Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2017

25.10.2017

The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities

verfasst von: Wafik Zaky, Christa Manton, Claudia P. Miller, Soumen Khatua, Vidya Gopalakrishnan, Joya Chandra

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Nearly 20 years ago, the concept of targeting the proteasome for cancer therapy began gaining momentum. This concept was driven by increased understanding of the biology/structure and function of the 26S proteasome, insight into the role of the proteasome in transformed cells, and the synthesis of pharmacological inhibitors with clinically favorable features. Subsequent in vitro, in vivo, and clinical testing culminated in the FDA approval of three proteasome inhibitors—bortezomib, carfilzomib, and ixazomib—for specific hematological malignancies. However, despite in vitro and in vivo studies pointing towards efficacy in solid tumors, clinical responses broadly have been evasive. For brain tumors, a malignancy in dire need of new approaches both in adult and pediatric patients, this has also been the case. Elucidation of proteasome-dependent processes in specific types of brain tumors, the evolution of newer proteasome targeting strategies, and the use of proteasome inhibitors in combination strategies will clarify how these agents can be leveraged more effectively to treat central nervous system malignancies. Since brain tumors represent a heterogeneous subset of solid tumors, and in particular, pediatric brain tumors possess distinct biology from adult brain tumors, tailoring of proteasome inhibitor-based strategies to specific subtypes of these tumors will be critical for advancing care for affected patients, and will be discussed in this review.
Literatur
1.
Zurück zum Zitat Howlander N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2014) (eds). in National Cancer Institute, Bethesda, MD. Howlander N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2014) (eds). in National Cancer Institute, Bethesda, MD.
2.
Zurück zum Zitat Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRef Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRef
4.
Zurück zum Zitat Hough, R., Pratt, G., & Rechsteiner, M. (1987). Purification of two high molecular weight proteases from rabbit reticulocyte lysate. The Journal of Biological Chemistry, 262, 8303–8313.PubMed Hough, R., Pratt, G., & Rechsteiner, M. (1987). Purification of two high molecular weight proteases from rabbit reticulocyte lysate. The Journal of Biological Chemistry, 262, 8303–8313.PubMed
5.
Zurück zum Zitat Waxman, L., Fagan, J. M., Tanaka, K., & Goldberg, A. L. (1985). A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. The Journal of Biological Chemistry, 260, 11994–12000.PubMed Waxman, L., Fagan, J. M., Tanaka, K., & Goldberg, A. L. (1985). A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. The Journal of Biological Chemistry, 260, 11994–12000.PubMed
6.
Zurück zum Zitat Driscoll, J., & Goldberg, A. L. (1990). The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. The Journal of Biological Chemistry, 265, 4789–4792.PubMed Driscoll, J., & Goldberg, A. L. (1990). The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. The Journal of Biological Chemistry, 265, 4789–4792.PubMed
7.
Zurück zum Zitat Ciechanover, A., Heller, H., Katz-Etzion, R., & Hershko, A. (1981). Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proceedings of the National Academy of Sciences of the United States of America, 78, 761–765.PubMedPubMedCentralCrossRef Ciechanover, A., Heller, H., Katz-Etzion, R., & Hershko, A. (1981). Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proceedings of the National Academy of Sciences of the United States of America, 78, 761–765.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Pickart, C. M., & Rose, I. A. (1985). Functional heterogeneity of ubiquitin carrier proteins. The Journal of Biological Chemistry, 260, 1573–1581.PubMed Pickart, C. M., & Rose, I. A. (1985). Functional heterogeneity of ubiquitin carrier proteins. The Journal of Biological Chemistry, 260, 1573–1581.PubMed
9.
Zurück zum Zitat Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of Biological Chemistry, 258, 8206–8214.PubMed Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of Biological Chemistry, 258, 8206–8214.PubMed
10.
Zurück zum Zitat van Nocker, S., & Vierstra, R. D. (1993). Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. The Journal of Biological Chemistry, 268, 24766–24773.PubMed van Nocker, S., & Vierstra, R. D. (1993). Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. The Journal of Biological Chemistry, 268, 24766–24773.PubMed
12.
Zurück zum Zitat Eytan, E., Ganoth, D., Armon, T., & Hershko, A. (1989). ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 86, 7751–7755.PubMedPubMedCentralCrossRef Eytan, E., Ganoth, D., Armon, T., & Hershko, A. (1989). ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 86, 7751–7755.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82, 373–428.PubMedCrossRef Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82, 373–428.PubMedCrossRef
14.
Zurück zum Zitat Glickman, M. H., et al. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 94, 615–623.PubMedCrossRef Glickman, M. H., et al. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 94, 615–623.PubMedCrossRef
15.
Zurück zum Zitat Groll, M., et al. (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proceedings of the National Academy of Sciences of the United States of America, 96, 10976–10983.PubMedPubMedCentralCrossRef Groll, M., et al. (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proceedings of the National Academy of Sciences of the United States of America, 96, 10976–10983.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Orlowski, M., & Wilk, S. (2000). Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Archives of Biochemistry and Biophysics, 383, 1–16.PubMedCrossRef Orlowski, M., & Wilk, S. (2000). Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Archives of Biochemistry and Biophysics, 383, 1–16.PubMedCrossRef
17.
Zurück zum Zitat Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.CrossRef Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.CrossRef
18.
Zurück zum Zitat Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochemical Journal, 345(Pt 1), 1–15.PubMedPubMedCentralCrossRef Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochemical Journal, 345(Pt 1), 1–15.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Whitby, F. G., et al. (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature-London, 408, 115–120.PubMedCrossRef Whitby, F. G., et al. (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature-London, 408, 115–120.PubMedCrossRef
20.
Zurück zum Zitat Rechsteiner, M., & Hill, C. P. (2005). Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends in Cell Biology, 15, 27–33.PubMedCrossRef Rechsteiner, M., & Hill, C. P. (2005). Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends in Cell Biology, 15, 27–33.PubMedCrossRef
21.
Zurück zum Zitat Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B., & Tanaka, K. (2000). Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochemical and Biophysical Research Communications, 277, 348–354.PubMedCrossRef Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B., & Tanaka, K. (2000). Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochemical and Biophysical Research Communications, 277, 348–354.PubMedCrossRef
22.
Zurück zum Zitat Chen, X., Barton, L. F., Chi, A., Clurman, B. E., & Roberts, J. M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Molecular Cell, 26, 843–852.PubMedPubMedCentralCrossRef Chen, X., Barton, L. F., Chi, A., Clurman, B. E., & Roberts, J. M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Molecular Cell, 26, 843–852.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Groettrup, M., et al. (1995). The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. The Journal of Biological Chemistry, 270, 23808–23815.PubMedCrossRef Groettrup, M., et al. (1995). The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. The Journal of Biological Chemistry, 270, 23808–23815.PubMedCrossRef
24.
Zurück zum Zitat Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L., & Goldberg, A. L. (2001). 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. The EMBO Journal, 20, 2357–2366.PubMedPubMedCentralCrossRef Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L., & Goldberg, A. L. (2001). 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. The EMBO Journal, 20, 2357–2366.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Toes, R., et al. (2001). Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. The Journal of Experimental Medicine, 194, 1–12.PubMedPubMedCentralCrossRef Toes, R., et al. (2001). Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. The Journal of Experimental Medicine, 194, 1–12.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Piccinini, M., et al. (2005). Characterization of the 20S proteasome in human glioblastomas. Anticancer Research, 25, 3203–3210.PubMed Piccinini, M., et al. (2005). Characterization of the 20S proteasome in human glioblastomas. Anticancer Research, 25, 3203–3210.PubMed
27.
28.
29.
Zurück zum Zitat Sturm, D., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22, 425–437.PubMedCrossRef Sturm, D., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22, 425–437.PubMedCrossRef
30.
31.
Zurück zum Zitat Korshunov, A., et al. (2015). Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 129, 669–678.PubMedCrossRef Korshunov, A., et al. (2015). Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 129, 669–678.PubMedCrossRef
32.
Zurück zum Zitat Liang, M. L., et al. (2008). Tyrosine kinase expression in pediatric high grade astrocytoma. Journal of Neuro-Oncology, 87, 247–253.PubMedCrossRef Liang, M. L., et al. (2008). Tyrosine kinase expression in pediatric high grade astrocytoma. Journal of Neuro-Oncology, 87, 247–253.PubMedCrossRef
33.
Zurück zum Zitat Puputti, M., et al. (2006). Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Molecular Cancer Research, 4, 927–934.PubMedCrossRef Puputti, M., et al. (2006). Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Molecular Cancer Research, 4, 927–934.PubMedCrossRef
34.
Zurück zum Zitat Peschard, P., & Park, M. (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell, 3, 519–523.PubMedCrossRef Peschard, P., & Park, M. (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell, 3, 519–523.PubMedCrossRef
35.
Zurück zum Zitat Kuchay, S., et al. (2013). FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nature Cell Biology, 15, 472–480.PubMedCrossRef Kuchay, S., et al. (2013). FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nature Cell Biology, 15, 472–480.PubMedCrossRef
36.
37.
Zurück zum Zitat Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes & Development, 22, 1276–1312.CrossRef Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes & Development, 22, 1276–1312.CrossRef
38.
Zurück zum Zitat Assanah, M. C., et al. (2009). PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia, 57, 1835–1847.PubMedCrossRef Assanah, M. C., et al. (2009). PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia, 57, 1835–1847.PubMedCrossRef
39.
Zurück zum Zitat Clarke, I. D., & Dirks, P. B. (2003). A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene, 22, 722–733.PubMedCrossRef Clarke, I. D., & Dirks, P. B. (2003). A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene, 22, 722–733.PubMedCrossRef
40.
Zurück zum Zitat Paugh, B. S., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28, 3061–3068.PubMedPubMedCentralCrossRef Paugh, B. S., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28, 3061–3068.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Dai, C., et al. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes & Development, 15, 1913–1925.CrossRef Dai, C., et al. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes & Development, 15, 1913–1925.CrossRef
42.
Zurück zum Zitat Maxwell, M., et al. (1990). Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. The Journal of Clinical Investigation, 86, 131–140.PubMedPubMedCentralCrossRef Maxwell, M., et al. (1990). Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. The Journal of Clinical Investigation, 86, 131–140.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat N. Cancer Genome Atlas Research. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.CrossRef N. Cancer Genome Atlas Research. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.CrossRef
44.
Zurück zum Zitat Thorarinsdottir, H. K., et al. (2008). Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clinical Cancer Research, 14, 3386–3394.PubMedPubMedCentralCrossRef Thorarinsdottir, H. K., et al. (2008). Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clinical Cancer Research, 14, 3386–3394.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Shamah, S. M., Stiles, C. D., & Guha, A. (1993). Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Molecular and Cellular Biology, 13, 7203–7212.PubMedPubMedCentralCrossRef Shamah, S. M., Stiles, C. D., & Guha, A. (1993). Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Molecular and Cellular Biology, 13, 7203–7212.PubMedPubMedCentralCrossRef
46.
47.
Zurück zum Zitat Bredel, M., Pollack, I. F., Hamilton, R. L., & James, C. D. (1999). Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clinical Cancer Research, 5, 1786–1792.PubMed Bredel, M., Pollack, I. F., Hamilton, R. L., & James, C. D. (1999). Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clinical Cancer Research, 5, 1786–1792.PubMed
48.
Zurück zum Zitat Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60, 1383–1387.PubMed Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60, 1383–1387.PubMed
49.
Zurück zum Zitat MacDonald, T. J., Aguilera, D., & Kramm, C. M. (2011). Treatment of high-grade glioma in children and adolescents. Neuro-Oncology, 13, 1049–1058.PubMedPubMedCentralCrossRef MacDonald, T. J., Aguilera, D., & Kramm, C. M. (2011). Treatment of high-grade glioma in children and adolescents. Neuro-Oncology, 13, 1049–1058.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Hartman, Z., Zhao, H., & Agazie, Y. M. (2013). HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene, 32, 4169–4180.PubMedCrossRef Hartman, Z., Zhao, H., & Agazie, Y. M. (2013). HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene, 32, 4169–4180.PubMedCrossRef
51.
Zurück zum Zitat Koochekpour, S., et al. (1997). Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Research, 57, 5391–5398.PubMed Koochekpour, S., et al. (1997). Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Research, 57, 5391–5398.PubMed
52.
Zurück zum Zitat Mosesson, Y., et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. The Journal of Biological Chemistry, 278, 21323–21326.PubMedCrossRef Mosesson, Y., et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. The Journal of Biological Chemistry, 278, 21323–21326.PubMedCrossRef
53.
Zurück zum Zitat Marmor, M. D., & Yarden, Y. (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene, 23, 2057–2070.PubMedCrossRef Marmor, M. D., & Yarden, Y. (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene, 23, 2057–2070.PubMedCrossRef
55.
Zurück zum Zitat Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology, 12, 21–35.PubMedCrossRef Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology, 12, 21–35.PubMedCrossRef
56.
Zurück zum Zitat Fang, D., & Liu, Y. C. (2001). Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunology, 2, 870–875.PubMedCrossRef Fang, D., & Liu, Y. C. (2001). Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunology, 2, 870–875.PubMedCrossRef
57.
Zurück zum Zitat Fan, Q. W., & Weiss, W. A. (2012). Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods in Molecular Biology, 821, 349–359.PubMedPubMedCentralCrossRef Fan, Q. W., & Weiss, W. A. (2012). Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods in Molecular Biology, 821, 349–359.PubMedPubMedCentralCrossRef
58.
59.
Zurück zum Zitat Olovnikov, I. A., Kravchenko, J. E., & Chumakov, P. M. (2009). Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Seminars in Cancer Biology, 19, 32–41.PubMedCrossRef Olovnikov, I. A., Kravchenko, J. E., & Chumakov, P. M. (2009). Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Seminars in Cancer Biology, 19, 32–41.PubMedCrossRef
60.
Zurück zum Zitat Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387, 296–299.PubMedCrossRef Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387, 296–299.PubMedCrossRef
61.
Zurück zum Zitat Momand, J., Zambetti, G. P., Olson, D. C., George, D., & Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237–1245.PubMedCrossRef Momand, J., Zambetti, G. P., Olson, D. C., George, D., & Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237–1245.PubMedCrossRef
63.
Zurück zum Zitat Wang, X., & Jiang, X. (2012). Mdm2 and MdmX partner to regulate p53. FEBS Letters, 586, 1390–1396.PubMedCrossRef Wang, X., & Jiang, X. (2012). Mdm2 and MdmX partner to regulate p53. FEBS Letters, 586, 1390–1396.PubMedCrossRef
64.
Zurück zum Zitat Love, I. M., & Grossman, S. R. (2012). It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes & Cancer, 3, 249–263.CrossRef Love, I. M., & Grossman, S. R. (2012). It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes & Cancer, 3, 249–263.CrossRef
65.
Zurück zum Zitat Pomeroy, S. L. (1994). The p53 tumor suppressor gene and pediatric brain tumors. Current Opinion in Pediatrics, 6, 632–635.PubMedCrossRef Pomeroy, S. L. (1994). The p53 tumor suppressor gene and pediatric brain tumors. Current Opinion in Pediatrics, 6, 632–635.PubMedCrossRef
66.
Zurück zum Zitat Zhukova, N., et al. (2013). Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Journal of Clinical Oncology, 31, 2927–2935.PubMedPubMedCentralCrossRef Zhukova, N., et al. (2013). Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Journal of Clinical Oncology, 31, 2927–2935.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Pollack, I. F., et al. (1997). The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Research, 57, 304–309.PubMed Pollack, I. F., et al. (1997). The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Research, 57, 304–309.PubMed
68.
Zurück zum Zitat Kunkele, A., et al. (2012). Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro-Oncology, 14, 859–869.PubMedPubMedCentralCrossRef Kunkele, A., et al. (2012). Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro-Oncology, 14, 859–869.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Knoepfler, P. S., Cheng, P. F., & Eisenman, R. N. (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & Development, 16, 2699–2712.CrossRef Knoepfler, P. S., Cheng, P. F., & Eisenman, R. N. (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & Development, 16, 2699–2712.CrossRef
70.
Zurück zum Zitat Korshunov, A., et al. (2012). Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 123, 515–527.PubMedCrossRef Korshunov, A., et al. (2012). Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 123, 515–527.PubMedCrossRef
71.
74.
Zurück zum Zitat Choi, S. H., Wright, J. B., Gerber, S. A., & Cole, M. D. (2010). Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes & Development, 24, 1236–1241.CrossRef Choi, S. H., Wright, J. B., Gerber, S. A., & Cole, M. D. (2010). Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes & Development, 24, 1236–1241.CrossRef
75.
Zurück zum Zitat Popov, N., Schulein, C., Jaenicke, L. A., & Eilers, M. (2010). Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nature Cell Biology, 12, 973–981.PubMedCrossRef Popov, N., Schulein, C., Jaenicke, L. A., & Eilers, M. (2010). Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nature Cell Biology, 12, 973–981.PubMedCrossRef
76.
Zurück zum Zitat von der Lehr, N., et al. (2003). The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Molecular Cell, 11, 1189–1200.PubMedCrossRef von der Lehr, N., et al. (2003). The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Molecular Cell, 11, 1189–1200.PubMedCrossRef
77.
Zurück zum Zitat Adhikary, S., et al. (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell, 123, 409–421.PubMedCrossRef Adhikary, S., et al. (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell, 123, 409–421.PubMedCrossRef
78.
Zurück zum Zitat Zhao, X., et al. (2008). The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biology, 10, 643–653.PubMedPubMedCentralCrossRef Zhao, X., et al. (2008). The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biology, 10, 643–653.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Penas, C., Ramachandran, V., & Ayad, N. G. (2011). The APC/C ubiquitin ligase: from cell biology to tumorigenesis. Frontiers in Oncology, 1, 60.PubMed Penas, C., Ramachandran, V., & Ayad, N. G. (2011). The APC/C ubiquitin ligase: from cell biology to tumorigenesis. Frontiers in Oncology, 1, 60.PubMed
80.
Zurück zum Zitat Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J., & Jackson, P. K. (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nature Cell Biology, 4, 358–366.PubMedCrossRef Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J., & Jackson, P. K. (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nature Cell Biology, 4, 358–366.PubMedCrossRef
81.
Zurück zum Zitat Lehman, N. L., Verschuren, E. W., Hsu, J. Y., Cherry, A. M., & Jackson, P. K. (2006). Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle, 5, 1569–1573.PubMedCrossRef Lehman, N. L., Verschuren, E. W., Hsu, J. Y., Cherry, A. M., & Jackson, P. K. (2006). Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle, 5, 1569–1573.PubMedCrossRef
82.
Zurück zum Zitat Margottin-Goguet, F., et al. (2003). Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Developmental Cell, 4, 813–826.PubMedCrossRef Margottin-Goguet, F., et al. (2003). Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Developmental Cell, 4, 813–826.PubMedCrossRef
83.
Zurück zum Zitat Guardavaccaro, D., et al. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Developmental Cell, 4, 799–812.PubMedCrossRef Guardavaccaro, D., et al. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Developmental Cell, 4, 799–812.PubMedCrossRef
84.
Zurück zum Zitat Carrano, A. C., Eytan, E., Hershko, A., & Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1, 193–199.PubMedCrossRef Carrano, A. C., Eytan, E., Hershko, A., & Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1, 193–199.PubMedCrossRef
85.
Zurück zum Zitat Marti, A., Wirbelauer, C., Scheffner, M., & Krek, W. (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biology, 1, 14–19.PubMedCrossRef Marti, A., Wirbelauer, C., Scheffner, M., & Krek, W. (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biology, 1, 14–19.PubMedCrossRef
87.
Zurück zum Zitat Visintin, R., Prinz, S., & Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science, 278, 460–463.PubMedCrossRef Visintin, R., Prinz, S., & Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science, 278, 460–463.PubMedCrossRef
88.
Zurück zum Zitat Puram, S. V., & Bonni, A. (2011). Novel functions for the anaphase-promoting complex in neurobiology. Seminars in Cell & Developmental Biology, 22, 586–594.CrossRef Puram, S. V., & Bonni, A. (2011). Novel functions for the anaphase-promoting complex in neurobiology. Seminars in Cell & Developmental Biology, 22, 586–594.CrossRef
89.
Zurück zum Zitat Lasorella, A., et al. (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 442, 471–474.PubMedCrossRef Lasorella, A., et al. (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 442, 471–474.PubMedCrossRef
90.
Zurück zum Zitat Vlachostergios, P. J., Voutsadakis, I. A., & Papandreou, C. N. (2012). The ubiquitin-proteasome system in glioma cell cycle control. Cell Div, 7, 18.PubMedPubMedCentralCrossRef Vlachostergios, P. J., Voutsadakis, I. A., & Papandreou, C. N. (2012). The ubiquitin-proteasome system in glioma cell cycle control. Cell Div, 7, 18.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Schiffer, D., Cavalla, P., Fiano, V., Ghimenti, C., & Piva, R. (2002). Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neuroscience Letters, 328, 125–128.PubMedCrossRef Schiffer, D., Cavalla, P., Fiano, V., Ghimenti, C., & Piva, R. (2002). Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neuroscience Letters, 328, 125–128.PubMedCrossRef
92.
Zurück zum Zitat Veeriah, S., et al. (2010). Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genetics, 42, 77–82.PubMedCrossRef Veeriah, S., et al. (2010). Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genetics, 42, 77–82.PubMedCrossRef
93.
Zurück zum Zitat Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature Immunology, 12, 715–723.PubMedCrossRef Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature Immunology, 12, 715–723.PubMedCrossRef
94.
Zurück zum Zitat Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25, 6680–6684.PubMedCrossRef Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25, 6680–6684.PubMedCrossRef
95.
Zurück zum Zitat Harhaj, E. W., & Dixit, V. M. (2011). Deubiquitinases in the regulation of NF-kappaB signaling. Cell Research, 21, 22–39.PubMedCrossRef Harhaj, E. W., & Dixit, V. M. (2011). Deubiquitinases in the regulation of NF-kappaB signaling. Cell Research, 21, 22–39.PubMedCrossRef
97.
Zurück zum Zitat Busino, L., et al. (2012). Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 14, 375–385.PubMedPubMedCentralCrossRef Busino, L., et al. (2012). Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 14, 375–385.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Fukushima, H., et al. (2012). SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Reports, 1, 434–443.PubMedPubMedCentralCrossRef Fukushima, H., et al. (2012). SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Reports, 1, 434–443.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Bredel, M., et al. (2011). NFKBIA deletion in glioblastomas. The New England Journal of Medicine, 364, 627–637.PubMedCrossRef Bredel, M., et al. (2011). NFKBIA deletion in glioblastomas. The New England Journal of Medicine, 364, 627–637.PubMedCrossRef
100.
Zurück zum Zitat Wang, H., et al. (2004). Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Laboratory Investigation, 84, 941–951.PubMedCrossRef Wang, H., et al. (2004). Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Laboratory Investigation, 84, 941–951.PubMedCrossRef
101.
Zurück zum Zitat Hussain, S. F., et al. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology, 8, 261–279.PubMedPubMedCentralCrossRef Hussain, S. F., et al. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology, 8, 261–279.PubMedPubMedCentralCrossRef
102.
103.
Zurück zum Zitat Kool, M., et al. (2012). Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 123, 473–484.PubMedPubMedCentralCrossRef Kool, M., et al. (2012). Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 123, 473–484.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat DeSouza, R. M., Jones, B. R., Lowis, S. P., & Kurian, K. M. (2014). Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Frontiers in Oncology, 4, 176.PubMedPubMedCentralCrossRef DeSouza, R. M., Jones, B. R., Lowis, S. P., & Kurian, K. M. (2014). Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Frontiers in Oncology, 4, 176.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Schuller, U., et al. (2008). Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123–134.PubMedPubMedCentralCrossRef Schuller, U., et al. (2008). Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123–134.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Kool, M., et al. (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell, 25, 393–405.PubMedPubMedCentralCrossRef Kool, M., et al. (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell, 25, 393–405.PubMedPubMedCentralCrossRef
108.
109.
Zurück zum Zitat Zurawel, R. H., Chiappa, S. A., Allen, C., & Raffel, C. (1998). Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Research, 58, 896–899.PubMed Zurawel, R. H., Chiappa, S. A., Allen, C., & Raffel, C. (1998). Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Research, 58, 896–899.PubMed
111.
Zurück zum Zitat Rausch, T., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148, 59–71.PubMedPubMedCentralCrossRef Rausch, T., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148, 59–71.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Vriend, J., Ghavami, S., & Marzban, H. (2015). The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Molecular Brain, 8, 64.PubMedPubMedCentralCrossRef Vriend, J., Ghavami, S., & Marzban, H. (2015). The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Molecular Brain, 8, 64.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Alvarez-Rodriguez, R., Barzi, M., Berenguer, J., & Pons, S. (2007). Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. The Journal of Biological Chemistry, 282, 37170–37180.PubMedCrossRef Alvarez-Rodriguez, R., Barzi, M., Berenguer, J., & Pons, S. (2007). Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. The Journal of Biological Chemistry, 282, 37170–37180.PubMedCrossRef
116.
Zurück zum Zitat Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14, 59–88.PubMedCrossRef Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14, 59–88.PubMedCrossRef
117.
Zurück zum Zitat Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H., & Muller-Tidow, C. (2007). The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia, 21, 1638–1647.PubMedCrossRef Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H., & Muller-Tidow, C. (2007). The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia, 21, 1638–1647.PubMedCrossRef
118.
Zurück zum Zitat Couffinhal, T., Dufourcq, P., & Duplaa, C. (2006). Beta-catenin nuclear activation: common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circulation Research, 99, 1287–1289.PubMedCrossRef Couffinhal, T., Dufourcq, P., & Duplaa, C. (2006). Beta-catenin nuclear activation: common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circulation Research, 99, 1287–1289.PubMedCrossRef
119.
Zurück zum Zitat Northcott, P. A., et al. (2011). Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 122, 231–240.PubMedPubMedCentralCrossRef Northcott, P. A., et al. (2011). Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 122, 231–240.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Scotting, P. J., Walker, D. A., & Perilongo, G. (2005). Childhood solid tumours: a developmental disorder. Nature Reviews. Cancer, 5, 481–488.PubMedCrossRef Scotting, P. J., Walker, D. A., & Perilongo, G. (2005). Childhood solid tumours: a developmental disorder. Nature Reviews. Cancer, 5, 481–488.PubMedCrossRef
122.
Zurück zum Zitat Yue, S., Chen, Y., & Cheng, S. Y. (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28, 492–499.PubMedCrossRef Yue, S., Chen, Y., & Cheng, S. Y. (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28, 492–499.PubMedCrossRef
123.
Zurück zum Zitat Kim, J. J., et al. (2011). Suppressor of fused controls mid-hindbrain patterning and cerebellar morphogenesis via GLI3 repressor. The Journal of Neuroscience, 31, 1825–1836.PubMedCrossRef Kim, J. J., et al. (2011). Suppressor of fused controls mid-hindbrain patterning and cerebellar morphogenesis via GLI3 repressor. The Journal of Neuroscience, 31, 1825–1836.PubMedCrossRef
124.
Zurück zum Zitat Gulino, A., Di Marcotullio, L., Canettieri, G., De Smaele, E., & Screpanti, I. (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitamins and Hormones, 88, 211–227.PubMedCrossRef Gulino, A., Di Marcotullio, L., Canettieri, G., De Smaele, E., & Screpanti, I. (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitamins and Hormones, 88, 211–227.PubMedCrossRef
125.
Zurück zum Zitat Lau, A. W., Fukushima, H., & Wei, W. (2012). The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed), 17, 2197–2212.CrossRef Lau, A. W., Fukushima, H., & Wei, W. (2012). The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed), 17, 2197–2212.CrossRef
126.
Zurück zum Zitat Forget, A., et al. (2014). Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Developmental Cell, 29, 649–661.PubMedCrossRef Forget, A., et al. (2014). Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Developmental Cell, 29, 649–661.PubMedCrossRef
127.
Zurück zum Zitat Chen, D., et al. (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell, 121, 1071–1083.PubMedCrossRef Chen, D., et al. (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell, 121, 1071–1083.PubMedCrossRef
128.
Zurück zum Zitat Zhao, H., Ayrault, O., Zindy, F., Kim, J. H., & Roussel, M. F. (2008). Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes & Development, 22, 722–727.CrossRef Zhao, H., Ayrault, O., Zindy, F., Kim, J. H., & Roussel, M. F. (2008). Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes & Development, 22, 722–727.CrossRef
129.
Zurück zum Zitat Cao, Y., et al. (2014). Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Scientific Reports, 4, 4965.PubMedPubMedCentralCrossRef Cao, Y., et al. (2014). Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Scientific Reports, 4, 4965.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Babaei-Jadidi, R., et al. (2011). FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. The Journal of Experimental Medicine, 208, 295–312.PubMedPubMedCentralCrossRef Babaei-Jadidi, R., et al. (2011). FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. The Journal of Experimental Medicine, 208, 295–312.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Davis, R. J., Welcker, M., & Clurman, B. E. (2014). Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell, 26, 455–464.PubMedPubMedCentralCrossRef Davis, R. J., Welcker, M., & Clurman, B. E. (2014). Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell, 26, 455–464.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Hede, S. M., Savov, V., Weishaupt, H., Sangfelt, O., & Swartling, F. J. (2014). Oncoprotein stabilization in brain tumors. Oncogene, 33, 4709–4721.PubMedCrossRef Hede, S. M., Savov, V., Weishaupt, H., Sangfelt, O., & Swartling, F. J. (2014). Oncoprotein stabilization in brain tumors. Oncogene, 33, 4709–4721.PubMedCrossRef
134.
Zurück zum Zitat Hartmann, W., et al. (2006). Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clinical Cancer Research, 12, 3019–3027.PubMedCrossRef Hartmann, W., et al. (2006). Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clinical Cancer Research, 12, 3019–3027.PubMedCrossRef
135.
Zurück zum Zitat Wlodarski, P., Grajkowska, W., Lojek, M., Rainko, K., & Jozwiak, J. (2006). Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathologica, 44, 214–220.PubMed Wlodarski, P., Grajkowska, W., Lojek, M., Rainko, K., & Jozwiak, J. (2006). Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathologica, 44, 214–220.PubMed
136.
Zurück zum Zitat Yang, F., et al. (2012). Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-kB signaling, and synergizes with an ERK inhibitor. Cancer Biology & Therapy, 13, 349–357.CrossRef Yang, F., et al. (2012). Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-kB signaling, and synergizes with an ERK inhibitor. Cancer Biology & Therapy, 13, 349–357.CrossRef
137.
Zurück zum Zitat Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13, 1076–1082.PubMedCrossRef Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13, 1076–1082.PubMedCrossRef
138.
Zurück zum Zitat Prasad, S., Ravindran, J., & Aggarwal, B. B. (2010). NF-kappaB and cancer: how intimate is this relationship. Molecular and Cellular Biochemistry, 336, 25–37.PubMedCrossRef Prasad, S., Ravindran, J., & Aggarwal, B. B. (2010). NF-kappaB and cancer: how intimate is this relationship. Molecular and Cellular Biochemistry, 336, 25–37.PubMedCrossRef
139.
Zurück zum Zitat Northcott, P. A., Dubuc, A. M., Pfister, S., & Taylor, M. D. (2012). Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 12, 871–884.PubMedPubMedCentralCrossRef Northcott, P. A., Dubuc, A. M., Pfister, S., & Taylor, M. D. (2012). Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 12, 871–884.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Sunwoo, J. B., et al. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clinical Cancer Research, 7, 1419–1428.PubMed Sunwoo, J. B., et al. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clinical Cancer Research, 7, 1419–1428.PubMed
141.
Zurück zum Zitat Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5, 417–421.PubMedCrossRef Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5, 417–421.PubMedCrossRef
142.
Zurück zum Zitat Spiller, S. E., Logsdon, N. J., Deckard, L. A., & Sontheimer, H. (2011). Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer, 11, 136.PubMedPubMedCentralCrossRef Spiller, S. E., Logsdon, N. J., Deckard, L. A., & Sontheimer, H. (2011). Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo. BMC Cancer, 11, 136.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Juvekar, A., et al. (2011). Bortezomib induces nuclear translocation of IkappaBalpha resulting in gene-specific suppression of NF-kappaB—dependent transcription and induction of apoptosis in CTCL. Molecular Cancer Research, 9, 183–194.PubMedPubMedCentralCrossRef Juvekar, A., et al. (2011). Bortezomib induces nuclear translocation of IkappaBalpha resulting in gene-specific suppression of NF-kappaB—dependent transcription and induction of apoptosis in CTCL. Molecular Cancer Research, 9, 183–194.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Jariel-Encontre, I., Bossis, G., & Piechaczyk, M. (2008). Ubiquitin-independent degradation of proteins by the proteasome. Biochimica et Biophysica Acta, 1786, 153–177.PubMed Jariel-Encontre, I., Bossis, G., & Piechaczyk, M. (2008). Ubiquitin-independent degradation of proteins by the proteasome. Biochimica et Biophysica Acta, 1786, 153–177.PubMed
146.
Zurück zum Zitat Pagano, M., et al. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 269, 682–685.PubMedCrossRef Pagano, M., et al. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 269, 682–685.PubMedCrossRef
147.
Zurück zum Zitat Maddika, S., et al. (2007). Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resistance Updates, 10, 13–29.PubMedCrossRef Maddika, S., et al. (2007). Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resistance Updates, 10, 13–29.PubMedCrossRef
148.
Zurück zum Zitat Epstein, F. H., Mitch, W. E., & Goldberg, A. L. (1996). Mechanisms of muscle wasting—the role of the ubiquitin–proteasome pathway. The New England Journal of Medicine, 335, 1897–1905.CrossRef Epstein, F. H., Mitch, W. E., & Goldberg, A. L. (1996). Mechanisms of muscle wasting—the role of the ubiquitin–proteasome pathway. The New England Journal of Medicine, 335, 1897–1905.CrossRef
149.
Zurück zum Zitat Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.PubMedCrossRef Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.PubMedCrossRef
150.
Zurück zum Zitat Berkers, C. R., et al. (2005). Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods, 2, 357–362.PubMedCrossRef Berkers, C. R., et al. (2005). Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods, 2, 357–362.PubMedCrossRef
151.
Zurück zum Zitat Hideshima, T., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.PubMed Hideshima, T., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.PubMed
152.
Zurück zum Zitat Jagannath, S., et al. (2004). A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. British Journal of Haematology, 127, 165–172.PubMedCrossRef Jagannath, S., et al. (2004). A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. British Journal of Haematology, 127, 165–172.PubMedCrossRef
153.
Zurück zum Zitat Richardson, P. G., et al. (2007). Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood, 110, 3557–3560.PubMedCrossRef Richardson, P. G., et al. (2007). Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood, 110, 3557–3560.PubMedCrossRef
154.
Zurück zum Zitat Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. The Oncologist, 8, 508–513.PubMedCrossRef Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. The Oncologist, 8, 508–513.PubMedCrossRef
155.
Zurück zum Zitat Kane, R. C., Farrell, A. T., Sridhara, R., & Pazdur, R. (2006). United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 2955–2960.CrossRef Kane, R. C., Farrell, A. T., Sridhara, R., & Pazdur, R. (2006). United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 2955–2960.CrossRef
156.
Zurück zum Zitat Kane, R. C., et al. (2007). Bortezomib for the treatment of mantle cell lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 13, 5291–5294.CrossRef Kane, R. C., et al. (2007). Bortezomib for the treatment of mantle cell lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 13, 5291–5294.CrossRef
157.
Zurück zum Zitat Potts, B. C., et al. (2011). Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Current Cancer Drug Targets, 11, 254–284.PubMedPubMedCentralCrossRef Potts, B. C., et al. (2011). Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Current Cancer Drug Targets, 11, 254–284.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Millward, M., et al. (2011). Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Investigational New Drugs, 30, 2303–2317.PubMedCrossRef Millward, M., et al. (2011). Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Investigational New Drugs, 30, 2303–2317.PubMedCrossRef
159.
Zurück zum Zitat Williams, P. G., et al. (2005). New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. The Journal of Organic Chemistry, 70, 6196–6203.PubMedCrossRef Williams, P. G., et al. (2005). New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. The Journal of Organic Chemistry, 70, 6196–6203.PubMedCrossRef
160.
Zurück zum Zitat Corey, E. J., & Li, W. D. (1999). Total synthesis and biological activity of lactacystin, omuralide and analogs. Chemical & Pharmaceutical Bulletin, 47, 1–10.CrossRef Corey, E. J., & Li, W. D. (1999). Total synthesis and biological activity of lactacystin, omuralide and analogs. Chemical & Pharmaceutical Bulletin, 47, 1–10.CrossRef
161.
Zurück zum Zitat Feling, R. H., et al. (2003). Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie (International Ed. in English), 42, 355–357.CrossRef Feling, R. H., et al. (2003). Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie (International Ed. in English), 42, 355–357.CrossRef
162.
Zurück zum Zitat Groll, M., Huber, R., & Potts, B. C. M. (2006). Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. Journal of the American Chemical Society, 128, 5136–5141.PubMedCrossRef Groll, M., Huber, R., & Potts, B. C. M. (2006). Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. Journal of the American Chemical Society, 128, 5136–5141.PubMedCrossRef
163.
Zurück zum Zitat Manam, R. R., et al. (2008). Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. Journal of Medicinal Chemistry, 51, 6711–6724.PubMedCrossRef Manam, R. R., et al. (2008). Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. Journal of Medicinal Chemistry, 51, 6711–6724.PubMedCrossRef
164.
Zurück zum Zitat Miller, C. P., et al. (2011). Specific and prolonged proteasome inhibition dictates apoptosis induction by marizomib and its analogs. Chemico-Biological Interactions, 194, 58–68.PubMedPubMedCentralCrossRef Miller, C. P., et al. (2011). Specific and prolonged proteasome inhibition dictates apoptosis induction by marizomib and its analogs. Chemico-Biological Interactions, 194, 58–68.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Chauhan, D., et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell, 8, 407–419.PubMedCrossRef Chauhan, D., et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell, 8, 407–419.PubMedCrossRef
166.
Zurück zum Zitat Kuhn, D. J., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef Kuhn, D. J., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Muchamuel, T., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.PubMedCrossRef Muchamuel, T., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.PubMedCrossRef
168.
Zurück zum Zitat Basler, M., Dajee, M., Moll, C., Groettrup, M., & Kirk, C. J. (2010). Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. Journal of Immunology, 185, 634–641.CrossRef Basler, M., Dajee, M., Moll, C., Groettrup, M., & Kirk, C. J. (2010). Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. Journal of Immunology, 185, 634–641.CrossRef
169.
Zurück zum Zitat Ohshima-Hosoyama, S., Davare, M. A., Hosoyama, T., Nelon, L. D., & Keller, C. (2011). Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. Journal of Neuro-Oncology, 105, 475–483.PubMedCrossRef Ohshima-Hosoyama, S., Davare, M. A., Hosoyama, T., Nelon, L. D., & Keller, C. (2011). Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. Journal of Neuro-Oncology, 105, 475–483.PubMedCrossRef
170.
Zurück zum Zitat Samano, A. K., et al. (2010). Functional evaluation of therapeutic response for a mouse model of medulloblastoma. Transgenic Research, 19, 829–840.PubMedPubMedCentralCrossRef Samano, A. K., et al. (2010). Functional evaluation of therapeutic response for a mouse model of medulloblastoma. Transgenic Research, 19, 829–840.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Taniguchi, E., et al. (2009). Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatric Blood & Cancer, 53, 136–144.CrossRef Taniguchi, E., et al. (2009). Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatric Blood & Cancer, 53, 136–144.CrossRef
172.
173.
Zurück zum Zitat Dimopoulos, M. A., et al. (2017). Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. The Lancet Oncology, 18, 1327–1337.PubMedCrossRef Dimopoulos, M. A., et al. (2017). Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. The Lancet Oncology, 18, 1327–1337.PubMedCrossRef
174.
Zurück zum Zitat Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37, 13–25.PubMedCrossRef Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37, 13–25.PubMedCrossRef
175.
Zurück zum Zitat Zünkeler, B., et al. (1996). Quantification and pharmacokinetics of blood-brain barrier disruption in humans. Journal of Neurosurgery, 85, 1056–1065.PubMedCrossRef Zünkeler, B., et al. (1996). Quantification and pharmacokinetics of blood-brain barrier disruption in humans. Journal of Neurosurgery, 85, 1056–1065.PubMedCrossRef
176.
Zurück zum Zitat Balyasnikova, I. V., Ferguson, S. D., Han, Y., Liu, F., & Lesniak, M. S. (2011). Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Letters, 310, 148–159.PubMedPubMedCentralCrossRef Balyasnikova, I. V., Ferguson, S. D., Han, Y., Liu, F., & Lesniak, M. S. (2011). Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Letters, 310, 148–159.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Asklund, T., et al. (2012). Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Research, 32, 2407–2413.PubMed Asklund, T., et al. (2012). Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Research, 32, 2407–2413.PubMed
178.
Zurück zum Zitat Premkumar, D. R., Jane, E. P., Agostino, N. R., DiDomenico, J. D., & Pollack, I. F. (2013). Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Molecular Carcinogenesis, 52, 118–133.PubMedCrossRef Premkumar, D. R., Jane, E. P., Agostino, N. R., DiDomenico, J. D., & Pollack, I. F. (2013). Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Molecular Carcinogenesis, 52, 118–133.PubMedCrossRef
179.
Zurück zum Zitat Friday, B. B., et al. (2012). Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-Oncology, 14, 215–221.PubMedCrossRef Friday, B. B., et al. (2012). Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-Oncology, 14, 215–221.PubMedCrossRef
180.
Zurück zum Zitat Labussiere, M., Pinel, S., Delfortrie, S., Plenat, F., & Chastagner, P. (2008). Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts. Oncology Reports, 20, 1283–1287.PubMed Labussiere, M., Pinel, S., Delfortrie, S., Plenat, F., & Chastagner, P. (2008). Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts. Oncology Reports, 20, 1283–1287.PubMed
181.
182.
Zurück zum Zitat Singh, A. V., et al. (2010). Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. British Journal of Haematology, 149, 550–559.PubMedPubMedCentralCrossRef Singh, A. V., et al. (2010). Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. British Journal of Haematology, 149, 550–559.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Di, K., et al. (2016). Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncology, 18, 840–848.PubMedCrossRef Di, K., et al. (2016). Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncology, 18, 840–848.PubMedCrossRef
184.
Zurück zum Zitat Manton, C. A., et al. (2016). Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Scientific Reports, 6, 18953.PubMedPubMedCentralCrossRef Manton, C. A., et al. (2016). Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Scientific Reports, 6, 18953.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Berkowitz, A., & Walker, S. (2012). Bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Clinical Journal of Oncology Nursing, 16, 86–89.PubMedCrossRef Berkowitz, A., & Walker, S. (2012). Bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Clinical Journal of Oncology Nursing, 16, 86–89.PubMedCrossRef
186.
Zurück zum Zitat Argyriou, A. A., Iconomou, G., & Kalofonos, H. P. (2008). Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 112, 1593–1599.PubMedCrossRef Argyriou, A. A., Iconomou, G., & Kalofonos, H. P. (2008). Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 112, 1593–1599.PubMedCrossRef
187.
Zurück zum Zitat Wolf, S., Barton, D., Kottschade, L., Grothey, A., & Loprinzi, C. (2008). Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. European journal of cancer (Oxford, England : 1990), 44, 1507–1515.CrossRef Wolf, S., Barton, D., Kottschade, L., Grothey, A., & Loprinzi, C. (2008). Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. European journal of cancer (Oxford, England : 1990), 44, 1507–1515.CrossRef
188.
Zurück zum Zitat Delforge, M., et al. (2010). Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. The Lancet. Oncology, 11, 1086–1095.PubMedCrossRef Delforge, M., et al. (2010). Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. The Lancet. Oncology, 11, 1086–1095.PubMedCrossRef
189.
Zurück zum Zitat Zou, W., et al. (2006). Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 273–280.CrossRef Zou, W., et al. (2006). Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 12, 273–280.CrossRef
190.
Zurück zum Zitat Richardson PG et al., paper presented at the American Society of Hematology Meeting Abstract, Nov 01 2011. Richardson PG et al., paper presented at the American Society of Hematology Meeting Abstract, Nov 01 2011.
191.
Zurück zum Zitat Yoo, J. Y., et al. (2014). Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clinical Cancer Research, 20, 3787–3798.PubMedPubMedCentralCrossRef Yoo, J. Y., et al. (2014). Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clinical Cancer Research, 20, 3787–3798.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Yoo, J. Y., et al. (2016). Bortezomib treatment sensitizes oncolytic HSV-1-treated tumors to NK cell immunotherapy. Clinical Cancer Research, 22, 5265–5276.PubMedPubMedCentralCrossRef Yoo, J. Y., et al. (2016). Bortezomib treatment sensitizes oncolytic HSV-1-treated tumors to NK cell immunotherapy. Clinical Cancer Research, 22, 5265–5276.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Leestemaker, Y., et al. (2017). Proteasome activation by small molecules. Cell Chemical Biology, 24, 725–736 e727.PubMedCrossRef Leestemaker, Y., et al. (2017). Proteasome activation by small molecules. Cell Chemical Biology, 24, 725–736 e727.PubMedCrossRef
194.
Zurück zum Zitat Phuphanich, S., et al. (2010). Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. Journal of Neuro-Oncology, 100, 95–103.PubMedCrossRef Phuphanich, S., et al. (2010). Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. Journal of Neuro-Oncology, 100, 95–103.PubMedCrossRef
195.
Zurück zum Zitat Blaney, S. M., et al. (2004). Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). Journal of Clinical Oncology, 22, 4804–4809.PubMedCrossRef Blaney, S. M., et al. (2004). Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). Journal of Clinical Oncology, 22, 4804–4809.PubMedCrossRef
196.
Zurück zum Zitat Portnow, J., et al. (2012). A phase I study of bortezomib and temozolomide in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 69, 505–514.PubMedCrossRef Portnow, J., et al. (2012). A phase I study of bortezomib and temozolomide in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 69, 505–514.PubMedCrossRef
197.
Zurück zum Zitat Yin, D., et al. (2005). Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene, 24, 344–354.PubMedCrossRef Yin, D., et al. (2005). Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene, 24, 344–354.PubMedCrossRef
198.
Zurück zum Zitat Riordan, B., Yu, L. J., Hatsis, P., Brockman, A., Daniels, S., Stagliano, N., Finklestein, S., Ren, J., Milton, M., & Miwa, G. (2006). Study of brain and whole blood PK/PD of bortezomib in rat models. Journal of Clinical Oncology, 24, 12036. Riordan, B., Yu, L. J., Hatsis, P., Brockman, A., Daniels, S., Stagliano, N., Finklestein, S., Ren, J., Milton, M., & Miwa, G. (2006). Study of brain and whole blood PK/PD of bortezomib in rat models. Journal of Clinical Oncology, 24, 12036.
199.
Zurück zum Zitat Muscal, J. A., et al. (2013). A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatric Blood & Cancer, 60, 390–395.CrossRef Muscal, J. A., et al. (2013). A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatric Blood & Cancer, 60, 390–395.CrossRef
200.
Zurück zum Zitat McCracken, D. J., Celano, E. C., Voloschin, A. D., Read, W. L., & Olson, J. J. (2016). Phase I trial of dose-escalating metronomic temozolomide plus bevacizumab and bortezomib for patients with recurrent glioblastoma. Journal of Neuro-Oncology, 130, 193–201.PubMedCrossRef McCracken, D. J., Celano, E. C., Voloschin, A. D., Read, W. L., & Olson, J. J. (2016). Phase I trial of dose-escalating metronomic temozolomide plus bevacizumab and bortezomib for patients with recurrent glioblastoma. Journal of Neuro-Oncology, 130, 193–201.PubMedCrossRef
201.
Zurück zum Zitat Bota, D. A., et al. (2013). Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis. Journal of Neurosurgery, 119, 1415–1423.PubMedPubMedCentralCrossRef Bota, D. A., et al. (2013). Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis. Journal of Neurosurgery, 119, 1415–1423.PubMedPubMedCentralCrossRef
Metadaten
Titel
The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities
verfasst von
Wafik Zaky
Christa Manton
Claudia P. Miller
Soumen Khatua
Vidya Gopalakrishnan
Joya Chandra
Publikationsdatum
25.10.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9700-2

Weitere Artikel der Ausgabe 4/2017

Cancer and Metastasis Reviews 4/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.