Skip to main content
Erschienen in: Sports Medicine 11/2013

01.11.2013 | Review Article

The Use of Carbohydrates During Exercise as an Ergogenic Aid

verfasst von: Naomi M. Cermak, Luc J. C. van Loon

Erschienen in: Sports Medicine | Ausgabe 11/2013

Einloggen, um Zugang zu erhalten

Abstract

Carbohydrate and fat are the two primary fuel sources oxidized by skeletal muscle tissue during prolonged (endurance-type) exercise. The relative contribution of these fuel sources largely depends on the exercise intensity and duration, with a greater contribution from carbohydrate as exercise intensity is increased. Consequently, endurance performance and endurance capacity are largely dictated by endogenous carbohydrate availability. As such, improving carbohydrate availability during prolonged exercise through carbohydrate ingestion has dominated the field of sports nutrition research. As a result, it has been well-established that carbohydrate ingestion during prolonged (>2 h) moderate-to-high intensity exercise can significantly improve endurance performance. Although the precise mechanism(s) responsible for the ergogenic effects are still unclear, they are likely related to the sparing of skeletal muscle glycogen, prevention of liver glycogen depletion and subsequent development of hypoglycemia, and/or allowing high rates of carbohydrate oxidation. Currently, for prolonged exercise lasting 2–3 h, athletes are advised to ingest carbohydrates at a rate of 60 g·h−1 (~1.0–1.1 g·min−1) to allow for maximal exogenous glucose oxidation rates. However, well-trained endurance athletes competing longer than 2.5 h can metabolize carbohydrate up to 90 g·h−1 (~1.5–1.8 g·min−1) provided that multiple transportable carbohydrates are ingested (e.g. 1.2 g·min−1 glucose plus 0.6 g·min−1 of fructose). Surprisingly, small amounts of carbohydrate ingestion during exercise may also enhance the performance of shorter (45–60 min), more intense (>75 % peak oxygen uptake; VO2peak) exercise bouts, despite the fact that endogenous carbohydrate stores are unlikely to be limiting. The mechanism(s) responsible for such ergogenic properties of carbohydrate ingestion during short, more intense exercise bouts has been suggested to reside in the central nervous system. Carbohydrate ingestion during exercise also benefits athletes involved in intermittent/team sports. These athletes are advised to follow similar carbohydrate feeding strategies as the endurance athletes, but need to modify exogenous carbohydrate intake based upon the intensity and duration of the game and the available endogenous carbohydrate stores. Ample carbohydrate intake is also important for those athletes who need to compete twice within 24 h, when rapid repletion of endogenous glycogen stores is required to prevent a decline in performance. To support rapid post-exercise glycogen repletion, large amounts of exogenous carbohydrate (1.2 g·kg−1·h−1) should be provided during the acute recovery phase from exhaustive exercise. For those athletes with a lower gastrointestinal threshold for carbohydrate ingestion immediately post-exercise, and/or to support muscle re-conditioning, co-ingesting a small amount of protein (0.2–0.4 g·kg−1·h−1) with less carbohydrate (0.8 g·kg−1·h−1) may provide a feasible option to achieve similar muscle glycogen repletion rates.
Literatur
1.
Zurück zum Zitat Romijn J, Coyle E, Sidossis L, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380–91.PubMed Romijn J, Coyle E, Sidossis L, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380–91.PubMed
2.
Zurück zum Zitat van Loon L, Greenhaff P, Constantin-Teodosiu D, et al. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295–304.PubMed van Loon L, Greenhaff P, Constantin-Teodosiu D, et al. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295–304.PubMed
3.
Zurück zum Zitat van Loon L, Jeukendrup A, Saris W, et al. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol. 1999;87(4):1413–20.PubMed van Loon L, Jeukendrup A, Saris W, et al. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol. 1999;87(4):1413–20.PubMed
4.
Zurück zum Zitat McArdle W, Katch F, Katch V. Carbohydrates, lipids, and proteins. In: Darcy P, editor. Exercise physiology. Baltimore Lippincott Williams & Wilkins; 2001. p. 11–3. McArdle W, Katch F, Katch V. Carbohydrates, lipids, and proteins. In: Darcy P, editor. Exercise physiology. Baltimore Lippincott Williams & Wilkins; 2001. p. 11–3.
5.
Zurück zum Zitat Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25(1):7–23.PubMed Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25(1):7–23.PubMed
6.
Zurück zum Zitat Bergstrom J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19:218–28.PubMed Bergstrom J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19:218–28.PubMed
7.
Zurück zum Zitat Jeukendrup A. Carbohydrate intake during exercise and performance. Nutrition. 2004;20:669–77.PubMed Jeukendrup A. Carbohydrate intake during exercise and performance. Nutrition. 2004;20:669–77.PubMed
8.
Zurück zum Zitat Krogh A, Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy. Biochem J. 1920;14(3–4):290–363.PubMed Krogh A, Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy. Biochem J. 1920;14(3–4):290–363.PubMed
9.
Zurück zum Zitat Levine S, Gordon B, Derick C. Some changes in chemical constituents of blood following a marathon race. JAMA. 1924;82:1778. Levine S, Gordon B, Derick C. Some changes in chemical constituents of blood following a marathon race. JAMA. 1924;82:1778.
10.
Zurück zum Zitat Gordon B, Kohn L, Levine S, et al. Sugar content of the blood in runners following a marathon race with especial reference to the prevention of hypoglyemia: further observations. JAMA. 1925;85(7):508–9. Gordon B, Kohn L, Levine S, et al. Sugar content of the blood in runners following a marathon race with especial reference to the prevention of hypoglyemia: further observations. JAMA. 1925;85(7):508–9.
11.
Zurück zum Zitat Christensen E. Der Stoffwechsel und die Respiratorischen Funktionen bei schwerer korperlicher Arbeit. Scand Arch Physiol. 1932;81:160–71. Christensen E. Der Stoffwechsel und die Respiratorischen Funktionen bei schwerer korperlicher Arbeit. Scand Arch Physiol. 1932;81:160–71.
12.
Zurück zum Zitat Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized in muscle cells in man. Nature. 1966;210(5033):309–10.PubMed Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized in muscle cells in man. Nature. 1966;210(5033):309–10.PubMed
13.
Zurück zum Zitat Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–50.PubMed Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–50.PubMed
14.
Zurück zum Zitat Hawley J, Schabort E, Noakes T, et al. Carbohydrate-loading and exercise performance. An update. Sports Med. 1997;24(2):73–81.PubMed Hawley J, Schabort E, Noakes T, et al. Carbohydrate-loading and exercise performance. An update. Sports Med. 1997;24(2):73–81.PubMed
15.
Zurück zum Zitat Bonen A, Malcolm S, Kilgour R, et al. Glucose ingestion before and during intense exercise. J Appl Physiol. 1981;50(4):766–71.PubMed Bonen A, Malcolm S, Kilgour R, et al. Glucose ingestion before and during intense exercise. J Appl Physiol. 1981;50(4):766–71.PubMed
16.
Zurück zum Zitat Felig P, Cherif A, Minagawa A, et al. Hypolgycemia during prolonged exercise in normal men. N Engl J Med. 1982;306(15):395–900. Felig P, Cherif A, Minagawa A, et al. Hypolgycemia during prolonged exercise in normal men. N Engl J Med. 1982;306(15):395–900.
17.
Zurück zum Zitat Ivy J, Costill D, Fink W, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports Exerc. 1979;11(1):6–11. Ivy J, Costill D, Fink W, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports Exerc. 1979;11(1):6–11.
18.
Zurück zum Zitat Coyle E, Coggan A, Hemert M, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.PubMed Coyle E, Coggan A, Hemert M, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.PubMed
19.
Zurück zum Zitat Coyle E, Hagberg J, Hurley B, et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol. 1983;55:230–5.PubMed Coyle E, Hagberg J, Hurley B, et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol. 1983;55:230–5.PubMed
20.
Zurück zum Zitat Fielding R, Costill D, Fink W, et al. Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc. 1985;17(4):472–6.PubMed Fielding R, Costill D, Fink W, et al. Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc. 1985;17(4):472–6.PubMed
21.
Zurück zum Zitat Hargreaves M, Costill D, Coggan A, et al. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med Sci Sports Exerc. 1984;16(3):219–22.PubMed Hargreaves M, Costill D, Coggan A, et al. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med Sci Sports Exerc. 1984;16(3):219–22.PubMed
22.
Zurück zum Zitat Ivy J, Miller W, Dover V, et al. Endurance improved by ingestion of a glucose polymer supplement. Med Sci Sports Exerc. 1983;15(6):466–71.PubMed Ivy J, Miller W, Dover V, et al. Endurance improved by ingestion of a glucose polymer supplement. Med Sci Sports Exerc. 1983;15(6):466–71.PubMed
23.
Zurück zum Zitat Mitchell J, Costill D, Houmard J, et al. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc. 1988;20(2):110–5.PubMed Mitchell J, Costill D, Houmard J, et al. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc. 1988;20(2):110–5.PubMed
24.
Zurück zum Zitat Neufer P, Costill D, Flynn M, et al. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62(3):983–8.PubMed Neufer P, Costill D, Flynn M, et al. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62(3):983–8.PubMed
25.
Zurück zum Zitat Bjorkman O, Sahlin K, Hagenfeldt L, et al. Influence of glucose and fructose ingestion on the capacity for long-term exercise in well-trained men. Clin Physiol. 1984;4:483–94.PubMed Bjorkman O, Sahlin K, Hagenfeldt L, et al. Influence of glucose and fructose ingestion on the capacity for long-term exercise in well-trained men. Clin Physiol. 1984;4:483–94.PubMed
26.
Zurück zum Zitat Coggan A, Coyle E. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63(6):2388–95.PubMed Coggan A, Coyle E. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63(6):2388–95.PubMed
27.
Zurück zum Zitat Angus D, Hargreaves M, Dancey J, et al. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000;88(1):113–9.PubMed Angus D, Hargreaves M, Dancey J, et al. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000;88(1):113–9.PubMed
28.
Zurück zum Zitat Tsintzas O, Williams C, Boobis L, et al. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol. 1996;81(2):801–9.PubMed Tsintzas O, Williams C, Boobis L, et al. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol. 1996;81(2):801–9.PubMed
29.
Zurück zum Zitat Maughan R, Bethell L, Leiper J. Effects of ingested fluids on exercise capacity and on cardiovascular and metabolic responses to prolonged exercise in man. Exp Physiol. 1996;81(5):847–59.PubMed Maughan R, Bethell L, Leiper J. Effects of ingested fluids on exercise capacity and on cardiovascular and metabolic responses to prolonged exercise in man. Exp Physiol. 1996;81(5):847–59.PubMed
30.
Zurück zum Zitat Langenfeld M, Seifert J, Rudge S, et al. Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. J Sports Med Phys Fitness. 1994;34(3):263–70.PubMed Langenfeld M, Seifert J, Rudge S, et al. Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. J Sports Med Phys Fitness. 1994;34(3):263–70.PubMed
31.
Zurück zum Zitat Tsintzas K, Liu R, Williams C, et al. The effect of carbohydrate ingestion on performance during a 30-km race. Int J Sport Nutr. 1993;3(2):127–39.PubMed Tsintzas K, Liu R, Williams C, et al. The effect of carbohydrate ingestion on performance during a 30-km race. Int J Sport Nutr. 1993;3(2):127–39.PubMed
32.
Zurück zum Zitat Wright D, Sherman W, Dernbach A. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71(3):1082–8.PubMed Wright D, Sherman W, Dernbach A. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71(3):1082–8.PubMed
33.
Zurück zum Zitat Murray R, Eddy D, Murray T, et al. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.PubMed Murray R, Eddy D, Murray T, et al. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.PubMed
34.
Zurück zum Zitat Vandenbogaerde T, Hopkins W. Effects of acute carbohydrate supplementation on endurance performance. Sports Med. 2011;41(9):773–92.PubMed Vandenbogaerde T, Hopkins W. Effects of acute carbohydrate supplementation on endurance performance. Sports Med. 2011;41(9):773–92.PubMed
35.
Zurück zum Zitat Hulston C, Jeukendrup A. No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009;19(3):275–84.PubMed Hulston C, Jeukendrup A. No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009;19(3):275–84.PubMed
36.
Zurück zum Zitat Tsintzas O, Williams C, Boobis L, et al. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol. 1995;489(Pt 1):243–50.PubMed Tsintzas O, Williams C, Boobis L, et al. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol. 1995;489(Pt 1):243–50.PubMed
37.
Zurück zum Zitat Tsintzas O, Williams C, Constantin-Teodosiu D, et al. Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: effect of carbohydrate ingestion. J Physiol. 2001;15(537):305–11. Tsintzas O, Williams C, Constantin-Teodosiu D, et al. Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: effect of carbohydrate ingestion. J Physiol. 2001;15(537):305–11.
38.
Zurück zum Zitat Stellingwerff T, Boon H, Gijsen AP, et al. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflugers Arch. 2007;454(4):635–47.PubMed Stellingwerff T, Boon H, Gijsen AP, et al. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflugers Arch. 2007;454(4):635–47.PubMed
39.
Zurück zum Zitat Erickson M, Schwartzkopf R, McKenzie R. Effects of caffeine, fructose and glucose ingestion on muscle glycogen utilization during exercise. Med Sci Sports Exerc. 1987;19:579–83.PubMed Erickson M, Schwartzkopf R, McKenzie R. Effects of caffeine, fructose and glucose ingestion on muscle glycogen utilization during exercise. Med Sci Sports Exerc. 1987;19:579–83.PubMed
40.
Zurück zum Zitat Flynn M, Costill D, Hawley J, et al. Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med Sci Sports Exerc. 1987;19(1):37–40.PubMed Flynn M, Costill D, Hawley J, et al. Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med Sci Sports Exerc. 1987;19(1):37–40.PubMed
41.
Zurück zum Zitat Mitchell J, Costill D, Houmard J, et al. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989;67(5):1843–9.PubMed Mitchell J, Costill D, Houmard J, et al. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989;67(5):1843–9.PubMed
42.
Zurück zum Zitat Hargreaves M, Briggs C. Effect of carbohydrate ingestion on exercise metabolism. J Appl Physiol. 1988;65(4):1553–5.PubMed Hargreaves M, Briggs C. Effect of carbohydrate ingestion on exercise metabolism. J Appl Physiol. 1988;65(4):1553–5.PubMed
43.
Zurück zum Zitat Gollnick P, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.PubMed Gollnick P, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.PubMed
44.
Zurück zum Zitat Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.PubMed Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.PubMed
45.
Zurück zum Zitat Bosch A, Dennis S, Noakes T. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76:2364–72.PubMed Bosch A, Dennis S, Noakes T. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76:2364–72.PubMed
46.
Zurück zum Zitat Jeukendrup A, Raben A, Gijsen A, et al. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol. 1999;515(Prt 2):579–89. Jeukendrup A, Raben A, Gijsen A, et al. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol. 1999;515(Prt 2):579–89.
47.
Zurück zum Zitat Howlett K, Angus D, Proietto J, et al. Effect of increased blood glucose availability on glucose kinetics during exercise. J Appl Physiol. 1998;84(4):1413–7.PubMed Howlett K, Angus D, Proietto J, et al. Effect of increased blood glucose availability on glucose kinetics during exercise. J Appl Physiol. 1998;84(4):1413–7.PubMed
48.
Zurück zum Zitat Claassen A, Lambert E, Bosch A, et al. Variability in exercise capacity and metabolic response during endurance exercise after a low carbohydrate diet. Int J Sport Nutr Exerc Metab. 2005;15(2):97–116.PubMed Claassen A, Lambert E, Bosch A, et al. Variability in exercise capacity and metabolic response during endurance exercise after a low carbohydrate diet. Int J Sport Nutr Exerc Metab. 2005;15(2):97–116.PubMed
49.
Zurück zum Zitat Jeukendrup A. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. 2010;13:452–7.PubMed Jeukendrup A. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. 2010;13:452–7.PubMed
50.
Zurück zum Zitat Jeukendrup A, Jentjiens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29:407–24.PubMed Jeukendrup A, Jentjiens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29:407–24.PubMed
51.
Zurück zum Zitat Burelle Y, Lamoureux M, Peronnet F, et al. Comparison of exogenous glucose, fructose and galactose oxidation during exercise using 13C-labeling. Br J Nutr. 2006;96(1):56–61.PubMed Burelle Y, Lamoureux M, Peronnet F, et al. Comparison of exogenous glucose, fructose and galactose oxidation during exercise using 13C-labeling. Br J Nutr. 2006;96(1):56–61.PubMed
52.
Zurück zum Zitat Leijssen D, Saris W, Jeukendrup A, et al. Oxidation of exogenous [13C]glucose during exercise. J Appl Physiol. 1995;79(3):720–5.PubMed Leijssen D, Saris W, Jeukendrup A, et al. Oxidation of exogenous [13C]glucose during exercise. J Appl Physiol. 1995;79(3):720–5.PubMed
53.
Zurück zum Zitat Rowlands D, Wallis G, Shaw C, et al. Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation. Med Sci Sports Exerc. 2005;37(9):1510–6.PubMed Rowlands D, Wallis G, Shaw C, et al. Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation. Med Sci Sports Exerc. 2005;37(9):1510–6.PubMed
54.
Zurück zum Zitat Sawka M, Burke L, Eichnet E, et al. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.PubMed Sawka M, Burke L, Eichnet E, et al. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.PubMed
55.
Zurück zum Zitat Rodriguez N, Di Marco N, Langley S. American College of Sports Medicine position stand: nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.PubMed Rodriguez N, Di Marco N, Langley S. American College of Sports Medicine position stand: nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.PubMed
56.
Zurück zum Zitat Pfeiffer B, Stellingwerff T, Hodgson A, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344–51.PubMed Pfeiffer B, Stellingwerff T, Hodgson A, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344–51.PubMed
57.
Zurück zum Zitat Smith J, Pascoe D, Passe D, et al. Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 2013;45(2):336–41.PubMed Smith J, Pascoe D, Passe D, et al. Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 2013;45(2):336–41.PubMed
58.
Zurück zum Zitat Smith J, Zachwieja J, Peronnet F, et al. Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response. J Appl Physiol. 2010;108(6):1520–9.PubMed Smith J, Zachwieja J, Peronnet F, et al. Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response. J Appl Physiol. 2010;108(6):1520–9.PubMed
59.
Zurück zum Zitat Hulston C, Wallis G, Jeukendrup A. Exogenous CHO oxidation with glucose plus fructose intake during exercise. Med Sci Sports Exerc. 2009;41:357–63.PubMed Hulston C, Wallis G, Jeukendrup A. Exogenous CHO oxidation with glucose plus fructose intake during exercise. Med Sci Sports Exerc. 2009;41:357–63.PubMed
60.
Zurück zum Zitat Jentjens R, Achten J, Jeukendrup A. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36:1551–8.PubMed Jentjens R, Achten J, Jeukendrup A. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36:1551–8.PubMed
61.
Zurück zum Zitat Jentjens R, Jeukendrup A. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br J Nutr. 2005;93(4):485–92.PubMed Jentjens R, Jeukendrup A. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br J Nutr. 2005;93(4):485–92.PubMed
62.
Zurück zum Zitat Jentjens R, Moseley L, Waring R, et al. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96(4):1277–84.PubMed Jentjens R, Moseley L, Waring R, et al. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96(4):1277–84.PubMed
63.
Zurück zum Zitat Jentjens R, Shaw C, Birtles T, et al. Oxidation of combined ingestion of glucose and sucrose during exercise. Metabolism. 2005;54(5):610–8.PubMed Jentjens R, Shaw C, Birtles T, et al. Oxidation of combined ingestion of glucose and sucrose during exercise. Metabolism. 2005;54(5):610–8.PubMed
64.
Zurück zum Zitat Jentjens R, Underwood K, Achten J, et al. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.PubMed Jentjens R, Underwood K, Achten J, et al. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.PubMed
65.
Zurück zum Zitat Jentjens R, Venables M, Jeukendrup A. Oxidation of exogenous glucose, sucrose and maltose during prolonged cycling execise. J Appl Physiol. 2004;96:1285–91.PubMed Jentjens R, Venables M, Jeukendrup A. Oxidation of exogenous glucose, sucrose and maltose during prolonged cycling execise. J Appl Physiol. 2004;96:1285–91.PubMed
66.
Zurück zum Zitat Jeukendrup A, Moseley L, Mainwaring G, et al. Exogenous carbohydrate oxidation during ultra endurance exercise. J Appl Physiol. 2006;100(4):1134–41.PubMed Jeukendrup A, Moseley L, Mainwaring G, et al. Exogenous carbohydrate oxidation during ultra endurance exercise. J Appl Physiol. 2006;100(4):1134–41.PubMed
67.
Zurück zum Zitat Rowlands DS, Thorburn MS, Thorp RM, et al. Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 2008;104(6):1709–19.PubMed Rowlands DS, Thorburn MS, Thorp RM, et al. Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 2008;104(6):1709–19.PubMed
68.
Zurück zum Zitat Currell K, Jeukendrup A. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40:275–81.PubMed Currell K, Jeukendrup A. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40:275–81.PubMed
69.
Zurück zum Zitat Jeukendrup A. Carbohydrate feeding during exercise. Eur J Sport Sci. 2008;8:77–86. Jeukendrup A. Carbohydrate feeding during exercise. Eur J Sport Sci. 2008;8:77–86.
70.
Zurück zum Zitat Kellett G. The facilitated component of intestinal glucose absorption. J Physiol. 2001;531:585–95.PubMed Kellett G. The facilitated component of intestinal glucose absorption. J Physiol. 2001;531:585–95.PubMed
71.
Zurück zum Zitat Ferraris R, Diamond J. Regulation of intestinal sugar transport. Physiol Rev. 1997;77(1):257–302.PubMed Ferraris R, Diamond J. Regulation of intestinal sugar transport. Physiol Rev. 1997;77(1):257–302.PubMed
72.
Zurück zum Zitat Janssen G, Kuipers H, Willems G, et al. Plasma activity of muscle enzymes: quantification of skeletal muscle damage and relationship with metabolic variables. Int J Sports Med. 1989;10(Suppl 3):S160–8.PubMed Janssen G, Kuipers H, Willems G, et al. Plasma activity of muscle enzymes: quantification of skeletal muscle damage and relationship with metabolic variables. Int J Sports Med. 1989;10(Suppl 3):S160–8.PubMed
73.
Zurück zum Zitat Wallis G, Rowlands D, Shaw C, et al. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37(3):426–32.PubMed Wallis G, Rowlands D, Shaw C, et al. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37(3):426–32.PubMed
74.
Zurück zum Zitat Rowlands D, Swift M, Ros M, et al. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012;37(3):425–36.PubMed Rowlands D, Swift M, Ros M, et al. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012;37(3):425–36.PubMed
75.
Zurück zum Zitat O’Brien W, Rowlands D. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 2011;300(1):G181–9.PubMed O’Brien W, Rowlands D. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 2011;300(1):G181–9.PubMed
76.
Zurück zum Zitat Cox G, Clark S, Cox A, et al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126–34.PubMed Cox G, Clark S, Cox A, et al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126–34.PubMed
77.
Zurück zum Zitat Pfeiffer B, Stellingwerff T, Zaltas E, et al. Oxidation of solid versus liquid carbohydrate sources during exercise. Med Sci Sports Exerc. 2010;42(11):2030–7.PubMed Pfeiffer B, Stellingwerff T, Zaltas E, et al. Oxidation of solid versus liquid carbohydrate sources during exercise. Med Sci Sports Exerc. 2010;42(11):2030–7.PubMed
78.
Zurück zum Zitat Pfeiffer B, Stellingwerff T, Zaltas E, et al. Carbohydrate oxidation from a carbohydrate gel compared to a drink during exercise. Med Sci Sports Exerc. 2010;42(11):2038–45.PubMed Pfeiffer B, Stellingwerff T, Zaltas E, et al. Carbohydrate oxidation from a carbohydrate gel compared to a drink during exercise. Med Sci Sports Exerc. 2010;42(11):2038–45.PubMed
79.
Zurück zum Zitat Murdoch S, Bazzarre T, Snider I, et al. Differences in the effects of carbohydrate food form on endurance performance to exhaustion. Int J Sport Nutr. 1993;3(1):41–54.PubMed Murdoch S, Bazzarre T, Snider I, et al. Differences in the effects of carbohydrate food form on endurance performance to exhaustion. Int J Sport Nutr. 1993;3(1):41–54.PubMed
80.
Zurück zum Zitat Lugo M, Sherman W, Wimer G, et al. Metabolic responses when different forms of carbohydrate energy are consumed during cycling. Int J Sport Nutr. 1993;3(4):398–407.PubMed Lugo M, Sherman W, Wimer G, et al. Metabolic responses when different forms of carbohydrate energy are consumed during cycling. Int J Sport Nutr. 1993;3(4):398–407.PubMed
81.
Zurück zum Zitat Neufer P, Costill D, Fink W, et al. Effects of exercise and carbohydrate composition on gastric emptying. Med Sci Sports Exerc. 1986;18(6):658–62.PubMed Neufer P, Costill D, Fink W, et al. Effects of exercise and carbohydrate composition on gastric emptying. Med Sci Sports Exerc. 1986;18(6):658–62.PubMed
82.
Zurück zum Zitat Carter J, Jeukendrup A, Mundel T, et al. Carbohydrate supplementation improves moderate and high-intensity exercise in the heat. Pflugers Arch. 2003;446(2):211–9.PubMed Carter J, Jeukendrup A, Mundel T, et al. Carbohydrate supplementation improves moderate and high-intensity exercise in the heat. Pflugers Arch. 2003;446(2):211–9.PubMed
83.
Zurück zum Zitat Jeukendrup A, Brouns F, Wagenmakers A, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18(2):25–9. Jeukendrup A, Brouns F, Wagenmakers A, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18(2):25–9.
84.
Zurück zum Zitat Below P, Mora-Rodríguez R, González-Alonso J, et al. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc. 1995;27(2):200–10.PubMed Below P, Mora-Rodríguez R, González-Alonso J, et al. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc. 1995;27(2):200–10.PubMed
85.
Zurück zum Zitat el-Sayed M, Balmer J, Rattu A. Carbohydrate ingestion improves endurance performance during a 1 h simulated time trial. J Sports Sci. 1997;15(2):223–30. el-Sayed M, Balmer J, Rattu A. Carbohydrate ingestion improves endurance performance during a 1 h simulated time trial. J Sports Sci. 1997;15(2):223–30.
86.
Zurück zum Zitat Anantaraman R, Carmines A, Gaesser G, et al. Effects of carbohydrate supplementation on performance during 1 h of high intensity exercise. Int J Sports Med. 1995;16(7):461–5.PubMed Anantaraman R, Carmines A, Gaesser G, et al. Effects of carbohydrate supplementation on performance during 1 h of high intensity exercise. Int J Sports Med. 1995;16(7):461–5.PubMed
87.
Zurück zum Zitat Carter J, Jeukendrup A, Mann C, et al. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36(9):1543–50.PubMed Carter J, Jeukendrup A, Mann C, et al. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36(9):1543–50.PubMed
88.
Zurück zum Zitat Carter J, Jeukendrup A, Mann C, et al. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36(9):1543–50.PubMed Carter J, Jeukendrup A, Mann C, et al. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36(9):1543–50.PubMed
89.
Zurück zum Zitat Gant N, Stinear C, Byblow W. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010;1350:151–8.PubMed Gant N, Stinear C, Byblow W. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010;1350:151–8.PubMed
90.
Zurück zum Zitat Maresch C, Herrera-Soto J, Armstrong L, et al. Perceptual responses in the heat after brief intravenous versus oral rehydration. Med Sci Sports Exerc. 2001;33(6):1039–45. Maresch C, Herrera-Soto J, Armstrong L, et al. Perceptual responses in the heat after brief intravenous versus oral rehydration. Med Sci Sports Exerc. 2001;33(6):1039–45.
91.
Zurück zum Zitat Riebe D, Maresch C, Armstrong L. Effects of oral and intravenous rehydration on ratings of perceived exertion and thirst. Med Sci Sports Exerc. 1997;29(1):117–24.PubMed Riebe D, Maresch C, Armstrong L. Effects of oral and intravenous rehydration on ratings of perceived exertion and thirst. Med Sci Sports Exerc. 1997;29(1):117–24.PubMed
92.
Zurück zum Zitat Beelen M, Berghuis J, Bonaparte B, et al. Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance. Int J Sport Nutr Exerc Metab. 2009;19:400–9.PubMed Beelen M, Berghuis J, Bonaparte B, et al. Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance. Int J Sport Nutr Exerc Metab. 2009;19:400–9.PubMed
93.
Zurück zum Zitat Chambers E, Bridge M, Jones D. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;578(8):1779–94. Chambers E, Bridge M, Jones D. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;578(8):1779–94.
94.
Zurück zum Zitat Fares E, Kayser B. Carbohydrate mouth rinse effects on exercise capacity in pre and postprandial states. J Nutr Metab. 2011;385962. Fares E, Kayser B. Carbohydrate mouth rinse effects on exercise capacity in pre and postprandial states. J Nutr Metab. 2011;385962.
95.
Zurück zum Zitat Pottier A, Bouckaert J, Gilis W, et al. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports. 2010;20(1):105–11.PubMed Pottier A, Bouckaert J, Gilis W, et al. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports. 2010;20(1):105–11.PubMed
96.
Zurück zum Zitat Rollo I, Cole M, Miller R, et al. The influence of mouth-rinsing a carbohydrate solution on 1 hour running performance. Med Sci Sports Exerc. 2010;42(4):798–804.PubMed Rollo I, Cole M, Miller R, et al. The influence of mouth-rinsing a carbohydrate solution on 1 hour running performance. Med Sci Sports Exerc. 2010;42(4):798–804.PubMed
97.
Zurück zum Zitat Whitham M, McKinney J. Effect of a carbohydrate mouthwash on running time-trial performance. J Sports Sci. 2007;25(12):1385–92.PubMed Whitham M, McKinney J. Effect of a carbohydrate mouthwash on running time-trial performance. J Sports Sci. 2007;25(12):1385–92.PubMed
98.
Zurück zum Zitat Rollo I, Williams C, Nevill M. Influence of ingesting versus mouth rinsing a carbohydrate solution during a 1-h run. Med Sci Sports Exerc. 2011;43(3):468–75.PubMed Rollo I, Williams C, Nevill M. Influence of ingesting versus mouth rinsing a carbohydrate solution during a 1-h run. Med Sci Sports Exerc. 2011;43(3):468–75.PubMed
99.
Zurück zum Zitat Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage. 2009;44(3):1008–21.PubMed Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage. 2009;44(3):1008–21.PubMed
100.
Zurück zum Zitat Frank G, Oberndorfer T, Simmons A, et al. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage. 2008;39(4):1559–69.PubMed Frank G, Oberndorfer T, Simmons A, et al. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage. 2008;39(4):1559–69.PubMed
101.
Zurück zum Zitat Lane S, Bird S, Burke L, et al. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl Physiol Nutr Metab. 2013;28(2):134–9. Lane S, Bird S, Burke L, et al. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl Physiol Nutr Metab. 2013;28(2):134–9.
102.
Zurück zum Zitat Gam S, Guelfi K, Fournier P. Opposition of carbohydrate in a mouth-rinse solution to the detrimental effect of mouth rinsing during cycling time trials. Int J Sport Nutr Exerc Metab. 2013;23(1):48–56. Gam S, Guelfi K, Fournier P. Opposition of carbohydrate in a mouth-rinse solution to the detrimental effect of mouth rinsing during cycling time trials. Int J Sport Nutr Exerc Metab. 2013;23(1):48–56.
103.
Zurück zum Zitat Clark V, Hopkins W, Hawley J, et al. Placebo effect of carbohydrate feedings during a 40-km cycling time trial. Med Sci Sports Exerc. 2000;32(9):1642–7.PubMed Clark V, Hopkins W, Hawley J, et al. Placebo effect of carbohydrate feedings during a 40-km cycling time trial. Med Sci Sports Exerc. 2000;32(9):1642–7.PubMed
104.
Zurück zum Zitat Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.PubMed Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.PubMed
105.
Zurück zum Zitat Jeukendrup A, Chambers E. Oral carbohydrate sensing and exercise performance. Curr Opin Clin Nutr Metab Care. 2010;13(4):447–51.PubMed Jeukendrup A, Chambers E. Oral carbohydrate sensing and exercise performance. Curr Opin Clin Nutr Metab Care. 2010;13(4):447–51.PubMed
106.
Zurück zum Zitat Bangsbo J. The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol Scand. 1994;619(Suppl):1–155. Bangsbo J. The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol Scand. 1994;619(Suppl):1–155.
107.
Zurück zum Zitat Balsom P, Wood K, Olsson P, et al. Carbohydrate intake and multiple sprint sports: with special reference to football (soccer). Int J Sports Med. 1999;20(1):48–52.PubMed Balsom P, Wood K, Olsson P, et al. Carbohydrate intake and multiple sprint sports: with special reference to football (soccer). Int J Sports Med. 1999;20(1):48–52.PubMed
108.
Zurück zum Zitat Coggan A, Coyle E. Effect of carbohydrate feedings during high-intensity exercise. J Appl Physiol. 1988;65(4):1703–9.PubMed Coggan A, Coyle E. Effect of carbohydrate feedings during high-intensity exercise. J Appl Physiol. 1988;65(4):1703–9.PubMed
109.
Zurück zum Zitat Nicholas C, Nuttall F, Williams C. The Loughborough Intermittent Shuttle Test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97–104.PubMed Nicholas C, Nuttall F, Williams C. The Loughborough Intermittent Shuttle Test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97–104.PubMed
110.
Zurück zum Zitat Nicholas CW, Williams C, Lakomy HK, Phillips G, Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J Sports Sci. 1995;13(4):283–90.PubMed Nicholas CW, Williams C, Lakomy HK, Phillips G, Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J Sports Sci. 1995;13(4):283–90.PubMed
111.
Zurück zum Zitat Davis J, Jackson D, Broadwell M, et al. Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and women. Int J Sport Nutr. 1997;7(4):261–73.PubMed Davis J, Jackson D, Broadwell M, et al. Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and women. Int J Sport Nutr. 1997;7(4):261–73.PubMed
112.
Zurück zum Zitat Davis J, Welsh R, Alerson N. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. Int J Sport Nutr Exerc Metab. 2000;10(4):476–85.PubMed Davis J, Welsh R, Alerson N. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. Int J Sport Nutr Exerc Metab. 2000;10(4):476–85.PubMed
113.
Zurück zum Zitat Davis J, Welsh R, De Volve K, et al. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int J Sports Med. 1999;20(5):309–14.PubMed Davis J, Welsh R, De Volve K, et al. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int J Sports Med. 1999;20(5):309–14.PubMed
114.
Zurück zum Zitat Nicholas C, Tsintzas K, Boobis L, et al. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med Sci Sports Exerc. 1999;31(9):1280–6.PubMed Nicholas C, Tsintzas K, Boobis L, et al. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med Sci Sports Exerc. 1999;31(9):1280–6.PubMed
115.
Zurück zum Zitat Welsh R, Davis J, Burke J, et al. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc. 2002;34(4):723–31.PubMed Welsh R, Davis J, Burke J, et al. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc. 2002;34(4):723–31.PubMed
116.
Zurück zum Zitat Patterson S, Gray S. Carbohydrate-gel supplementation and endurance performance during intermittent high-intensity shuttle running. Int J Sport Nutr Exerc Metab. 2007;17(5):445–555.PubMed Patterson S, Gray S. Carbohydrate-gel supplementation and endurance performance during intermittent high-intensity shuttle running. Int J Sport Nutr Exerc Metab. 2007;17(5):445–555.PubMed
117.
Zurück zum Zitat Foskett A, Williams C, Boobis L, et al. Carbohydrate availability and muscle energy metabolism during intermittent running. Med Sci Sports Exerc. 2008;40(1):96–103.PubMed Foskett A, Williams C, Boobis L, et al. Carbohydrate availability and muscle energy metabolism during intermittent running. Med Sci Sports Exerc. 2008;40(1):96–103.PubMed
118.
Zurück zum Zitat Davison G, McClean C, Brown J, et al. The effects of ingesting a carbohydrate-electrolyte beverage 15 minutes prior to high-intensity exercise performance. Res Sports Med. 2008;16(3):155–66.PubMed Davison G, McClean C, Brown J, et al. The effects of ingesting a carbohydrate-electrolyte beverage 15 minutes prior to high-intensity exercise performance. Res Sports Med. 2008;16(3):155–66.PubMed
119.
Zurück zum Zitat Leatt P, Jacobs I. Effect of glucose polymer ingestion on glycogen depletion during a soccer match. Can J Sport Sci. 1989;14(2):112–6.PubMed Leatt P, Jacobs I. Effect of glucose polymer ingestion on glycogen depletion during a soccer match. Can J Sport Sci. 1989;14(2):112–6.PubMed
120.
Zurück zum Zitat Carling C, Bloomfield J, Nelsen L, et al. The role of motion analysis in elite soccer: contemporary performance measurement techniques and work rate data. Sports Med. 2008;38(10):839–62.PubMed Carling C, Bloomfield J, Nelsen L, et al. The role of motion analysis in elite soccer: contemporary performance measurement techniques and work rate data. Sports Med. 2008;38(10):839–62.PubMed
121.
Zurück zum Zitat Winnick J, Davis J, Welsh R, et al. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc. 2005;37(2):306–15.PubMed Winnick J, Davis J, Welsh R, et al. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc. 2005;37(2):306–15.PubMed
122.
Zurück zum Zitat Ali A, Williams C, Nicholas C, et al. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc. 2007;39(11):1969–76.PubMed Ali A, Williams C, Nicholas C, et al. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc. 2007;39(11):1969–76.PubMed
123.
Zurück zum Zitat Utter A, Kang J, Nieman D, et al. Carbohydrate attenuates perceived exertion during intermittent exercise and recovery. Med Sci Sports Exerc. 2007;39(5):880–5.PubMed Utter A, Kang J, Nieman D, et al. Carbohydrate attenuates perceived exertion during intermittent exercise and recovery. Med Sci Sports Exerc. 2007;39(5):880–5.PubMed
124.
Zurück zum Zitat Russell M, Benton D, Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J Sci Med Sport. 2012;15:348–54.PubMed Russell M, Benton D, Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J Sci Med Sport. 2012;15:348–54.PubMed
125.
Zurück zum Zitat Currell K, Conway S, Jeukendrup A. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int J Sport Nutr Exerc Metab. 2009;19(1):34–46.PubMed Currell K, Conway S, Jeukendrup A. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int J Sport Nutr Exerc Metab. 2009;19(1):34–46.PubMed
126.
Zurück zum Zitat Vergauwen L, Brouns F, Hespel P. Carbohydrate supplementation improves stroke performance in tennis. Med Sci Sports Exerc. 1998;30(8):1289–95.PubMed Vergauwen L, Brouns F, Hespel P. Carbohydrate supplementation improves stroke performance in tennis. Med Sci Sports Exerc. 1998;30(8):1289–95.PubMed
127.
Zurück zum Zitat Clarke N, Drust B, MacLaren D, et al. Strategies for hydration and energy provision during soccer-specific exercise. Int J Sport Nutr Exerc Metab. 2005;15(6):625–40.PubMed Clarke N, Drust B, MacLaren D, et al. Strategies for hydration and energy provision during soccer-specific exercise. Int J Sport Nutr Exerc Metab. 2005;15(6):625–40.PubMed
128.
Zurück zum Zitat Clarke N, Drust B, Maclaren D, et al. Fluid provision and metabolic responses to soccer-specific exercise. Eur J Appl Physiol. 2008;104(6):1069–77.PubMed Clarke N, Drust B, Maclaren D, et al. Fluid provision and metabolic responses to soccer-specific exercise. Eur J Appl Physiol. 2008;104(6):1069–77.PubMed
129.
Zurück zum Zitat Leiper J, Prentice A, Wrightson C, et al. Gastric emptying of a carbohydrate-electrolyte drink during a soccer match. Med Sci Sports Exerc. 2001;33(11):1932–8.PubMed Leiper J, Prentice A, Wrightson C, et al. Gastric emptying of a carbohydrate-electrolyte drink during a soccer match. Med Sci Sports Exerc. 2001;33(11):1932–8.PubMed
130.
Zurück zum Zitat Burke L, Cox G. The complete guide to food for sports performance. 3rd ed. Sydney: Allen and Unwin; 2010. Burke L, Cox G. The complete guide to food for sports performance. 3rd ed. Sydney: Allen and Unwin; 2010.
131.
Zurück zum Zitat Mujika I, Burke L. Nutrition in Team Sports. Ann Nutr Metab. 2010;57(suppl 2):26–35. Mujika I, Burke L. Nutrition in Team Sports. Ann Nutr Metab. 2010;57(suppl 2):26–35.
132.
Zurück zum Zitat Leiper J, Broad N, Maughan R. Effect of intermittent high-intensity exercise on gastric emptying in man. Med Sci Sports Exerc. 2001;33(8):1270.PubMed Leiper J, Broad N, Maughan R. Effect of intermittent high-intensity exercise on gastric emptying in man. Med Sci Sports Exerc. 2001;33(8):1270.PubMed
133.
Zurück zum Zitat Bosch A, Weltan S, Dennis S, et al. Fuel substrate turnover and oxidation and glycogen sparing with carbohdyrate ingestion in non-carbohydrate-loaded cyclists. Pflugers Arch. 1996;432(6):1003–10.PubMed Bosch A, Weltan S, Dennis S, et al. Fuel substrate turnover and oxidation and glycogen sparing with carbohdyrate ingestion in non-carbohydrate-loaded cyclists. Pflugers Arch. 1996;432(6):1003–10.PubMed
134.
Zurück zum Zitat Costill D, Sherman W, Fink W, et al. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr. 1981;34(9):1831–6.PubMed Costill D, Sherman W, Fink W, et al. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr. 1981;34(9):1831–6.PubMed
135.
Zurück zum Zitat Casey A, Short A, Hultman E, et al. Glycogen resynthesis in human muscle fibre types following exercise-induced glycogen depletion. J Physiol. 1995;483(1):265–71.PubMed Casey A, Short A, Hultman E, et al. Glycogen resynthesis in human muscle fibre types following exercise-induced glycogen depletion. J Physiol. 1995;483(1):265–71.PubMed
136.
Zurück zum Zitat Keizer H, Kuipers H, van Kranenburg G. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1987;8:99–104.PubMed Keizer H, Kuipers H, van Kranenburg G. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1987;8:99–104.PubMed
137.
Zurück zum Zitat Kochan R, Lamb D, Lutz S, et al. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise. Am J Physiol. 1979;236(6):E660–6.PubMed Kochan R, Lamb D, Lutz S, et al. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise. Am J Physiol. 1979;236(6):E660–6.PubMed
138.
Zurück zum Zitat Parkin J, Carey M, Martin I, et al. Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 1997;29(2):220–4.PubMed Parkin J, Carey M, Martin I, et al. Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 1997;29(2):220–4.PubMed
139.
Zurück zum Zitat Nilsson L, Hultman E. Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest. 1974;33(1):5–10.PubMed Nilsson L, Hultman E. Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest. 1974;33(1):5–10.PubMed
140.
Zurück zum Zitat Décombaz J, Jentjens R, Ith M, et al. Fructose and galactose enhance post-exercise human liver glycogen synthesis. Med Sci Sports Exerc. 2011;43:1964–1971. Décombaz J, Jentjens R, Ith M, et al. Fructose and galactose enhance post-exercise human liver glycogen synthesis. Med Sci Sports Exerc. 2011;43:1964–1971.
141.
Zurück zum Zitat Casey A, Mann R, Banister K, et al. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle measured by 13C MRS. Am J Physiol Endocrinol Metab. 2000;278(1):E65–75.PubMed Casey A, Mann R, Banister K, et al. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle measured by 13C MRS. Am J Physiol Endocrinol Metab. 2000;278(1):E65–75.PubMed
142.
Zurück zum Zitat Moriarty K, McIntyre D, Bingham K, et al. Glycogen resynthesis in liver and muscle after exercise: measurement of teh rate of resyntehsis by 13C magnetic resonance spectroscopy. MAGMA. 1994;2(3):429–32. Moriarty K, McIntyre D, Bingham K, et al. Glycogen resynthesis in liver and muscle after exercise: measurement of teh rate of resyntehsis by 13C magnetic resonance spectroscopy. MAGMA. 1994;2(3):429–32.
143.
Zurück zum Zitat Conlee R, Lawler R, Ross P. Effects of glucose or fructose feeding on glycogen repletion in muscle and liver after exercise or fasting. Ann Nutr Metab. 1987;31(2):126–32.PubMed Conlee R, Lawler R, Ross P. Effects of glucose or fructose feeding on glycogen repletion in muscle and liver after exercise or fasting. Ann Nutr Metab. 1987;31(2):126–32.PubMed
144.
Zurück zum Zitat McGuinness O, Cherrington A. Effects of fructose on hepatic glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):441–8.PubMed McGuinness O, Cherrington A. Effects of fructose on hepatic glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):441–8.PubMed
145.
Zurück zum Zitat Blom P, Hostmark A, Vaage O, et al. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987;19(5):491–6.PubMed Blom P, Hostmark A, Vaage O, et al. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987;19(5):491–6.PubMed
146.
Zurück zum Zitat Ivy J, Lee M, Brozinick J, et al. Muscle glycogen storage after different amounts of carbohydrate ingestion. J Appl Physiol. 1988;65(5):2018–23.PubMed Ivy J, Lee M, Brozinick J, et al. Muscle glycogen storage after different amounts of carbohydrate ingestion. J Appl Physiol. 1988;65(5):2018–23.PubMed
147.
Zurück zum Zitat van Loon L, Saris W, Kruijshoop M, et al. Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.PubMed van Loon L, Saris W, Kruijshoop M, et al. Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.PubMed
148.
Zurück zum Zitat Ivy J. Glycogen resynthesis after exercise: effect of carbohydrate intake. Int J Sports Med. 1988;19:142–5. Ivy J. Glycogen resynthesis after exercise: effect of carbohydrate intake. Int J Sports Med. 1988;19:142–5.
149.
Zurück zum Zitat Goodyear L, Hirshman M, King P, et al. Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J Appl Physiol. 1990;68(1):193–8.PubMed Goodyear L, Hirshman M, King P, et al. Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J Appl Physiol. 1990;68(1):193–8.PubMed
150.
Zurück zum Zitat Ivy J, Katz A, Cutler C, et al. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64(4):1480–5.PubMed Ivy J, Katz A, Cutler C, et al. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64(4):1480–5.PubMed
151.
Zurück zum Zitat Jentjens R, van Loon L, Mann C, et al. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91(2):839–46.PubMed Jentjens R, van Loon L, Mann C, et al. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91(2):839–46.PubMed
152.
Zurück zum Zitat van Hall G, Shirreffs S, Calbet J. Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. J Appl Physiol. 2000;88(5):1631–6.PubMed van Hall G, Shirreffs S, Calbet J. Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. J Appl Physiol. 2000;88(5):1631–6.PubMed
153.
Zurück zum Zitat Piehl Aulin K, Söderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81(4):346–51. Piehl Aulin K, Söderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81(4):346–51.
154.
Zurück zum Zitat Howarth KR, Moreau NA, Phillips SM, et al. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106(4):1394–402.PubMed Howarth KR, Moreau NA, Phillips SM, et al. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106(4):1394–402.PubMed
155.
Zurück zum Zitat van Loon L, Kruijshoop M, Verhagen H, et al. Ingestion of protein hydrolysate and amino acid–carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr. 2000;130(10):2508–13.PubMed van Loon L, Kruijshoop M, Verhagen H, et al. Ingestion of protein hydrolysate and amino acid–carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr. 2000;130(10):2508–13.PubMed
156.
Zurück zum Zitat van Loon L, Saris W, Verhagen H, et al. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.PubMed van Loon L, Saris W, Verhagen H, et al. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.PubMed
157.
Zurück zum Zitat Rabinowitz D, Merimee T, Maffezzoli R, et al. Patterns of hormonal release after glucose, protein, and glucose plus protein. Lancet. 1966;2(7461):454–6.PubMed Rabinowitz D, Merimee T, Maffezzoli R, et al. Patterns of hormonal release after glucose, protein, and glucose plus protein. Lancet. 1966;2(7461):454–6.PubMed
158.
Zurück zum Zitat Cartee G, Young D, Sleeper M, et al. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol. 1989;256:494–9. Cartee G, Young D, Sleeper M, et al. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol. 1989;256:494–9.
159.
Zurück zum Zitat Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.PubMed Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.PubMed
160.
Zurück zum Zitat Wallberg-Henriksson H, Constable S, Young D, et al. Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J Appl Physiol. 1988;65(2):909–13.PubMed Wallberg-Henriksson H, Constable S, Young D, et al. Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J Appl Physiol. 1988;65(2):909–13.PubMed
161.
Zurück zum Zitat Berardi J, Price T, Noreen E, et al. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006;38(6):1106–13.PubMed Berardi J, Price T, Noreen E, et al. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006;38(6):1106–13.PubMed
162.
Zurück zum Zitat Ivy J, Goforth H, Damon B, et al. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93:1337–44.PubMed Ivy J, Goforth H, Damon B, et al. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93:1337–44.PubMed
163.
Zurück zum Zitat Zawadzki K, Yaspelkis B, Ivy J. Carbohydrate–protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.PubMed Zawadzki K, Yaspelkis B, Ivy J. Carbohydrate–protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.PubMed
164.
Zurück zum Zitat Beelen M, van Kranenburg J, Senden J, et al. Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc. 2012;44(4):692–700.PubMed Beelen M, van Kranenburg J, Senden J, et al. Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc. 2012;44(4):692–700.PubMed
165.
Zurück zum Zitat Reed M, Brozinick J, Lee M, et al. Muscle glycogen storage postexercise: effect of mode of carbohydrate administration. J Appl Physiol. 1989;88(2):386–92. Reed M, Brozinick J, Lee M, et al. Muscle glycogen storage postexercise: effect of mode of carbohydrate administration. J Appl Physiol. 1989;88(2):386–92.
166.
Zurück zum Zitat Van Den Bergh A, Houtman S, Heerschap A, et al. Muscle glycogen recovery after exercise during glucose and fructose intake monitored by 13C-NMR. J Appl Physiol. 1996;81(4):1495–500. Van Den Bergh A, Houtman S, Heerschap A, et al. Muscle glycogen recovery after exercise during glucose and fructose intake monitored by 13C-NMR. J Appl Physiol. 1996;81(4):1495–500.
167.
Zurück zum Zitat Fujisawa T, Mulligan K, Wada L, et al. The effect of exercise on fructose absorption. Am J Clin Nutr. 1993;58(1):75–9.PubMed Fujisawa T, Mulligan K, Wada L, et al. The effect of exercise on fructose absorption. Am J Clin Nutr. 1993;58(1):75–9.PubMed
168.
Zurück zum Zitat Henry R, Crapo P, Thorburn A. Current issues in fructose metabolism. Annu Rev Nutr. 1991;11:21–9.PubMed Henry R, Crapo P, Thorburn A. Current issues in fructose metabolism. Annu Rev Nutr. 1991;11:21–9.PubMed
169.
Zurück zum Zitat Mayes P. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58:754S–65S.PubMed Mayes P. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58:754S–65S.PubMed
170.
Zurück zum Zitat Wallis G, Hulston C, Mann C, et al. Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion. Med Sci Sports Exerc. 2008;40(10):1789–94.PubMed Wallis G, Hulston C, Mann C, et al. Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion. Med Sci Sports Exerc. 2008;40(10):1789–94.PubMed
171.
Zurück zum Zitat Jeukendrup A. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29(Suppl 1):S91–9.PubMed Jeukendrup A. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29(Suppl 1):S91–9.PubMed
Metadaten
Titel
The Use of Carbohydrates During Exercise as an Ergogenic Aid
verfasst von
Naomi M. Cermak
Luc J. C. van Loon
Publikationsdatum
01.11.2013
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 11/2013
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-013-0079-0

Weitere Artikel der Ausgabe 11/2013

Sports Medicine 11/2013 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.