Skip to main content
Erschienen in: BMC Infectious Diseases 1/2021

Open Access 01.12.2021 | Research article

The transition to Xpert MTB/RIF ultra: diagnostic accuracy for pulmonary tuberculosis in Kampala, Uganda

verfasst von: A. Andama, D. Jaganath, R. Crowder, L. Asege, M. Nakaye, D. Katumba, J. Mukwatamundu, S. Mwebe, C. F. Semitala, W. Worodria, M. Joloba, S. Mohanty, A. Somoskovi, A. Cattamanchi

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2021

Abstract

Background

The World Health Organization (WHO) has endorsed the next-generation Xpert MTB/RIF Ultra (Ultra) cartridge, and Uganda is currently transitioning from the older generation Xpert MTB/RIF (Xpert) cartridge to Ultra as the initial diagnostic test for pulmonary tuberculosis (TB). We assessed the diagnostic accuracy of Ultra for pulmonary TB among adults in Kampala, Uganda.

Methods

We sampled adults referred for Xpert testing at two hospitals and a health center over a 12-month period. We enrolled adults with positive Xpert and a random 1:1 sample with negative Xpert results. Expectorated sputum was collected for Ultra, and for solid and liquid culture testing for Xpert-negative patients. We measured sensitivity and specificity of Ultra overall and by HIV status, prior history of TB, and hospitalization, in reference to Xpert and culture results. We also assessed how classification of results in the new “trace” category affects Ultra accuracy.

Results

Among 698 participants included, 211 (30%) were HIV-positive and 336 (48%) had TB. The sensitivity of Ultra was 90.5% (95% CI 86.8–93.4) and specificity was 98.1% (95% CI 96.1–99.2). There were no significant differences in sensitivity and specificity by HIV status, prior history of TB or hospitalization. Xpert and Ultra results were concordant in 670 (96%) participants, with Ultra having a small reduction in specificity (difference 1.9, 95% CI 0.2 to 3.6, p=0.01). When “trace” results were considered positive for all patients, sensitivity increased by 2.1% (95% CI 0.3 to 3.9, p=0.01) without a significant reduction in specificity (− 0.8, 95% CI − 0.3 to 2.0, p=0.08).

Conclusions

After 1 year of implementation, Ultra had similar performance to Xpert. Considering “trace” results to be positive in all patients increased case detection without significant loss of specificity. Longitudinal studies are needed to compare the benefit of greater diagnoses to the cost of overtreatment.
Hinweise
A. Andama and D. Jaganath contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CI
Confidence Interval
HIV
Human Immunodeficiency Virus
IQR
Interquartile Range
MTB
Mycobacterium tuberculosis
NAAT
Nucleic acid amplification testing
TB
Tuberculosis
WHO
World Health Organization
Ultra
Xpert MTB/RIF Ultra
Xpert
Xpert MTB/RIF

Background

Nucleic acid amplification testing (NAAT) is recommended by the World Health Organization (WHO) as an initial test for pulmonary TB. In particular, WHO has endorsed Xpert MTB/RIF (Cepheid, Sunnyvale, CA USA), and 34.4 million Xpert MTB/RIF (Xpert) cartridges have been procured globally [1]. However, Xpert sensitivity has been sub-optimal for smear-negative pulmonary TB [2]. Consequently, the next-generation cartridge, Xpert MTB/RIF Ultra (Ultra), includes two multi-copy amplification targets, a larger DNA reaction chamber, and fully nested nucleic acid amplification to lower the limit of detection from 113 colony forming units (cfu)/mL to 16 cfu/ml, which is similar to growth detection [2]. Based on a multi-center assessment demonstrating increased sensitivity [3], the WHO recommended that Ultra replace Xpert as the initial diagnostic test [4].
Ultra cartridges are now expected to be widely used, including with the Gene Xpert Edge and Omni systems in lower-level facilities where patients more often seek initial medical care [5]. While the hope is that the lower limit of detection will increase case detection of patients with less advanced disease, there is also concern for reduced specificity and increased false-positive results, particularly among the category of “trace” results or in patients with past tuberculosis history [6].
During Uganda’s transition from Xpert to Ultra, we conducted a 12-month cross-sectional study to 1) assess the diagnostic accuracy of Ultra for pulmonary TB in adults, 2) determine changes in accuracy by HIV, prior history of TB, and inpatient status, and 3) characterize the impact of trace results on Ultra accuracy.

Methods

Study design and population

From April 2018 to April 2019, we conducted a cross sectional study of patients with presumed pulmonary TB at Kiruddu Hospital pulmonary ward and outpatient chest clinic, Mulago Hospital TB ward, and Kisenyi Health Center IV outpatient clinic in Kampala, Uganda. As previously described [7], we included adults (> 18 years) who were referred by clinicians for sputum-based TB testing (i.e., Xpert). We excluded participants who received anti-TB treatment or antibiotics with anti-TB activity such as fluoroquinolones in the prior 12 months, or who refused or were unable to provide informed consent. To select participants, we reviewed the facility Xpert testing log daily. On each day, we enrolled all participants with Xpert-positive results and a random 1:1 sample of Xpert-negative patients identified from the log. The study and full protocol (available on request) was reviewed and approved by the Makerere University School of Medicine Research and Ethics Committee, the Uganda National Council for Science and Technology and the University of California San Francisco Committee on Human Research. This study was performed according to the Standards for Reporting of Diagnostic Accuracy Studies (STARD) guidelines [8].

Study procedures

After consent, all eligible participants completed a survey on demographics and medical history. Each participant provided up to two sputum samples: one for Ultra testing (all participants) and one for solid (Lowenstein-Jensen [LJ]) and liquid (BACTEC MGIT 960, Becton Dickinson, USA) mycobacterial cultures (Xpert-negative participants only). Positive cultures were confirmed using Ziehl-Neelsen (ZN) staining and M. tuberculosis (MTB) complex speciation testing (MPT64TB Ag kit, SD Bioline, South Korea). Trained laboratory technologists conducted all TB testing following standard protocols for Xpert, Ultra [2], and mycobacterial culture [9]. Laboratory staff were blinded to Xpert results at the time of Ultra or culture testing. Participants with negative or unknown HIV status underwent HIV testing per national guidelines, and CD4 cell count was measured for HIV-positive participants. To assess any additional microbiological evidence for false-positive results, Determine TB LAM (Alere, Waltham, USA) was performed on urine samples following standard protocols [10].

Definitions

We used a composite microbiological reference standard. Participants were defined as having pulmonary TB if MTB was detected by sputum Xpert or mycobacterial culture (solid or liquid). We considered patients not to have pulmonary TB if Xpert was negative and at least two culture results (solid or liquid) were negative without contamination. For the primary analysis, an Ultra-trace result was defined as TB if the participant was HIV positive per WHO recommendations [11].

Statistical approach

Descriptive statistics were used to summarize the demographic and clinical characteristics of study participants. The sensitivity and specificity of sputum Xpert Ultra was calculated with exact binomial 95% confidence interval (CI) using our reference standard definition of TB. We compared sensitivity and specificity by HIV status, CD4 cell count category, prior history of TB, and inpatient status using Chi-squared or Fisher’s Exact test as appropriate. We conducted a sensitivity analysis on Ultra trace results, comparing diagnostic accuracy if trace results were considered positive for all participants or no participants using McNemar’s paired test of proportions. We used STATA 15 (Stata Corp, College Station, TX, USA) to perform all analyses.

Results

Study population characteristics

During the 12-month study period, we identified 475 patients with positive Xpert results in the facility testing logs. Of the 475 patients, 311 (65%) met eligibility criteria and were enrolled (Fig. 1). We randomly selected and enrolled 387 Xpert-negative participants, of whom 25 were subsequently found to be culture-positive for MTB. Thus, 698 participants (336 with and 362 without TB) were included in the final analysis. The median age was 32 years (IQR 25–40), 436 (62%) were male, over a third (42%) had BMI < 18.5, and 211 (30%) were HIV-positive, of whom 46 (22%) had CD4 cell count < 100 cells/μL (Table 1). Most participants were identified in the outpatient setting (n=620, 89%), and the median Karnofsky score was 80 (IQR 70–90).
Table 1
Patient characteristics (N=698)
Characteristic
N (%)
Age in years, median (IQR)
32 (25–40)
Male Sex
436 (62)
Cough ≥ 30 days
450 (65)
Fever ≥ 39 °C
20 (3)
Hospitalized
78 (11)
Smoking in last 30 days
95 (14)
Prior TB over 1 year ago
88 (13)
Karnofsky Score median (IQR) (n=323)
80 (70–90)
BMI < 18.5
295 (42)
HIV-positive
211 (30)
CD4 cell count < 100 cells/μL (n=211)
46 (22)
IQR Interquartile Range

Diagnostic accuracy of Xpert ultra

Sputum Ultra had a sensitivity of 90.5% (95% CI 86.8 to 93.4) and specificity of 98.1% (95% CI 96.1–99.2) (Table 2). Xpert and Ultra were concordant in 670/698 (96%) participants. Of the 28 discordant results, 14 (50%) were Ultra-positive and Xpert-negative (7 culture-positive), while 14 were Ultra-negative but Xpert-positive. Consequently, the sensitivity of Ultra was not significantly different from that of Xpert (90.5% vs. 92.6%, difference − 2.1, 95% CI − 5 to + 0.1, p=0.1). However, the seven false-positive Ultra results led to a small reduction in specificity of 1.9% (95% CI 0.2 to 3.6, p=0.01) compared to Xpert. Of note, 18 participants with positive cultures (5% of 336 TB cases) had negative Xpert and Ultra results.
Table 2
Sensitivity and Specificity of Sputum Xpert Ultra by HIV status and prior history of TB, in Kampala, Uganda
 
Overall (n=698)a
Without prior TB (n=610)
With prior TBb (n=88)
Sensitivity
Specificity
Sensitivity
Specificity
Sensitivity
Specificity
Total Cohort
(N=336 with TB, 362 without TB)
90.5
(86.8, 93.4)
98.1
(96.1, 99.2)
90.9
(87.1, 93.9)
98.7
(96.6, 99.6)
85.7
(67.3, 96)
95
(86.1, 99)
HIV-negative (N=222 with TB, 212 without TB)
90.8
(86.3, 94.1)
98.8
(96.5, 99.8)
91.4
(87.0, 94.8)
99.5
(97.4, 100)
81.3
(54.4, 96)
94.6
(81.8, 99.3)
HIV-positive
(N=86 with TB,
90 without TB)
89.8
(82.0, 95.0)
96.5
(91.2, 99.0)
89.5
(81.1, 95.1)
96.7
(90.6, 99.3)
91.7
(61.5, 99.8)
95.7
(78.1, 99.9)
CD4 < 100
(N=25 with TB,
15 without TB)
96.2
(80.4, 99.9)
95.0
(75.1, 99.9)
96.0
(79.6, 99.9)
93.3
(68.1, 99.8)
100
(2.5, 100)
100
(47.8, 100)
CD4 ≥100
(N=61 with TB,
75 without TB)
87.5
(77.6, 94.1)
96.8
(90.9, 99.3)
86.9
(75.8, 94.2)
97.3
(90.7, 99.7)
90.9
(58.7, 99.8)
94.4
(72.7, 99.9)
aSensitivity and specificity presented as percentage with 95% CI
bGreater than one year from enrollment date
Among patients with positive Xpert and Ultra results, rifampicin resistance results were concordant in 285/297 (96%) patients. Three patients had rifampicin resistance detected by Ultra but not Xpert, and one patient had rifampicin resistance detected by Xpert but not Ultra. Rifampicin resistance results were indeterminate in two patients by Ultra (all due to trace results, Xpert RIF negative), and in one patient by Xpert (Ultra RIF negative). Two of the discordant results were missing on Ultra and were not resistant on Xpert, while the three results missing on Xpert were not resistant on Ultra.

Subgroup analysis of ultra performance

As shown in Table 2, Ultra sensitivity and specificity did not differ by HIV status (sensitivity difference 0.96, 95% CI − 6.1 to 8.0, p=0.79; specificity difference − 2.3, 95% CI − 6.0 to 1.33, p=0.1). Ultra sensitivity was also similar among HIV-positive patients with CD4 cell count < 100 cells/μL vs. higher CD4 cell counts (difference 8.6, 95% CI − 2.0 to 19.3, p=0.2). There was also no difference among patients with and without a prior history of TB (sensitivity 85.7% vs. 90.9%, difference − 5.2, 95% CI − 18.5 to 8.2, p=0.37; specificity 95.0% vs. 98.7%, difference − 3.7, 95% CI − 9.3 to 2.0, p=0.06) or among inpatients vs. outpatients (sensitivity 87.2% vs. 90.9%, difference 3.7, 95% CI − 7.3 to 14.7, p=0.46; specificity 100% vs 97.8%, difference 2.2, 95% CI 0.6 to 3.7, p=0.35).

False-positive and trace ultra results

Of the seven patients with false-positive Ultra results, four were HIV-positive (including one with CD4 cell count < 100 cells/μL), of which one had a prior history of TB and all had trace results. Of the remaining three HIV negative participants, two had a prior history of TB.
There were 21 trace Ultra results. Of the 11 HIV-positive patients with trace results (Table 3), eight had microbiological evidence of TB (two Xpert-positive with a very low semi-quantitative result, five culture-positive and one urine Determine TB LAM-positive). Of the 10 HIV-negative patients with trace results, 8 had microbiological evidence of TB (four Xpert positive with low [N=1] or very low [N=3] semi-quantitative results, three culture-positive, and one urine Determine TB LAM-positive). Thus, 16 of 21 (76%) patients with trace results had microbiologic evidence of TB.
Table 3
HIV positive participants with Ultra Trace results (N=11)
TB status
Xpert MTB/RIF result
CD4 count < 100?
Determine TB LAM result
Low Body Mass Indexa (BMI)
Prior history of TB
Negative
Negative
No
Negative
No
No
Negative
Negative
Yes
Positive
No
No
Negative
Negative
No
Negative
No
No
Negative
Negative
No
Negative
Yes
Yes
Confirmed TB
Negativeb
No
Negative
Yes
Yes
Confirmed TB
Negativeb
No
Negative
No
Yes
Confirmed TB
Negativeb
No
Negative
No
No
Confirmed TB
Negativeb
No
Negative
No
No
Confirmed TB
Negativeb
Yes
Positive
Yes
No
Confirmed TB
Very low
No
Negative
No
Yes
Confirmed TB
Very low
No
Negative
No
No
aBMI < 18.5 kg/m2
bSolid or liquid culture positive
We examined how classification of trace results impacted Ultra accuracy (Table 4). When trace results were defined as positive for all patients, Ultra sensitivity and specificity were 92.6% (95% CI 89.2 to 95.1) and 97.2% (95% CI 95.0 to 98.7), respectively, representing a 2.1% increase in sensitivity (95% CI 0.3 to 3.9, p=0.01) and a non-significant 0.8% reduction in specificity (95% CI − 0.3 to 2.0, p=0.08) compared to when trace results were considered to be positive only in HIV-positive patients as per WHO guidelines. When trace results were defined to be negative for all patients, Ultra sensitivity and specificity were 88.4% (95% CI 84.5 to 91.6) and 99.2% (95%CI 97.6 to 99.8), respectively, representing a 2.1% reduction in sensitivity (95% CI − 3.9 to − 0.3, p=0.01) and non-significant 1.1% increase in specificity (95% CI − 0.2 to 2.5, p=0.05) compared to the current guidelines.
Table 4
Sensitivity analysis of Ultra performance by Trace status
 
Sensitivity (%, 95 CI)
% Difference
(95% CI)b
Specificity (%, 95 CI)
% Difference (95% CI)b
Trace Positive in HIV infectiona
90.5% (86.8–93.4)
98.1% (96.1–99.2)
Trace Positive
92.6% (89.2–95.1)
2.1% (0.3 to 3.9)
97.2% (95.0–98.7)
−0.8 (−0.3 to 2.0)
Trace Negative
88.4% (84.5–91.6)
−2.1% (−3.9 to −0.3)
99.2% (97.6–99.8)
1.1 (− 0.2 to 2.5)
aCurrent WHO recommendations [4]
bCompared to current recommendation of trace conditional positive

Discussion

As Uganda is transitioning from Xpert to Ultra, we found that Xpert Ultra had high sensitivity and specificity for pulmonary TB overall (90.5% sensitive and 98.1% specific) and across key sub-groups defined by HIV status, prior history of TB, and hospitalization. Expanding the definition of a positive test to include trace results among HIV-negative patients increased Ultra sensitivity without a significant loss of specificity. Our findings suggest that as Ultra replaces Xpert in Kampala for routine TB testing at health facilities, diagnostic accuracy may remain stable overall, but that expanding the definition of a positive test to include all trace results could increase case detection.
The accuracy of Ultra for pulmonary TB diagnosis was similar to previous studies. A recent meta-analysis of 10 studies found that Ultra could detect pulmonary TB with a sensitivity of 88.5% and specificity of 96.7% [12]. Among HIV-positive patients, we also found a similar Ultra sensitivity to other studies in HIV-endemic settings that found an 87–90% sensitivity without significant difference compared to HIV-negative patients [3, 13]. Some studies have found that a previous history of TB reduced Ultra specificity [3, 14, 15], whereas we did not perhaps because we excluded patients who had TB in the past 1 year. The role of hospitalization has not been previously evaluated and we did not find a significant difference in inpatients vs. outpatients.
We did not find a significant difference in sensitivity of Xpert vs. Ultra. This is in contrast to a multicenter study that found Ultra was 5.4% more sensitive overall and 13% more sensitive in HIV-positive patients [3]. The lower yield in our study is likely due to the small proportion of culture-positive patients that were not detected by Xpert (for example, 7% in our study compared to 17% in Dorman et al. [3]), and potentially the inclusion of Xpert in our reference standard. At the same time, multiple studies in Brazil and South Africa also had high concordance between Ultra and Xpert without a significant difference in overall sensitivity [13, 15, 16]. Nonetheless, this finding is surprising given that we had a high prevalence of HIV-positive patients and outpatients, both of whom would be expected to have lower bacillary burden and greater yield with Ultra over Xpert. In addition, 5% of culture-confirmed cases were both Ultra- and Xpert-negative. This underscores the continued need for novel diagnostics that can increase the yield of TB case detection in patients with paucibacillary disease.
The reduction in specificity of Ultra vs. Xpert has been documented in several studies [3, 13, 15, 17]. Four of seven false positive results were trace results among HIV positive patients, of which one had additional evidence of TB disease with a positive Determine TB LAM result. While this is consistent with past studies that found the majority of false positives were due to trace results [3, 13], we had few overall false positives and only three had a prior history of TB. As a consequence, we did not find a significant increase in specificity when trace results were defined as negative. Conversely, expanding the definition of a positive test to include trace results in HIV-negative patients increased sensitivity without a significant loss of specificity, because the majority of HIV-negative patients with trace results had microbiologically-confirmed TB.
The decision to define trace results as positive or negative requires a balance between greater case detection and cost of overtreatment [6]. A modeling study found that while Ultra trace results increased overtreatment by more than 50%, it also averted deaths by that amount [18]. The authors further concluded that Ultra and trace results will have the greatest benefit in settings with high HIV and TB prevalence and TB mortality. As Uganda is one of those settings, further cost-effectiveness studies are needed to guide the role of trace results, especially in facilities where health workers may not have access to culture or other testing to confirm the diagnosis.
To evaluate the performance of Ultra in Uganda, we enrolled a sample from three major medical centers in Kampala with high HIV prevalence [19]. However, this study has some limitations. We did not confirm positive sputum Xpert results with culture, and did not confirm rifampin resistance with drug susceptibility testing. However, Xpert has been shown to have very high specificity (> 98%) for TB and rifampin resistance [20]. As smear microscopy was not done on Xpert positive samples, we could not stratify Xpert Ultra performance by smear status. We also did not have the ability to have follow-up visits to repeat Ultra testing on trace results to assess additional yield. In addition, follow-up visits would have been helpful to further characterize patients with both false-positive and trace Ultra results.

Conclusions

As Uganda and similar high burden settings transition to Ultra, it is important to characterize the diagnostic accuracy and anticipate any change compared to Xpert for appropriate resource allocation to manage TB cases. Based on two hospitals and a health center in Kampala, Ultra has high accuracy for pulmonary TB among adults with and without HIV. Longitudinal studies are needed to characterize the ongoing impact of Xpert Ultra and trace results on TB case detection and management.

Acknowledgements

We thank the patients and staff of Kiruddu Hospital, Kisenyi Health Center IV and Mulago National Referral Hospital, the staff and management of Mycobacteriology laboratory at the Makerere University College of Health Sciences, and Christine Bachman and Dr. Puneet Dewan of the Global Good Fund, Intellectual Ventures Laboratory.
All participants completed a written informed consent, and the study was approved by the Makerere University School of Medicine Research and Ethics Committee, the Uganda National Council for Science and Technology and the University of California San Francisco Committee on Human Research.
Not Applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Cazabon D, Pande T, Kik S, Van Gemert W, Sohn H, Denkinger C, et al. Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: A trend analysis from 2014–2016. Gates Open Res. 2018;2:35.CrossRef Cazabon D, Pande T, Kik S, Van Gemert W, Sohn H, Denkinger C, et al. Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: A trend analysis from 2014–2016. Gates Open Res. 2018;2:35.CrossRef
2.
Zurück zum Zitat Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J, et al. The new Xpert MTB/RIF ultra: improving detection of mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio. 2017;8(4):e00812–7.CrossRef Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J, et al. The new Xpert MTB/RIF ultra: improving detection of mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio. 2017;8(4):e00812–7.CrossRef
3.
Zurück zum Zitat Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B, et al. Xpert MTB/RIF ultra for detection of mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18(1):76–84.CrossRef Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B, et al. Xpert MTB/RIF ultra for detection of mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18(1):76–84.CrossRef
7.
Zurück zum Zitat Andama A, Jaganath D, Crowder R, Asege L, Nakaye M, Katumba D, et al. Accuracy and incremental yield of urine Xpert MTB/RIF ultra versus determine TB-LAM for diagnosis of pulmonary tuberculosis. Diagn Microbiol Infect Dis. 2020;96(1):114892.CrossRef Andama A, Jaganath D, Crowder R, Asege L, Nakaye M, Katumba D, et al. Accuracy and incremental yield of urine Xpert MTB/RIF ultra versus determine TB-LAM for diagnosis of pulmonary tuberculosis. Diagn Microbiol Infect Dis. 2020;96(1):114892.CrossRef
8.
Zurück zum Zitat Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799.CrossRef Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799.CrossRef
12.
Zurück zum Zitat Zhang M, Xue M, J-q H. Diagnostic accuracy of the new Xpert MTB/RIF ultra for tuberculosis disease: a preliminary systematic review and meta-analysis. Int J Infect Dis. 2020;90:35–45.CrossRef Zhang M, Xue M, J-q H. Diagnostic accuracy of the new Xpert MTB/RIF ultra for tuberculosis disease: a preliminary systematic review and meta-analysis. Int J Infect Dis. 2020;90:35–45.CrossRef
13.
Zurück zum Zitat Berhanu RH, David A, da Silva P, Shearer K, Sanne I, Stevens W, Scott L. Performance of Xpert MTB/RIF, Xpert Ultra, and Abbott RealTime MTB for Diagnosis of Pulmonary Tuberculosis in a High-HIV-Burden Setting. J Clin Microbiol. 2018;56(12):e00560-18. https://doi.org/10.1128/jcm.00560-18. Berhanu RH, David A, da Silva P, Shearer K, Sanne I, Stevens W, Scott L.  Performance of Xpert MTB/RIF, Xpert Ultra, and Abbott RealTime MTB for Diagnosis of Pulmonary Tuberculosis in a High-HIV-Burden Setting. J Clin Microbiol. 2018;56(12):e00560-18. https://​doi.​org/​10.​1128/​jcm.​00560-18.
14.
Zurück zum Zitat Esmail A, Tomasicchio M, Meldau R, Makambwa E, Dheda K. Comparison of Xpert MTB/RIF (G4) and Xpert ultra, including trace readouts, for the diagnosis of pulmonary tuberculosis in a TB and HIV endemic setting. Int J Infect Dis. 2020;95:246–52.CrossRef Esmail A, Tomasicchio M, Meldau R, Makambwa E, Dheda K. Comparison of Xpert MTB/RIF (G4) and Xpert ultra, including trace readouts, for the diagnosis of pulmonary tuberculosis in a TB and HIV endemic setting. Int J Infect Dis. 2020;95:246–52.CrossRef
15.
Zurück zum Zitat Mishra H, Reeve BWP, Palmer Z, Caldwell J, Dolby T, Naidoo CC, et al. Xpert MTB/RIF ultra and Xpert MTB/RIF for diagnosis of tuberculosis in an HIV-endemic setting with a high burden of previous tuberculosis: a two-cohort diagnostic accuracy study. Lancet Respir Med. 2020;8(4):368–82.CrossRef Mishra H, Reeve BWP, Palmer Z, Caldwell J, Dolby T, Naidoo CC, et al. Xpert MTB/RIF ultra and Xpert MTB/RIF for diagnosis of tuberculosis in an HIV-endemic setting with a high burden of previous tuberculosis: a two-cohort diagnostic accuracy study. Lancet Respir Med. 2020;8(4):368–82.CrossRef
16.
Zurück zum Zitat Pereira GR, Barbosa MS, Dias NJD, FDF d S, Rauber KA, Silva DR. Evaluation of Xpert MTB/RIF Ultra performance for pulmonary tuberculosis (TB) diagnosis in a city with high TB incidence in Brazil. Respir Med. 2020;162:105876.CrossRef Pereira GR, Barbosa MS, Dias NJD, FDF d S, Rauber KA, Silva DR. Evaluation of Xpert MTB/RIF Ultra performance for pulmonary tuberculosis (TB) diagnosis in a city with high TB incidence in Brazil. Respir Med. 2020;162:105876.CrossRef
17.
Zurück zum Zitat Opota O, Zakham F, Mazza-Stalder J, Nicod L, Greub G, Jaton K. Added Value of Xpert MTB/RIF Ultra for Diagnosis of Pulmonary Tuberculosis in a Low-Prevalence Setting. J Clin Microbiol. 2019;57(2):e01717–8.PubMedPubMedCentral Opota O, Zakham F, Mazza-Stalder J, Nicod L, Greub G, Jaton K. Added Value of Xpert MTB/RIF Ultra for Diagnosis of Pulmonary Tuberculosis in a Low-Prevalence Setting. J Clin Microbiol. 2019;57(2):e01717–8.PubMedPubMedCentral
18.
Zurück zum Zitat Kendall EA, Schumacher SG, Denkinger CM, Dowdy DW. Estimated clinical impact of the Xpert MTB/RIF ultra cartridge for diagnosis of pulmonary tuberculosis: a modeling study. PLoS Med. 2017;14(12):e1002472.CrossRef Kendall EA, Schumacher SG, Denkinger CM, Dowdy DW. Estimated clinical impact of the Xpert MTB/RIF ultra cartridge for diagnosis of pulmonary tuberculosis: a modeling study. PLoS Med. 2017;14(12):e1002472.CrossRef
20.
Zurück zum Zitat Horne DJ, Kohli M, Zifodya JS, Schiller I, Dendukuri N, Tollefson D, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2019;6:Cd009593.PubMed Horne DJ, Kohli M, Zifodya JS, Schiller I, Dendukuri N, Tollefson D, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2019;6:Cd009593.PubMed
Metadaten
Titel
The transition to Xpert MTB/RIF ultra: diagnostic accuracy for pulmonary tuberculosis in Kampala, Uganda
verfasst von
A. Andama
D. Jaganath
R. Crowder
L. Asege
M. Nakaye
D. Katumba
J. Mukwatamundu
S. Mwebe
C. F. Semitala
W. Worodria
M. Joloba
S. Mohanty
A. Somoskovi
A. Cattamanchi
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2021
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05727-8

Weitere Artikel der Ausgabe 1/2021

BMC Infectious Diseases 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.