, et al. Changes in adipose glucocorticoid metabolism before and after bariatric surgery assessed by direct hormone measurements. Obesity. 2013;21:2495–503.PubMedCrossRef Methlie P, Dankel S, Myhra T, et al. Changes in adipose glucocorticoid metabolism before and after bariatric surgery assessed by direct hormone measurements. Obesity. 2013;21:2495–503.PubMedCrossRef
112.
Zurück zum Zitat Woods CP, Corrigan M, Gathercole L, et al. Tissue specific regulation of glucocorticoids in severe obesity and the response to significant weight loss following bariatric surgery (BARICORT). J Clin Endocrinol Metab. 2015;100:1434–44.PubMedCrossRef Woods CP, Corrigan M, Gathercole L, et al. Tissue specific regulation of glucocorticoids in severe obesity and the response to significant weight loss following bariatric surgery (BARICORT). J Clin Endocrinol Metab. 2015;100:1434–44.PubMedCrossRef
113.
Zurück zum Zitat Pardina E, Baena-Fustegueras JA, Fort JM, et al. Hepatic and visceral adipose tissue 11βHSD1 expressions are markers of body weight loss after bariatric surgery. Obesity. 2015;23:1856–63.PubMedCrossRef Pardina E, Baena-Fustegueras JA, Fort JM, et al. Hepatic and visceral adipose tissue 11βHSD1 expressions are markers of body weight loss after bariatric surgery. Obesity. 2015;23:1856–63.PubMedCrossRef
114.
Zurück zum Zitat Baum E, Zhang W, Li S, et al. A novel 18 F-labeled radioligand for positron emission tomography imaging of 11β-hydroxysteroid dehydrogenase (11β-HSD1): synthesis and preliminary evaluation in nonhuman primates. ACS Chem Neurosci. 2019;10:2450–8.PubMedCrossRef Baum E, Zhang W, Li S, et al. A novel 18 F-labeled radioligand for positron emission tomography imaging of 11β-hydroxysteroid dehydrogenase (11β-HSD1): synthesis and preliminary evaluation in nonhuman primates. ACS Chem Neurosci. 2019;10:2450–8.PubMedCrossRef
115.
Zurück zum Zitat Bhatt S, Nabulsi NB, Li S, et al. First in-human PET study and kinetic evaluation of [ 18 F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1. J Cereb Blood Flow Metab. 2020;40(4):695–704. Bhatt S, Nabulsi NB, Li S, et al. First in-human PET study and kinetic evaluation of [ 18 F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1. J Cereb Blood Flow Metab. 2020;40(4):695–704.
116.
Zurück zum Zitat Bini J, Bhatt S, Hillmer A, et al. Body mass index and age effects on brain 11β-hydroxysteroid dehydrogenase type 1: a positron emission tomography study. Mol Imaging Biol. 2020;22:1124–31.PubMedPubMedCentralCrossRef Bini J, Bhatt S, Hillmer A, et al. Body mass index and age effects on brain 11β-hydroxysteroid dehydrogenase type 1: a positron emission tomography study. Mol Imaging Biol. 2020;22:1124–31.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Hwang JJ, Yeckel CW, Gallezot JD, et al. Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand. Metabolism Elsevier BV. 2015;64:747–55. Hwang JJ, Yeckel CW, Gallezot JD, et al. Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand. Metabolism Elsevier BV. 2015;64:747–55.
119.
Zurück zum Zitat Bini J, Naganawa M, Nabulsi NB, et al. Evaluation of PET brain radioligands for imaging pancreatic β-cell mass: potential utility of 11C-PHNO. J Nucl Med. 2018;59(8):1249–54. Bini J, Naganawa M, Nabulsi NB, et al. Evaluation of PET brain radioligands for imaging pancreatic β-cell mass: potential utility of 11C-PHNO. J Nucl Med. 2018;59(8):1249–54.
120.
Zurück zum Zitat Bini J, Sanchez-Rangel E, Gallezot J-D, et al. PET imaging of pancreatic dopamine D3/D2 receptor density with 11 C (+)-PHNO in type-1 diabetes mellitus. J Nucl Med. 2020;61(4):570–6. Bini J, Sanchez-Rangel E, Gallezot J-D, et al. PET imaging of pancreatic dopamine D3/D2 receptor density with 11 C (+)-PHNO in type-1 diabetes mellitus. J Nucl Med. 2020;61(4):570–6.
121.
Zurück zum Zitat Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics. 2020;10:437–61.PubMedPubMedCentralCrossRef Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics. 2020;10:437–61.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Eriksson O, Velikyan I, Haack T, et al. Drug occupancy assessment at the glucose-dependent insulinotropic polypeptide receptor by positron emission tomography. Diabetes. 2021;70:842–53.PubMedCrossRef Eriksson O, Velikyan I, Haack T, et al. Drug occupancy assessment at the glucose-dependent insulinotropic polypeptide receptor by positron emission tomography. Diabetes. 2021;70:842–53.PubMedCrossRef
Metadaten
Titel
The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review
verfasst von
Jason Bini
Mathieu Norcross
Maija Cheung
Andrew Duffy
Publikationsdatum
25.07.2021
Verlag
Springer US
Erschienen in
Obesity Surgery / Ausgabe 10/2021
Print ISSN: 0960-8923
Elektronische ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-021-05576-7

Weitere Artikel der Ausgabe 10/2021

Obesity Surgery 10/2021 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.