Skip to main content
Erschienen in: Inflammation 3/2015

01.06.2015

The Roles of Egr-2 in Autoimmune Diseases

verfasst von: Min Zhang, Ying Wang, Jian-Shu Wang, Jiao Liu, Meng-Meng Liu, Hai-Bing Yang

Erschienen in: Inflammation | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Being a member of the early growth response (Egr) family of transcription factors, Egr-2 is expressed in a variety of cell types of the immune system. Recent findings imply that Egr-2 is important in the development and function of T helper (Th) 17 cell, regulatory T (Treg) cell, as well as dendritic cell (DC). Although these cells perform significantly in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and systemic sclerosis, the roles of Egr-2 in the pathogenesis of autoimmune diseases can not be neglected. In this article, we will discuss recent findings about the important roles of Egr-2 in immune cells and the possible pathological roles of Egr-2 in autoimmune diseases.
Literatur
1.
Zurück zum Zitat O’Donovan, K.J., W.G. Tourtellotte, J. Millbrandt, and J.M. Baraban. 1999. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences 22: 167–173.CrossRefPubMed O’Donovan, K.J., W.G. Tourtellotte, J. Millbrandt, and J.M. Baraban. 1999. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences 22: 167–173.CrossRefPubMed
2.
Zurück zum Zitat Le, N., R. Nagarajan, J.Y. Wang, J. Svaren, C. LaPash, T. Araki, R.E. et al. 2005. Nab proteins are essential for peripheral nervous system myelination. Nauret Neuroscience 8: 932–940. Le, N., R. Nagarajan, J.Y. Wang, J. Svaren, C. LaPash, T. Araki, R.E. et al. 2005. Nab proteins are essential for peripheral nervous system myelination. Nauret Neuroscience 8: 932–940.
3.
Zurück zum Zitat Tourtellotte, W.G., C. Keller-Peck, J. Milbrandt, and J. Kucera. 2001. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis. Developmental Biology 232: 388–399.CrossRefPubMed Tourtellotte, W.G., C. Keller-Peck, J. Milbrandt, and J. Kucera. 2001. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis. Developmental Biology 232: 388–399.CrossRefPubMed
4.
Zurück zum Zitat Yang, S.Z., I.A. Eltoum, and S.A. Abdulkadir. 2006. Enhanced EGR1 activity promotes the growth of prostate cancer cells in an androgen-depleted environment. Journal of Cellular Biochemistry 97: 1292–1299.CrossRefPubMed Yang, S.Z., I.A. Eltoum, and S.A. Abdulkadir. 2006. Enhanced EGR1 activity promotes the growth of prostate cancer cells in an androgen-depleted environment. Journal of Cellular Biochemistry 97: 1292–1299.CrossRefPubMed
5.
Zurück zum Zitat Schnell, F.J., A.L. Zoller, S.R. Patel, I.R. Williams, and G.J. Kersh. 2006. Early growth response gene 1 provides negative feedback to inhibit entry of progenitor cells into the thymus. Journal of Immunology 176: 4740–4747.CrossRef Schnell, F.J., A.L. Zoller, S.R. Patel, I.R. Williams, and G.J. Kersh. 2006. Early growth response gene 1 provides negative feedback to inhibit entry of progenitor cells into the thymus. Journal of Immunology 176: 4740–4747.CrossRef
6.
Zurück zum Zitat Miyazaki, T., and F.A. Lemonnier. 1998. Modulation of thymic selection by expression of an immediate-early gene, early growth response 1 (Egr-1). Journal of Experimental Medicine 188: 715–723.CrossRefPubMedCentralPubMed Miyazaki, T., and F.A. Lemonnier. 1998. Modulation of thymic selection by expression of an immediate-early gene, early growth response 1 (Egr-1). Journal of Experimental Medicine 188: 715–723.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Laslo, P., C.J. Spooner, A. Warmflash, D.W. Lancki, H.J. Lee, R. Sciammas, et al. 2006. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126: 755–766.CrossRefPubMed Laslo, P., C.J. Spooner, A. Warmflash, D.W. Lancki, H.J. Lee, R. Sciammas, et al. 2006. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126: 755–766.CrossRefPubMed
8.
Zurück zum Zitat Fang, F., K. Ooka, S. Bhattacharyya, J. Wei, M. Wu, P. Du, et al. 2011. The early growth response gene Egr-2 (Alias Krox20) is a novel transcriptional target of transforming growth factor-β that is up-regulated in systemic sclerosis and mediates profibrotic responses. American Journal of Pathology 178: 2077–2090.CrossRefPubMedCentralPubMed Fang, F., K. Ooka, S. Bhattacharyya, J. Wei, M. Wu, P. Du, et al. 2011. The early growth response gene Egr-2 (Alias Krox20) is a novel transcriptional target of transforming growth factor-β that is up-regulated in systemic sclerosis and mediates profibrotic responses. American Journal of Pathology 178: 2077–2090.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Keeton, A.B.., K.D. Bortoff, W.L. Bennett, J.L. Franklin, D.Y. Venable, and J.L. Messina. 2013. Insulin-regulated expression of Egr-1 and Krox20: dependence on ERK1/2 and interaction with p38 and PI3-kinase pathways. Endocrinology 144: 5402–5410.CrossRef Keeton, A.B.., K.D. Bortoff, W.L. Bennett, J.L. Franklin, D.Y. Venable, and J.L. Messina. 2013. Insulin-regulated expression of Egr-1 and Krox20: dependence on ERK1/2 and interaction with p38 and PI3-kinase pathways. Endocrinology 144: 5402–5410.CrossRef
10.
Zurück zum Zitat Schneider-Maunoury, S., P. Topilko, T. Seitandou, G. Levi, M. Cohen-Tannoudji, S. Pournin, et al. 1993. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75: 1199–1214.CrossRefPubMed Schneider-Maunoury, S., P. Topilko, T. Seitandou, G. Levi, M. Cohen-Tannoudji, S. Pournin, et al. 1993. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75: 1199–1214.CrossRefPubMed
11.
Zurück zum Zitat Swiatek, P.J., and T. Gridley. 1993. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes and Development 7: 2071–2084.CrossRefPubMed Swiatek, P.J., and T. Gridley. 1993. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes and Development 7: 2071–2084.CrossRefPubMed
12.
Zurück zum Zitat Jang, S.W., R. Srinivasan, E.A. Jones, G. Sun, S. Keles, C. Krueger, et al. Locus-wide identification of Egr-2/Krox20 regulatory targets in myelin genes. Journal of Neurochemistry 115: 1409–1420. Jang, S.W., R. Srinivasan, E.A. Jones, G. Sun, S. Keles, C. Krueger, et al. Locus-wide identification of Egr-2/Krox20 regulatory targets in myelin genes. Journal of Neurochemistry 115: 1409–1420.
13.
Zurück zum Zitat Okamura, T., K. Fujio, M. Shibuya, S. Sumitomo, H. Shoda, S. Sakaguchi, et al. 2009. CD4+CD25-LAG3+regulatory T cells controlled by the transcription factor Egr-2. Proceedings of the National Academy of Sciences of the United States of America 106: 13974–13979.CrossRefPubMedCentralPubMed Okamura, T., K. Fujio, M. Shibuya, S. Sumitomo, H. Shoda, S. Sakaguchi, et al. 2009. CD4+CD25-LAG3+regulatory T cells controlled by the transcription factor Egr-2. Proceedings of the National Academy of Sciences of the United States of America 106: 13974–13979.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Miao, T., M. Raymond, P. Bhullar, E. Ghaffari, A.L. Symonds, U.C. Meier, et al. 2013. Early growth response gene-2 controls IL-17 expression and Th17 differentiation by negatively regulating Batf. Journal of Immunology 190: 58–65.CrossRef Miao, T., M. Raymond, P. Bhullar, E. Ghaffari, A.L. Symonds, U.C. Meier, et al. 2013. Early growth response gene-2 controls IL-17 expression and Th17 differentiation by negatively regulating Batf. Journal of Immunology 190: 58–65.CrossRef
15.
Zurück zum Zitat Miah, M.A., S.E. Byeon, M.S. Ahmed, C.H. Yoon, S.J. Ha, and Y.S. Bae. 2013. Egr-2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity. European Journal of Immunology 43: 2484–2496.CrossRefPubMed Miah, M.A., S.E. Byeon, M.S. Ahmed, C.H. Yoon, S.J. Ha, and Y.S. Bae. 2013. Egr-2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity. European Journal of Immunology 43: 2484–2496.CrossRefPubMed
16.
Zurück zum Zitat Lauritsen, J.P., S. Kurella, S.Y. Lee, J.M. Lefebvre, M. Rhodes, J. Alberola-Ila, et al. 2008. Egr-2 is required for Bcl-2 induction during positive selection. Journal of Immunology 181: 7778–7785.CrossRef Lauritsen, J.P., S. Kurella, S.Y. Lee, J.M. Lefebvre, M. Rhodes, J. Alberola-Ila, et al. 2008. Egr-2 is required for Bcl-2 induction during positive selection. Journal of Immunology 181: 7778–7785.CrossRef
17.
Zurück zum Zitat Collins, S., M.A. Lutz, P.E. Zarek, R.A. Anders, G.J. Kersh, and J.D. Powell. 2008. Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. European Journal of Immunology 38: 528–536.CrossRefPubMedCentralPubMed Collins, S., M.A. Lutz, P.E. Zarek, R.A. Anders, G.J. Kersh, and J.D. Powell. 2008. Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. European Journal of Immunology 38: 528–536.CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat Safford, M., S. Collins, M.A. Lutz, A. Allen, C.T. Huang, J. Kowalski, et al. 2005. Egr-2 and Egr-3 are negative regulators of T cell activation. Nature Immunology 6: 472–480.CrossRefPubMed Safford, M., S. Collins, M.A. Lutz, A. Allen, C.T. Huang, J. Kowalski, et al. 2005. Egr-2 and Egr-3 are negative regulators of T cell activation. Nature Immunology 6: 472–480.CrossRefPubMed
19.
Zurück zum Zitat Zhu, B., A.L. Symonds, J.E. Martin, D. Kioussis, D.C. Wraith, S. Li, et al. 2008. Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease. Journal of Experimental Medicine 205: 2295–2307.CrossRefPubMedCentralPubMed Zhu, B., A.L. Symonds, J.E. Martin, D. Kioussis, D.C. Wraith, S. Li, et al. 2008. Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease. Journal of Experimental Medicine 205: 2295–2307.CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Li, S., T. Miao, M. Sebastian, P. Bhullar, E. Ghaffari, M. Liu, et al. 2012. The transcription factors Egr-2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells. Immunity 37: 685–696.CrossRefPubMedCentralPubMed Li, S., T. Miao, M. Sebastian, P. Bhullar, E. Ghaffari, M. Liu, et al. 2012. The transcription factors Egr-2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells. Immunity 37: 685–696.CrossRefPubMedCentralPubMed
21.
Zurück zum Zitat Schraml, B.U., K. Hildner, W. Ise, W.L. Lee, W.A. Smith, B. Solomon, et al. 2009. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460: 405–409.PubMedCentralPubMed Schraml, B.U., K. Hildner, W. Ise, W.L. Lee, W.A. Smith, B. Solomon, et al. 2009. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460: 405–409.PubMedCentralPubMed
22.
Zurück zum Zitat Groux, H., A. O’Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. de Vries, et al. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742.CrossRefPubMed Groux, H., A. O’Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. de Vries, et al. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742.CrossRefPubMed
23.
Zurück zum Zitat Workman, C.J., and D.A. Vignali. 2003. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. European Journal of Immunology 33: 970–979.CrossRefPubMed Workman, C.J., and D.A. Vignali. 2003. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. European Journal of Immunology 33: 970–979.CrossRefPubMed
24.
Zurück zum Zitat Workman, C.J., L.S. Cauley, I.J. Kim, M.A. Blackman, D.L. Woodland, and D.A. Vignali. 2004. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. Journal of Immunology 172: 5450–5455.CrossRef Workman, C.J., L.S. Cauley, I.J. Kim, M.A. Blackman, D.L. Woodland, and D.A. Vignali. 2004. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. Journal of Immunology 172: 5450–5455.CrossRef
25.
Zurück zum Zitat Huang, C.T., C.J. Workman, D. Flies, X. Pan, A.L. Marson, G. Zhou, et al. 2004. Role of LAG-3 in regulatory T cells. Immunity 21: 503–513.CrossRefPubMed Huang, C.T., C.J. Workman, D. Flies, X. Pan, A.L. Marson, G. Zhou, et al. 2004. Role of LAG-3 in regulatory T cells. Immunity 21: 503–513.CrossRefPubMed
26.
Zurück zum Zitat Workman, C.J., D.S. Rice, K.J. Dugger, C. Kurschner, and D.A. Vignali. 2002. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). European Journal of Immunology 32: 2255–2263.CrossRefPubMed Workman, C.J., D.S. Rice, K.J. Dugger, C. Kurschner, and D.A. Vignali. 2002. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). European Journal of Immunology 32: 2255–2263.CrossRefPubMed
27.
Zurück zum Zitat Harris, J.E., K.D. Bishop, N.E. Phillips, J.P. Mordes, D.L. Greiner, A.A. Rossini, et al. 2004. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. Journal of Immunology 173: 7331–7338.CrossRef Harris, J.E., K.D. Bishop, N.E. Phillips, J.P. Mordes, D.L. Greiner, A.A. Rossini, et al. 2004. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. Journal of Immunology 173: 7331–7338.CrossRef
28.
Zurück zum Zitat Okamura, T., K. Fujio, S. Sumitomo, and K. Yamamoto. 2012. Roles of LAG3 and EGR-2 in regulatory T cells. Annals of the Rheumatic Diseases 71(Suppl 2): i96–i100.CrossRefPubMed Okamura, T., K. Fujio, S. Sumitomo, and K. Yamamoto. 2012. Roles of LAG3 and EGR-2 in regulatory T cells. Annals of the Rheumatic Diseases 71(Suppl 2): i96–i100.CrossRefPubMed
29.
Zurück zum Zitat Sallusto, F., and A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. Journal of Experimental Medicine 179: 1109–1118.CrossRefPubMed Sallusto, F., and A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. Journal of Experimental Medicine 179: 1109–1118.CrossRefPubMed
30.
Zurück zum Zitat Platt, C.D., J.K. Ma, C. Chalouni, M. Ebersold, H. Bou-Reslan, R.A. Carano, et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proceedings of the National Academy of Sciences USA 107: 4287–4292. Platt, C.D., J.K. Ma, C. Chalouni, M. Ebersold, H. Bou-Reslan, R.A. Carano, et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proceedings of the National Academy of Sciences USA 107: 4287–4292.
31.
Zurück zum Zitat Evel-Kabler, K., X.T. Song, M. Aldrich, X.F. Huang, and S.Y. Chen. 2006. SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. Journal of Clinical Investigation 116: 90–100.CrossRefPubMedCentralPubMed Evel-Kabler, K., X.T. Song, M. Aldrich, X.F. Huang, and S.Y. Chen. 2006. SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. Journal of Clinical Investigation 116: 90–100.CrossRefPubMedCentralPubMed
32.
Zurück zum Zitat Li, B.Z., Q.L. Ye, W.D. Xu, J.H. Li, D.Q. Ye, and Y. Xu. 2013. GM-CSF alters dendritic cells in autoimmune diseases. Autoimmunity 46: 409–418.CrossRefPubMed Li, B.Z., Q.L. Ye, W.D. Xu, J.H. Li, D.Q. Ye, and Y. Xu. 2013. GM-CSF alters dendritic cells in autoimmune diseases. Autoimmunity 46: 409–418.CrossRefPubMed
33.
Zurück zum Zitat Pan, H.F., D.Q. Ye, and X.P. Li. 2008. Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus. Nature Clinical Practice Rheumatology 4: 352–353.PubMed Pan, H.F., D.Q. Ye, and X.P. Li. 2008. Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus. Nature Clinical Practice Rheumatology 4: 352–353.PubMed
34.
Zurück zum Zitat Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678.CrossRef Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678.CrossRef
35.
Zurück zum Zitat Rioux, J.D., R.J. Xavier, K.D. Taylor, M.S. Silverberg, P. Goyette, A. Huett, et al. 2007. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genetics 39: 596–604.CrossRefPubMedCentralPubMed Rioux, J.D., R.J. Xavier, K.D. Taylor, M.S. Silverberg, P. Goyette, A. Huett, et al. 2007. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genetics 39: 596–604.CrossRefPubMedCentralPubMed
36.
Zurück zum Zitat Myouzen, K., Y. Kochi, K. Shimane, K. Fujio, T. Okamura, Y. Okada, et al. 2010. Regulatory polymorphisms in EGR-2 are associated with susceptibility to systemic lupus erythematosus. Human Molecular Genetics 19: 2313–2320.CrossRefPubMed Myouzen, K., Y. Kochi, K. Shimane, K. Fujio, T. Okamura, Y. Okada, et al. 2010. Regulatory polymorphisms in EGR-2 are associated with susceptibility to systemic lupus erythematosus. Human Molecular Genetics 19: 2313–2320.CrossRefPubMed
37.
Zurück zum Zitat International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, S. Sawcer, G. Hellenthal, M. Pirinen, C.C. Spencer, et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476: 214–219.CrossRef International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, S. Sawcer, G. Hellenthal, M. Pirinen, C.C. Spencer, et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476: 214–219.CrossRef
38.
Zurück zum Zitat Vandenbroeck, K., J. Alvarez, B. Swaminathan, I. Alloza, F. Matesanz, E. Urcelay, et al. 2012. A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes and Immunity 13: 21–28.CrossRefPubMed Vandenbroeck, K., J. Alvarez, B. Swaminathan, I. Alloza, F. Matesanz, E. Urcelay, et al. 2012. A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes and Immunity 13: 21–28.CrossRefPubMed
39.
Zurück zum Zitat Beyeen, A.D., M.Z. Adzemovic, J. Ockinger, P. Stridh, K. Becanovic, H. Laaksonen, et al. 2010. IL-22RA2 associates with multiple sclerosis and macrophage effector mechanisms in experimental neuroinflammation. Journal of Immunology 185: 6883–6890.CrossRef Beyeen, A.D., M.Z. Adzemovic, J. Ockinger, P. Stridh, K. Becanovic, H. Laaksonen, et al. 2010. IL-22RA2 associates with multiple sclerosis and macrophage effector mechanisms in experimental neuroinflammation. Journal of Immunology 185: 6883–6890.CrossRef
41.
Zurück zum Zitat Allanore, Y., M. Saad, P. Dieudé, J. Avouac, J.H. Distler, P. Amouyel, et al. 2011. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genetics 7: e1002091.CrossRefPubMedCentralPubMed Allanore, Y., M. Saad, P. Dieudé, J. Avouac, J.H. Distler, P. Amouyel, et al. 2011. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genetics 7: e1002091.CrossRefPubMedCentralPubMed
42.
Zurück zum Zitat Koumakis, E., M. Bouaziz, P. Dieudé, B. Ruiz, G. Riemekasten, P. Airo, et al. 2013. A regulatory variant in CCR6 is associated with anti-topoisomerase positive systemic sclerosis susceptibility. Arthritis and Rheumatism 65: 3202–3208.CrossRefPubMed Koumakis, E., M. Bouaziz, P. Dieudé, B. Ruiz, G. Riemekasten, P. Airo, et al. 2013. A regulatory variant in CCR6 is associated with anti-topoisomerase positive systemic sclerosis susceptibility. Arthritis and Rheumatism 65: 3202–3208.CrossRefPubMed
43.
Zurück zum Zitat Varga, J., and B. Pasche. 2008. Antitransforming growth factor-beta therapy in fibrosis: recent progress and implications for systemic sclerosis. Current Opinion in Rheumatology 20: 720–728.CrossRefPubMed Varga, J., and B. Pasche. 2008. Antitransforming growth factor-beta therapy in fibrosis: recent progress and implications for systemic sclerosis. Current Opinion in Rheumatology 20: 720–728.CrossRefPubMed
44.
Zurück zum Zitat Heldin, C.H., M. Landstrom, and A. Moustakas. 2009. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Current Opinion in Cell Biology 21: 166–176.CrossRefPubMed Heldin, C.H., M. Landstrom, and A. Moustakas. 2009. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Current Opinion in Cell Biology 21: 166–176.CrossRefPubMed
45.
Zurück zum Zitat Qiu, F., L. Song, N. Yang, and X. Li. 2013. Glucocorticoid downregulates expression of IL-12 family cytokines in systemic lupus erythematosus patients. Lupus 22: 1011–1016.CrossRefPubMed Qiu, F., L. Song, N. Yang, and X. Li. 2013. Glucocorticoid downregulates expression of IL-12 family cytokines in systemic lupus erythematosus patients. Lupus 22: 1011–1016.CrossRefPubMed
Metadaten
Titel
The Roles of Egr-2 in Autoimmune Diseases
verfasst von
Min Zhang
Ying Wang
Jian-Shu Wang
Jiao Liu
Meng-Meng Liu
Hai-Bing Yang
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0059-z

Weitere Artikel der Ausgabe 3/2015

Inflammation 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.