Skip to main content
main-content

01.12.2012 | Research | Ausgabe 1/2012 Open Access

Molecular Cancer 1/2012

The tumor suppressive role of miRNA-370 by targeting FoxM1 in acute myeloid leukemia

Zeitschrift:
Molecular Cancer > Ausgabe 1/2012
Autoren:
Xiaolu Zhang, Jiping Zeng, Minran Zhou, Bingnan Li, Yuanyuan Zhang, Tao Huang, Lixiang Wang, Jihui Jia, Chunyan Chen
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-11-56) contains supplementary material, which is available to authorized users.
Xiaolu Zhang, Jiping Zeng contributed equally to this work.

Competing interests

The authors declare no competing financial interests.

Authors’ contributions

JZ, CC and XZ designed the study; XZ, JZ, BL, MZ, YZ and TH performed the research; XZ ,JZ, LW, JJ, and CC analyzed and interpreted data; and XZ, JZ and CC wrote the paper. All authors read and approved the final manuscript.

Abstract

Background

Recent evidence has accumulated that MicroRNA (miRNA) dysregulation occurs in the majority of human malignancies including acute myeloid leukemia (AML) and may contribute to onco-/leukemo-genesis.

Methods

The expression levels of miR-370 and FoxM1 were assessed in 48 newly diagnosed AML patients, 40 AML patients in 1st complete remission (CR) and 21 healthy controls. Quantitative real-time PCR, western blots, colony formation assay, and β-Galactosidase ( SA- β-Gal) staining were used to characterize the changes induced by overexpression or inhibition of miR-370 or FoxM1.

Results

We found that the down-regulation of miR-370 expression was a frequent event in both leukemia cell lines and primary leukemic cells from patients with de novo AML. Lower levels of miR-370 expression were found in 37 of 48 leukemic samples from AML patients compared to those in bone marrow cells derived from healthy adult individuals. Ectopic expression of miR-370 in HL60 and K562 cells led to cell growth arrest and senescence. In contrast, depletion of miR-370 expression using RNA interference enhanced the proliferation of those leukemic cells. Mechanistically, miR-370 targets the transcription factor FoxM1, a well established oncogenic factor promoting cell cycle progression. Moreover, when HL60 and K562 cells were treated with 5-aza-2-deoxycytidine, a DNA methylation inhibitor, miR-370 expression was up-regulated, which indicates epigenetic silencing of miR-370 in leukemic cells.

Conclusions

Taken together, miR-370 may function as a tumor suppressor by targeting FoxM1, and the epigenetic silence of miR-370 thus leads to derepression of FoxM1 expression and consequently contributes to AML development and progression.
Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2012

Molecular Cancer 1/2012 Zur Ausgabe

Neu im Fachgebiet Onkologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Onkologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise