Skip to main content
Erschienen in: Brain Topography 4/2016

02.03.2016 | Original Paper

The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy

verfasst von: Victoria Montes-Restrepo, Evelien Carrette, Gregor Strobbe, Stefanie Gadeyne, Stefaan Vandenberghe, Paul Boon, Kristl Vonck, Pieter van Mierlo

Erschienen in: Brain Topography | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.
Literatur
Zurück zum Zitat Akhtari M, Bryant H, Mamelak A, Flynn E, Heller L, Shih J, Mandelkern M, Matlachov A, Ranken D, Best E et al (2002) Conductivities of three-layer live human skull. Brain Topography 14(3):151–167CrossRefPubMed Akhtari M, Bryant H, Mamelak A, Flynn E, Heller L, Shih J, Mandelkern M, Matlachov A, Ranken D, Best E et al (2002) Conductivities of three-layer live human skull. Brain Topography 14(3):151–167CrossRefPubMed
Zurück zum Zitat Aydin Ü, Vorwerk J, Küpper P, Heers M, Kugel H, Galka A, Hamid L, Wellmer J, Kellinghaus C, Rampp S et al (2014) Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model. PloS One 9(3):e93154CrossRefPubMedPubMedCentral Aydin Ü, Vorwerk J, Küpper P, Heers M, Kugel H, Galka A, Hamid L, Wellmer J, Kellinghaus C, Rampp S et al (2014) Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model. PloS One 9(3):e93154CrossRefPubMedPubMedCentral
Zurück zum Zitat Aydin U, Vorwerk J, Dümpelmann M, Küpper P, Kugel H, Wellmer J, Kellinghaus C, Haueisen J, Rampp S, Stefan H, Wolters CH (2015) Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis. PloS ONE. doi:10.1371/journal.pone.0118753 Aydin U, Vorwerk J, Dümpelmann M, Küpper P, Kugel H, Wellmer J, Kellinghaus C, Haueisen J, Rampp S, Stefan H, Wolters CH (2015) Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis. PloS ONE. doi:10.​1371/​journal.​pone.​0118753
Zurück zum Zitat Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, Fauser S, Zentner J, Rating D, Scherg M (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45(6):621–631CrossRefPubMed Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, Fauser S, Zentner J, Rating D, Scherg M (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45(6):621–631CrossRefPubMed
Zurück zum Zitat Bast T, Boppel T, Rupp A, Harting I, Hoechstetter K, Fauser S, Schulze-Bonhage A, Scherg M et al (2006) Noninvasive source localization of interictal EEG spikes: effects of signal-to-noise ratio and averaging. J Clin Neurophysiol 23(6):487–497CrossRefPubMed Bast T, Boppel T, Rupp A, Harting I, Hoechstetter K, Fauser S, Schulze-Bonhage A, Scherg M et al (2006) Noninvasive source localization of interictal EEG spikes: effects of signal-to-noise ratio and averaging. J Clin Neurophysiol 23(6):487–497CrossRefPubMed
Zurück zum Zitat Baumann S, Wozny D, Kelly S, Meno F (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMed Baumann S, Wozny D, Kelly S, Meno F (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMed
Zurück zum Zitat Birot G, Spinelli L, Vulliémoz S, Mégevand P, Brunet D, Seeck M, Michel CM (2014) Head model and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin 5:77–83CrossRefPubMedPubMedCentral Birot G, Spinelli L, Vulliémoz S, Mégevand P, Brunet D, Seeck M, Michel CM (2014) Head model and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin 5:77–83CrossRefPubMedPubMedCentral
Zurück zum Zitat Brodbeck V, Spinelli L, Lascano A, Wissmeier M, Vargas M, Vulliemoz S, Pollo C, Schaller K, Michel C, Seeck M (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134(10):2887–2897CrossRefPubMedPubMedCentral Brodbeck V, Spinelli L, Lascano A, Wissmeier M, Vargas M, Vulliemoz S, Pollo C, Schaller K, Michel C, Seeck M (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134(10):2887–2897CrossRefPubMedPubMedCentral
Zurück zum Zitat Chitoku S, Otsubo H, Ichimura T, Saigusa T, Ochi A, Shirasawa A, Ki Kamijo, Yamazaki T, Pang E, Rutka JT et al (2003) Characteristics of dipoles in clustered individual spikes and averaged spikes. Brain Dev 25(1):14–21CrossRefPubMed Chitoku S, Otsubo H, Ichimura T, Saigusa T, Ochi A, Shirasawa A, Ki Kamijo, Yamazaki T, Pang E, Rutka JT et al (2003) Characteristics of dipoles in clustered individual spikes and averaged spikes. Brain Dev 25(1):14–21CrossRefPubMed
Zurück zum Zitat Cho JH, Vorwerk J, Wolters CH, Knösche TR (2015) Influence of the head model on EEG and MEG source connectivity analysis. Neuroimage 110:60–77CrossRefPubMed Cho JH, Vorwerk J, Wolters CH, Knösche TR (2015) Influence of the head model on EEG and MEG source connectivity analysis. Neuroimage 110:60–77CrossRefPubMed
Zurück zum Zitat Coutin-Churchman PE, Wu JY, Chen LL, Shattuck K, Dewar S, Nuwer MR (2012) Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci. Clin Neurophysiol 123(3):471–485CrossRefPubMed Coutin-Churchman PE, Wu JY, Chen LL, Shattuck K, Dewar S, Nuwer MR (2012) Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci. Clin Neurophysiol 123(3):471–485CrossRefPubMed
Zurück zum Zitat Crevecoeur G, Montes-Restrepo V, Staelens S (2012) Subspace electrode selection methodology for the reduction of the effect of uncertain conductivity values in the EEG dipole localization: A simulation study using a patient-specific head model. Phys Med Biol 57:1963–1986CrossRefPubMed Crevecoeur G, Montes-Restrepo V, Staelens S (2012) Subspace electrode selection methodology for the reduction of the effect of uncertain conductivity values in the EEG dipole localization: A simulation study using a patient-specific head model. Phys Med Biol 57:1963–1986CrossRefPubMed
Zurück zum Zitat Despotovic I, Cherian PJ, Vos M, Hallez H, Deburchgraeve W, Govaert P, Lequin M, Visser GH, Swarte RM, Vansteenkiste E et al (2013) Relationship of EEG sources of neonatal seizures to acute perinatal brain lesions seen on MRI: a pilot study. Human Brain Mapp 34(10):2402–2417CrossRef Despotovic I, Cherian PJ, Vos M, Hallez H, Deburchgraeve W, Govaert P, Lequin M, Visser GH, Swarte RM, Vansteenkiste E et al (2013) Relationship of EEG sources of neonatal seizures to acute perinatal brain lesions seen on MRI: a pilot study. Human Brain Mapp 34(10):2402–2417CrossRef
Zurück zum Zitat Ebersole JS (2000) Noninvasive localization of epileptogenic foci by EEG source modeling. Epilepsia 41(s3):S24–S33CrossRefPubMed Ebersole JS (2000) Noninvasive localization of epileptogenic foci by EEG source modeling. Epilepsia 41(s3):S24–S33CrossRefPubMed
Zurück zum Zitat Engel JJ, Van Ness P, Rasmussen T, Ojemann L (1993) Outcome with respect to epileptic seizures. In: Engel JJ (ed) Surgical treatment of the epilepsies, Raven Press, New York, pp 609–621 Engel JJ, Van Ness P, Rasmussen T, Ojemann L (1993) Outcome with respect to epileptic seizures. In: Engel JJ (ed) Surgical treatment of the epilepsies, Raven Press, New York, pp 609–621
Zurück zum Zitat Gonçalves S, de Munck J, Verbunt J, Bijma F, Heethaar R, Lopes da Silva F (2003) In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Trans Biomed Eng 50(6):754–767CrossRefPubMed Gonçalves S, de Munck J, Verbunt J, Bijma F, Heethaar R, Lopes da Silva F (2003) In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Trans Biomed Eng 50(6):754–767CrossRefPubMed
Zurück zum Zitat Hallez H, Vanrumste B, Hese P, D’Asseler Y, Lemahieu I, Walle R (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50:3787–3806CrossRefPubMed Hallez H, Vanrumste B, Hese P, D’Asseler Y, Lemahieu I, Walle R (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50:3787–3806CrossRefPubMed
Zurück zum Zitat Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri K, Fabri S, Van Huffel S, Lemahieu I (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabil 4(1):46CrossRefPubMedPubMedCentral Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri K, Fabri S, Van Huffel S, Lemahieu I (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabil 4(1):46CrossRefPubMedPubMedCentral
Zurück zum Zitat Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23(6):728–739CrossRefPubMed Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23(6):728–739CrossRefPubMed
Zurück zum Zitat Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC (2013) Automated MRI segmentation for individualized modeling of current flow in the human head. J Neural Eng 10(6):066004CrossRefPubMed Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC (2013) Automated MRI segmentation for individualized modeling of current flow in the human head. J Neural Eng 10(6):066004CrossRefPubMed
Zurück zum Zitat Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A (1999) The need for correct realistic geometry in the inverse EEG problem. IEEE Trans Biomed Eng 46(11):1281–1287. doi:10.1109/10.797987 CrossRefPubMed Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A (1999) The need for correct realistic geometry in the inverse EEG problem. IEEE Trans Biomed Eng 46(11):1281–1287. doi:10.​1109/​10.​797987 CrossRefPubMed
Zurück zum Zitat Huppertz HJ, Hof E, Klisch J, Wagner M, Lücking CH, Kristeva-Feige R (2001) Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions. NeuroImage 13(1):15–28CrossRefPubMed Huppertz HJ, Hof E, Klisch J, Wagner M, Lücking CH, Kristeva-Feige R (2001) Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions. NeuroImage 13(1):15–28CrossRefPubMed
Zurück zum Zitat Kaiboriboon K, Lüders HO, Hamaneh M, Turnbull J, Lhatoo SD (2012) EEG source imaging in epilepsy - practicalities and pitfalls. Nat Rev Neurol 8(9):498–507CrossRefPubMed Kaiboriboon K, Lüders HO, Hamaneh M, Turnbull J, Lhatoo SD (2012) EEG source imaging in epilepsy - practicalities and pitfalls. Nat Rev Neurol 8(9):498–507CrossRefPubMed
Zurück zum Zitat Knösche T (1997) Solutions of the Neuroelectromagnetic Inverse Problem - an Evaluation Study. PhD thesis, University of Twente, Netherlands Knösche T (1997) Solutions of the Neuroelectromagnetic Inverse Problem - an Evaluation Study. PhD thesis, University of Twente, Netherlands
Zurück zum Zitat Kobayashi K, Yoshinaga H, Ohtsuka Y, Gotman J (2005) Dipole modeling of epileptic spikes can be accurate or misleading. Epilepsia 46(3):397–408CrossRefPubMed Kobayashi K, Yoshinaga H, Ohtsuka Y, Gotman J (2005) Dipole modeling of epileptic spikes can be accurate or misleading. Epilepsia 46(3):397–408CrossRefPubMed
Zurück zum Zitat Lanfer B, Scherg M, Dannhauer M, Knösche T, Burger M, Wolters C (2012) Influences of skull segmentation inaccuracies on EEG source analysis. NeuroImage 62(1):418–431CrossRefPubMed Lanfer B, Scherg M, Dannhauer M, Knösche T, Burger M, Wolters C (2012) Influences of skull segmentation inaccuracies on EEG source analysis. NeuroImage 62(1):418–431CrossRefPubMed
Zurück zum Zitat Lantz G, de Peralta RG, Spinelli L, Seeck M, Michel C (2003a) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114(1):63–69CrossRefPubMed Lantz G, de Peralta RG, Spinelli L, Seeck M, Michel C (2003a) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114(1):63–69CrossRefPubMed
Zurück zum Zitat Lantz G, Spinelli L, Seeck M, de Peralta Menendez RG, Sottas CC, Michel CM (2003b) Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J Clin Neurophysiol 20(5):311–319CrossRefPubMed Lantz G, Spinelli L, Seeck M, de Peralta Menendez RG, Sottas CC, Michel CM (2003b) Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J Clin Neurophysiol 20(5):311–319CrossRefPubMed
Zurück zum Zitat Lau S, Flemming L, Haueisen J (2014) Magnetoencephalography signals are influenced by skull defects. Clin Neurophysiol 125(8):1653–1662CrossRefPubMed Lau S, Flemming L, Haueisen J (2014) Magnetoencephalography signals are influenced by skull defects. Clin Neurophysiol 125(8):1653–1662CrossRefPubMed
Zurück zum Zitat Law S (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109CrossRefPubMed Law S (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109CrossRefPubMed
Zurück zum Zitat Lew S, Wolters C, Anwander A, Makeig S, MacLeod R (2009) Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model. Human Brain Mapp 30(9):2862–2878CrossRef Lew S, Wolters C, Anwander A, Makeig S, MacLeod R (2009) Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model. Human Brain Mapp 30(9):2862–2878CrossRef
Zurück zum Zitat Meckes-Ferber S, Roten A, Kilpatrick C, O’Brien TJ (2004) EEG dipole source localisation of interictal spikes acquired during routine clinical video-EEG monitoring. Clin Neurophysiol 115(12):2738–2743CrossRefPubMed Meckes-Ferber S, Roten A, Kilpatrick C, O’Brien TJ (2004) EEG dipole source localisation of interictal spikes acquired during routine clinical video-EEG monitoring. Clin Neurophysiol 115(12):2738–2743CrossRefPubMed
Zurück zum Zitat Mégevand P, Spinelli L, Genetti M, Brodbeck V, Momjian S, Schaller K, Michel CM, Vulliemoz S, Seeck M (2014) Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatry 85(1):38–43CrossRefPubMed Mégevand P, Spinelli L, Genetti M, Brodbeck V, Momjian S, Schaller K, Michel CM, Vulliemoz S, Seeck M (2014) Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatry 85(1):38–43CrossRefPubMed
Zurück zum Zitat Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110(6):1013–1028CrossRefPubMed Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110(6):1013–1028CrossRefPubMed
Zurück zum Zitat Michel CM, Lantz G, Spinelli L, De Peralta RG, Landis T, Seeck M (2004) 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. J Clin Neurophysiol 21(2):71–83CrossRefPubMed Michel CM, Lantz G, Spinelli L, De Peralta RG, Landis T, Seeck M (2004) 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. J Clin Neurophysiol 21(2):71–83CrossRefPubMed
Zurück zum Zitat Montes-Restrepo V, van Mierlo P, Strobbe G, Staelens S, Vandenberghe S, Hallez H (2014) Influence of skull modeling approaches on EEG source localization. Brain Topogr 27(1):95–111CrossRefPubMed Montes-Restrepo V, van Mierlo P, Strobbe G, Staelens S, Vandenberghe S, Hallez H (2014) Influence of skull modeling approaches on EEG source localization. Brain Topogr 27(1):95–111CrossRefPubMed
Zurück zum Zitat Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39(6):541–557CrossRefPubMed Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39(6):541–557CrossRefPubMed
Zurück zum Zitat Oliva M, Meckes-Ferber S, Roten A, Desmond P, Hicks RJ, O’Brien TJ (2010) EEG dipole source localization of interictal spikes in non-lesional TLE with and without hippocampal sclerosis. Epilepsy Res 92(2):183–190CrossRefPubMed Oliva M, Meckes-Ferber S, Roten A, Desmond P, Hicks RJ, O’Brien TJ (2010) EEG dipole source localization of interictal spikes in non-lesional TLE with and without hippocampal sclerosis. Epilepsy Res 92(2):183–190CrossRefPubMed
Zurück zum Zitat Park CJ, Seo JH, Kim D, Abibullaev B, Kwon H, Lee YH, Kim MY, Kim K, Kim JS, Joo EY, et al. (2015) EEG Source Imaging in Partial Epilepsy in Comparison with Presurgical Evaluation and Magnetoencephalography. J Clin Neurol 11(4): 319–330 Park CJ, Seo JH, Kim D, Abibullaev B, Kwon H, Lee YH, Kim MY, Kim K, Kim JS, Joo EY, et al. (2015) EEG Source Imaging in Partial Epilepsy in Comparison with Presurgical Evaluation and Magnetoencephalography. J Clin Neurol 11(4): 319–330
Zurück zum Zitat Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49(2):201–218CrossRefPubMed Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49(2):201–218CrossRefPubMed
Zurück zum Zitat Plummer C, Wagner M, Fuchs M, Harvey A, Cook M (2010) Dipole versus distributed EEG source localization for single versus averaged spikes in focal epilepsy. Journal of Clinical Neurophysiology 27(3):141–162CrossRefPubMed Plummer C, Wagner M, Fuchs M, Harvey A, Cook M (2010) Dipole versus distributed EEG source localization for single versus averaged spikes in focal epilepsy. Journal of Clinical Neurophysiology 27(3):141–162CrossRefPubMed
Zurück zum Zitat Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. Journal of Computer Assisted Tomography 27(6):825–846CrossRefPubMed Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. Journal of Computer Assisted Tomography 27(6):825–846CrossRefPubMed
Zurück zum Zitat Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO (2012) Age-specific CT and MRI templates for spatial normalization. NeuroImage 61(4):957–65CrossRefPubMedPubMedCentral Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO (2012) Age-specific CT and MRI templates for spatial normalization. NeuroImage 61(4):957–65CrossRefPubMedPubMedCentral
Zurück zum Zitat Rullmann M, Anwander A, Dannhauer M, Warfield S, Duffy F, Wolters C (2009) EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage 44(2):399–410CrossRefPubMed Rullmann M, Anwander A, Dannhauer M, Warfield S, Duffy F, Wolters C (2009) EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage 44(2):399–410CrossRefPubMed
Zurück zum Zitat Ryynänen O, Hyttinen J, Malmivuo J (2006) Effect of measurement noise and electrode density on the spatial resolution of cortical potential distribution with different resistivity values for the skull. IEEE Transactions on Biomedical Engineering 53(9):1851–1858CrossRefPubMed Ryynänen O, Hyttinen J, Malmivuo J (2006) Effect of measurement noise and electrode density on the spatial resolution of cortical potential distribution with different resistivity values for the skull. IEEE Transactions on Biomedical Engineering 53(9):1851–1858CrossRefPubMed
Zurück zum Zitat Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia
Zurück zum Zitat Strobbe G, van Mierlo P, De Vos M, Mijović B, Hallez H, Van Huffel S, López JD, Vandenberghe S (2014) Bayesian model selection of template forward models for EEG source reconstruction. Neuroimage 93:11–22CrossRefPubMed Strobbe G, van Mierlo P, De Vos M, Mijović B, Hallez H, Van Huffel S, López JD, Vandenberghe S (2014) Bayesian model selection of template forward models for EEG source reconstruction. Neuroimage 93:11–22CrossRefPubMed
Zurück zum Zitat Vanrumste B, Van Hoey G, Van de Walle R, D’Havè M, Lemahieu I, Boon P (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topography 14(2):83–92CrossRefPubMed Vanrumste B, Van Hoey G, Van de Walle R, D’Havè M, Lemahieu I, Boon P (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topography 14(2):83–92CrossRefPubMed
Zurück zum Zitat Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefPubMed Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefPubMed
Zurück zum Zitat Wennberg R, Cheyne D (2014) EEG source imaging of anterior temporal lobe spikes: validity and reliability. Clinical Neurophysiology 125(5):886–902CrossRefPubMed Wennberg R, Cheyne D (2014) EEG source imaging of anterior temporal lobe spikes: validity and reliability. Clinical Neurophysiology 125(5):886–902CrossRefPubMed
Zurück zum Zitat Ziegler E, Chellappa SL, Gaggioni G, Ly JQ, Vandewalle G, André E, Geuzaine C, Phillips C (2014) A finite-element reciprocity solution for EEG forward modeling with realistic individual head models. NeuroImage 103:542–551CrossRefPubMed Ziegler E, Chellappa SL, Gaggioni G, Ly JQ, Vandewalle G, André E, Geuzaine C, Phillips C (2014) A finite-element reciprocity solution for EEG forward modeling with realistic individual head models. NeuroImage 103:542–551CrossRefPubMed
Metadaten
Titel
The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy
verfasst von
Victoria Montes-Restrepo
Evelien Carrette
Gregor Strobbe
Stefanie Gadeyne
Stefaan Vandenberghe
Paul Boon
Kristl Vonck
Pieter van Mierlo
Publikationsdatum
02.03.2016
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2016
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0482-6

Weitere Artikel der Ausgabe 4/2016

Brain Topography 4/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.