Skip to main content
Erschienen in: European Journal of Epidemiology 8/2016

26.05.2016 | REVIEW

The use of mass spectrometry for analysing metabolite biomarkers in epidemiology: methodological and statistical considerations for application to large numbers of biological samples

verfasst von: Mads V. Lind, Otto I. Savolainen, Alastair B. Ross

Erschienen in: European Journal of Epidemiology | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

Data quality is critical for epidemiology, and as scientific understanding expands, the range of data available for epidemiological studies and the types of tools used for measurement have also expanded. It is essential for the epidemiologist to have a grasp of the issues involved with different measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses, focusing on metabolites and their application and potential issues related to large-scale epidemiology studies, the use of MS “omics” approaches for biomarker discovery and how MS-based results can be used for increasing biological knowledge gained from epidemiological studies. Better understanding of the possibilities and possible problems related to MS-based measurements will help the epidemiologist in their discussions with analytical chemists and lead to the use of the most appropriate statistical tools for these data.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448-U83. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448-U83.
3.
Zurück zum Zitat Kyro C, Olsen A, Landberg R, et al. Plasma alkylresorcinols, biomarkers of whole-grain wheat and rye intake, and incidence of colorectal cancer. JNCI Natl Cancer Inst. 2014;106:djt352.CrossRef Kyro C, Olsen A, Landberg R, et al. Plasma alkylresorcinols, biomarkers of whole-grain wheat and rye intake, and incidence of colorectal cancer. JNCI Natl Cancer Inst. 2014;106:djt352.CrossRef
4.
Zurück zum Zitat Fedirko V, Duarte-Salles T, Bamia C, et al. Prediagnostic circulating vitamin D levels and risk of hepatocellular carcinoma in European populations: a nested case-control study. Hepatology. 2014;60:1222–30.PubMedCrossRef Fedirko V, Duarte-Salles T, Bamia C, et al. Prediagnostic circulating vitamin D levels and risk of hepatocellular carcinoma in European populations: a nested case-control study. Hepatology. 2014;60:1222–30.PubMedCrossRef
5.
Zurück zum Zitat Calafat AM, Ye X, Wong L, Reidy JA, Needham LL. Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116:39–44.PubMedCrossRef Calafat AM, Ye X, Wong L, Reidy JA, Needham LL. Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116:39–44.PubMedCrossRef
6.
Zurück zum Zitat Li S, Zhao J, Wang G, et al. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: experience in NHANES 2003–2010. Int J Hyg Environ Health. 2015;218:401–6.PubMedPubMedCentralCrossRef Li S, Zhao J, Wang G, et al. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: experience in NHANES 2003–2010. Int J Hyg Environ Health. 2015;218:401–6.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48.PubMedPubMedCentralCrossRef Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Ganna A, Salihovic S, Sundstrom J, et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet. 2014;10:e1004801.PubMedPubMedCentralCrossRef Ganna A, Salihovic S, Sundstrom J, et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet. 2014;10:e1004801.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Jourdan C, Petersen A, Gieger C, et al. Body fat free mass is associated with the serum metabolite profile in a population-based study. PLoS ONE. 2012;7:e40009.PubMedPubMedCentralCrossRef Jourdan C, Petersen A, Gieger C, et al. Body fat free mass is associated with the serum metabolite profile in a population-based study. PLoS ONE. 2012;7:e40009.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Floegel A, von Ruesten A, Drogan D, et al. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. Eur J Clin Nutr. 2013;67:1100–8.PubMedCrossRef Floegel A, von Ruesten A, Drogan D, et al. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. Eur J Clin Nutr. 2013;67:1100–8.PubMedCrossRef
12.
Zurück zum Zitat Guertin KA, Moore SC, Sampson JN, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr. 2014;100:208–17.PubMedPubMedCentralCrossRef Guertin KA, Moore SC, Sampson JN, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr. 2014;100:208–17.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet. 2009;125:507–25.PubMedCrossRef Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet. 2009;125:507–25.PubMedCrossRef
14.
Zurück zum Zitat Ross AB, Bourgeois A, Macharia HN, et al. Plasma alkylresorcinols as a biomarker of whole-grain food consumption in a large population: results from the WHOLEheart Intervention Study. Am J Clin Nutr. 2012;95:204–11.PubMedCrossRef Ross AB, Bourgeois A, Macharia HN, et al. Plasma alkylresorcinols as a biomarker of whole-grain food consumption in a large population: results from the WHOLEheart Intervention Study. Am J Clin Nutr. 2012;95:204–11.PubMedCrossRef
15.
Zurück zum Zitat Andersen MS, Rinnan A, Manach C, et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res. 2014;13:1405–18.PubMedCrossRef Andersen MS, Rinnan A, Manach C, et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res. 2014;13:1405–18.PubMedCrossRef
16.
Zurück zum Zitat Scalbert A, Brennan L, Manach C, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99:1286–308.PubMedCrossRef Scalbert A, Brennan L, Manach C, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99:1286–308.PubMedCrossRef
17.
Zurück zum Zitat Clarke Hillyer G, Neugut AI, Crew KD, et al. Use of a urine anastrozole assay to determine treatment discontinuation among women with hormone-sensitive breast cancer: a pilot study. J Oncol Pract. 2012;8:e100–4.PubMedPubMedCentralCrossRef Clarke Hillyer G, Neugut AI, Crew KD, et al. Use of a urine anastrozole assay to determine treatment discontinuation among women with hormone-sensitive breast cancer: a pilot study. J Oncol Pract. 2012;8:e100–4.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Mandal B, Ogra Y, Suzuki K. Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry. Toxicol Appl Pharmacol. 2003;189:73–83.PubMedCrossRef Mandal B, Ogra Y, Suzuki K. Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry. Toxicol Appl Pharmacol. 2003;189:73–83.PubMedCrossRef
19.
Zurück zum Zitat Hanhineva K, Lankinen MA, Pedret A, et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J Nutr. 2015;145:7–17.PubMedCrossRef Hanhineva K, Lankinen MA, Pedret A, et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J Nutr. 2015;145:7–17.PubMedCrossRef
20.
Zurück zum Zitat Andersson A, Marklund M, Diana M, Landberg R. Plasma alkylresorcinol concentrations correlate with whole grain wheat and rye intake and show moderate reproducibility over a 2-to 3-month period in free-living Swedish adults. J Nutr. 2011;141:1712–8.PubMedCrossRef Andersson A, Marklund M, Diana M, Landberg R. Plasma alkylresorcinol concentrations correlate with whole grain wheat and rye intake and show moderate reproducibility over a 2-to 3-month period in free-living Swedish adults. J Nutr. 2011;141:1712–8.PubMedCrossRef
21.
Zurück zum Zitat Kristensen M, Toubro S, Jensen MG, et al. Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week, energy-restricted dietary intervention in postmenopausal women. J Nutr. 2012;142:710–6.PubMedCrossRef Kristensen M, Toubro S, Jensen MG, et al. Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week, energy-restricted dietary intervention in postmenopausal women. J Nutr. 2012;142:710–6.PubMedCrossRef
23.
Zurück zum Zitat Yetley EA, Pfeiffer CM, Phinney KW, et al. Biomarkers of vitamin B-12 status in NHANES: a roundtable summary. Am J Clin Nutr. 2011;94:313S–21S.PubMedPubMedCentralCrossRef Yetley EA, Pfeiffer CM, Phinney KW, et al. Biomarkers of vitamin B-12 status in NHANES: a roundtable summary. Am J Clin Nutr. 2011;94:313S–21S.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Ueland PM, Midttun O, Windelberg A, Svardal A, Skalevik R, Hustad S. Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry. Clin Chem Lab Med. 2007;45:1737–45.PubMedCrossRef Ueland PM, Midttun O, Windelberg A, Svardal A, Skalevik R, Hustad S. Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry. Clin Chem Lab Med. 2007;45:1737–45.PubMedCrossRef
25.
Zurück zum Zitat Herrmann W, Obeid R. Utility and limitations of biochemical markers of vitamin B12 deficiency. Eur J Clin Invest. 2013;43:231–7.PubMedCrossRef Herrmann W, Obeid R. Utility and limitations of biochemical markers of vitamin B12 deficiency. Eur J Clin Invest. 2013;43:231–7.PubMedCrossRef
27.
Zurück zum Zitat Ratnayake WMN. Concerns about the use of 15:0, 17:0, and trans-16:1n-7 as biomarkers of dairy fat intake in recent observational studies that suggest beneficial effects of dairy food on incidence of diabetes and stroke. Am J Clin Nutr. 2015;101:1102–3.PubMedPubMedCentralCrossRef Ratnayake WMN. Concerns about the use of 15:0, 17:0, and trans-16:1n-7 as biomarkers of dairy fat intake in recent observational studies that suggest beneficial effects of dairy food on incidence of diabetes and stroke. Am J Clin Nutr. 2015;101:1102–3.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Santaren ID, Watkins SM, Hanley AJ. Concerns about the use of 15:0, 17:0, and trans-16:1n-7 as biomarkers of dairy fat intake in recent observational studies that suggest beneficial effects of dairy food on incidence of diabetes and stroke Reply. Am J Clin Nutr. 2015;101:1103–4.PubMedPubMedCentralCrossRef Santaren ID, Watkins SM, Hanley AJ. Concerns about the use of 15:0, 17:0, and trans-16:1n-7 as biomarkers of dairy fat intake in recent observational studies that suggest beneficial effects of dairy food on incidence of diabetes and stroke Reply. Am J Clin Nutr. 2015;101:1103–4.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-U82. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-U82.
31.
Zurück zum Zitat Shah SH, Sun J, Stevens RD, et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J. 2012;163(844–850):e1.PubMed Shah SH, Sun J, Stevens RD, et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J. 2012;163(844–850):e1.PubMed
32.
Zurück zum Zitat Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.PubMedPubMedCentralCrossRef Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 2007;387:525–7.PubMedCrossRef Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 2007;387:525–7.PubMedCrossRef
35.
Zurück zum Zitat Soininen P, Kangas AJ, Wuertz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 2015;8:192–206.PubMedCrossRef Soininen P, Kangas AJ, Wuertz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 2015;8:192–206.PubMedCrossRef
36.
Zurück zum Zitat Pere-Trepat E, Ross AB, Martin F, et al. Chemometric strategies to assess metabonomic imprinting of food habits in epidemiological studies. Chemom Intell Lab Syst. 2010;104:95–100.CrossRef Pere-Trepat E, Ross AB, Martin F, et al. Chemometric strategies to assess metabonomic imprinting of food habits in epidemiological studies. Chemom Intell Lab Syst. 2010;104:95–100.CrossRef
37.
Zurück zum Zitat Dudley E, Yousef M, Wang Y, Griffiths WJ. Targeted metabolomics and mass spectrometry. Adv Protein Chem Struct Biol. 2010;80:45–83.PubMedCrossRef Dudley E, Yousef M, Wang Y, Griffiths WJ. Targeted metabolomics and mass spectrometry. Adv Protein Chem Struct Biol. 2010;80:45–83.PubMedCrossRef
39.
40.
Zurück zum Zitat Buescher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem. 2009;81:2135–43.CrossRef Buescher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem. 2009;81:2135–43.CrossRef
41.
Zurück zum Zitat Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009;30:19–34.PubMedPubMedCentral Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009;30:19–34.PubMedPubMedCentral
42.
Zurück zum Zitat Want EJ, Nordström A, Morita H, Siuzdak G. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J Proteome Res. 2007;6:459–68.PubMedCrossRef Want EJ, Nordström A, Morita H, Siuzdak G. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J Proteome Res. 2007;6:459–68.PubMedCrossRef
43.
Zurück zum Zitat Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24:613–46.PubMedCrossRef Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24:613–46.PubMedCrossRef
44.
Zurück zum Zitat Scalbert A, Brennan L, Fiehn O, et al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009;5:435–58.PubMedPubMedCentralCrossRef Scalbert A, Brennan L, Fiehn O, et al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009;5:435–58.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J Chromatogr B. 2007;852:22–34.CrossRef Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J Chromatogr B. 2007;852:22–34.CrossRef
47.
Zurück zum Zitat Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.PubMedCrossRef Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.PubMedCrossRef
48.
Zurück zum Zitat de Hoffmann E. Tandem mass spectrometry: a primer. J Mass Spectrom. 1996;31:129–37.CrossRef de Hoffmann E. Tandem mass spectrometry: a primer. J Mass Spectrom. 1996;31:129–37.CrossRef
49.
Zurück zum Zitat Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.CrossRefPubMed Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.CrossRefPubMed
50.
Zurück zum Zitat Sheehan TL, Yost RA. What’s the most meaningful standard for mass spectrometry: instrument detection limit or signal-to-noise ratio. Curr Trends Mass Spectrometry. 2015;13:16–22. Sheehan TL, Yost RA. What’s the most meaningful standard for mass spectrometry: instrument detection limit or signal-to-noise ratio. Curr Trends Mass Spectrometry. 2015;13:16–22.
51.
52.
Zurück zum Zitat Kellogg MD, Ellervik C, Morrow D, Hsing A, Stein E, Sethi AA. Preanalytical considerations in the design of clinical trials and epidemiological studies. Clin Chem. 2015;61:797–803.PubMedCrossRef Kellogg MD, Ellervik C, Morrow D, Hsing A, Stein E, Sethi AA. Preanalytical considerations in the design of clinical trials and epidemiological studies. Clin Chem. 2015;61:797–803.PubMedCrossRef
53.
Zurück zum Zitat Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2012;403:1523–48.PubMedCrossRef Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2012;403:1523–48.PubMedCrossRef
54.
Zurück zum Zitat Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–64.PubMedCrossRef Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–64.PubMedCrossRef
56.
Zurück zum Zitat Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within-day reproducibility of an HPLC-MS-Based method for metabonomic analysis: application to human urine. J Proteome Res. 2007;6:3291–303.PubMedCrossRef Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within-day reproducibility of an HPLC-MS-Based method for metabonomic analysis: application to human urine. J Proteome Res. 2007;6:3291–303.PubMedCrossRef
57.
Zurück zum Zitat Gika HG, Theodoridis GA, Wilson ID. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine—sample stability under different handling and storage conditions for metabonomics studies. J Chromatogr A. 2008;1189:314–22.PubMedCrossRef Gika HG, Theodoridis GA, Wilson ID. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine—sample stability under different handling and storage conditions for metabonomics studies. J Chromatogr A. 2008;1189:314–22.PubMedCrossRef
58.
Zurück zum Zitat Breier M, Wahl S, Prehn C, et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE. 2014;9:e89728.PubMedPubMedCentralCrossRef Breier M, Wahl S, Prehn C, et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE. 2014;9:e89728.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Midttun O, Townsend MK, Nygard O, et al. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J Nutr. 2014;144:784–90.PubMedPubMedCentralCrossRef Midttun O, Townsend MK, Nygard O, et al. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J Nutr. 2014;144:784–90.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Denery JR, Nunes AAK, Dickerson TJ. Characterization of differences between blood sample matrices in untargeted metabolomics. Anal Chem. 2011;83:1040–7.PubMedCrossRef Denery JR, Nunes AAK, Dickerson TJ. Characterization of differences between blood sample matrices in untargeted metabolomics. Anal Chem. 2011;83:1040–7.PubMedCrossRef
62.
Zurück zum Zitat Liu L, Aa J, Wang G, et al. Differences in metabolite profile between blood plasma and serum. Anal Biochem. 2010;406:105–12.PubMedCrossRef Liu L, Aa J, Wang G, et al. Differences in metabolite profile between blood plasma and serum. Anal Biochem. 2010;406:105–12.PubMedCrossRef
63.
Zurück zum Zitat Barri T, Dragsted LO. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant. Anal Chim Acta. 2013;768:118–28.PubMedCrossRef Barri T, Dragsted LO. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant. Anal Chim Acta. 2013;768:118–28.PubMedCrossRef
64.
Zurück zum Zitat Bruce SJ, Guy PA, Rezzi S, Ross AB. Quantitative measurement of betaine and free choline in plasma, cereals and cereal products by isotope dilution LC-MS/MS. J Agric Food Chem. 2010;58:2055–61.PubMedCrossRef Bruce SJ, Guy PA, Rezzi S, Ross AB. Quantitative measurement of betaine and free choline in plasma, cereals and cereal products by isotope dilution LC-MS/MS. J Agric Food Chem. 2010;58:2055–61.PubMedCrossRef
65.
Zurück zum Zitat Yue B, Pattison E, Roberts WL, et al. Choline in whole blood and plasma: sample preparation and stability. Clin Chem. 2008;54:590–3.PubMedCrossRef Yue B, Pattison E, Roberts WL, et al. Choline in whole blood and plasma: sample preparation and stability. Clin Chem. 2008;54:590–3.PubMedCrossRef
66.
Zurück zum Zitat Stabler S, Allen R. Quantification of serum and urinary S-adenosylmethionine and S-adenosylhomocysteine by stable-isotope-dilution liquid chromatography-mass spectrometry. Clin Chem. 2004;50:365–72.PubMedCrossRef Stabler S, Allen R. Quantification of serum and urinary S-adenosylmethionine and S-adenosylhomocysteine by stable-isotope-dilution liquid chromatography-mass spectrometry. Clin Chem. 2004;50:365–72.PubMedCrossRef
67.
Zurück zum Zitat Gellekink H, Van Oppenraaij-Emmerzaal D, van Rooij A, Struys E, den Heijer M, Blom H. Stable-isotope dilution liquid chromatography-electrospray injection tandem mass spectrometry method for fast, selective measurement of S-adenosylmethionine and S-adenosylhomocysteine in plasma. Clin Chem. 2005;51:1487–92.PubMedCrossRef Gellekink H, Van Oppenraaij-Emmerzaal D, van Rooij A, Struys E, den Heijer M, Blom H. Stable-isotope dilution liquid chromatography-electrospray injection tandem mass spectrometry method for fast, selective measurement of S-adenosylmethionine and S-adenosylhomocysteine in plasma. Clin Chem. 2005;51:1487–92.PubMedCrossRef
68.
Zurück zum Zitat Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009;81:3285–96.PubMedCrossRef Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009;81:3285–96.PubMedCrossRef
69.
Zurück zum Zitat Luque-Garcia JL, Neubert TA. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J Chromatogr A. 2007;1153:259–76.PubMedCrossRef Luque-Garcia JL, Neubert TA. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J Chromatogr A. 2007;1153:259–76.PubMedCrossRef
70.
Zurück zum Zitat Courant F, Antignac J, Dervilly-Pinel G, Le Bizec B. Basics of mass spectrometry based metabolomics. Proteomics. 2014;14:2369–88.PubMedCrossRef Courant F, Antignac J, Dervilly-Pinel G, Le Bizec B. Basics of mass spectrometry based metabolomics. Proteomics. 2014;14:2369–88.PubMedCrossRef
71.
Zurück zum Zitat Ross AB, Svelander C, Savolainen OI, et al. A high throughput method for LC-MS/MS determination of plasma alkylresorcinols, biomarkers of whole grain wheat and rye intake. Anal Biochem. 2016;499:1–7. doi:10.1016/j.ab.2015.12.023. Ross AB, Svelander C, Savolainen OI, et al. A high throughput method for LC-MS/MS determination of plasma alkylresorcinols, biomarkers of whole grain wheat and rye intake. Anal Biochem. 2016;499:1–7. doi:10.​1016/​j.​ab.​2015.​12.​023.
72.
Zurück zum Zitat Holm P, Ueland P, Kvalheim G, Lien E. Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem. 2003;49:286–94.PubMedCrossRef Holm P, Ueland P, Kvalheim G, Lien E. Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem. 2003;49:286–94.PubMedCrossRef
73.
Zurück zum Zitat Nilsson ME, Vandenput L, Tivesten A, et al. Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry. Endocrinology. 2015;156:2492–502.PubMedCrossRef Nilsson ME, Vandenput L, Tivesten A, et al. Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry. Endocrinology. 2015;156:2492–502.PubMedCrossRef
74.
Zurück zum Zitat Warrack BM, Hnatyshyn S, Ott K, et al. Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B. 2009;877:547–52.CrossRef Warrack BM, Hnatyshyn S, Ott K, et al. Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B. 2009;877:547–52.CrossRef
75.
Zurück zum Zitat Chen Y, Shen G, Zhang R, et al. Combination of injection volume calibration by creatinine and ms signals’ normalization to overcome urine variability in LC-MS-based metabolomics studies. Anal Chem. 2013;85:7659–65.PubMedCrossRef Chen Y, Shen G, Zhang R, et al. Combination of injection volume calibration by creatinine and ms signals’ normalization to overcome urine variability in LC-MS-based metabolomics studies. Anal Chem. 2013;85:7659–65.PubMedCrossRef
76.
Zurück zum Zitat Webb-Robertson B, Kim Y, Zink EM, et al. A statistical analysis of the effects of urease pre-treatment on the measurement of the urinary metabolome by gas chromatography-mass spectrometry. Metabolomics. 2014;10:897–908.PubMedPubMedCentralCrossRef Webb-Robertson B, Kim Y, Zink EM, et al. A statistical analysis of the effects of urease pre-treatment on the measurement of the urinary metabolome by gas chromatography-mass spectrometry. Metabolomics. 2014;10:897–908.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Want EJ, Wilson ID, Gika H, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5:1005–18.PubMedCrossRef Want EJ, Wilson ID, Gika H, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5:1005–18.PubMedCrossRef
78.
Zurück zum Zitat Snyder NW, Khezam M, Mesaros CA, Worth A, Blair IA. Untargeted metabolomics from biological sources using ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). J Vis Exp. 2013;20:e50433. Snyder NW, Khezam M, Mesaros CA, Worth A, Blair IA. Untargeted metabolomics from biological sources using ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). J Vis Exp. 2013;20:e50433.
79.
Zurück zum Zitat Dunn WB, Broadhurst D, Ellis DI, et al. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int J Epidemiol. 2008;37:23–30.CrossRef Dunn WB, Broadhurst D, Ellis DI, et al. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int J Epidemiol. 2008;37:23–30.CrossRef
80.
Zurück zum Zitat Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407:4879–92.PubMedPubMedCentralCrossRef Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407:4879–92.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Mitchell BL, Yasui Y, Li CI, Fitzpatrick AL, Lampe PD. Impact of freeze-thaw cycles and storage time on plasma samples used in mass spectrometry based biomarker discovery projects. Cancer Inf. 2005;1:98–104. Mitchell BL, Yasui Y, Li CI, Fitzpatrick AL, Lampe PD. Impact of freeze-thaw cycles and storage time on plasma samples used in mass spectrometry based biomarker discovery projects. Cancer Inf. 2005;1:98–104.
82.
Zurück zum Zitat Saude EJ, Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics. 2007;3:19–27.CrossRef Saude EJ, Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics. 2007;3:19–27.CrossRef
83.
Zurück zum Zitat Leu M, Mehlig K, Hunsberger M, et al. Quality assessment of 25(OH)D, insulin, total cholesterol, triglycerides, and potassium in 40-year-old frozen serum. Epidemiol Res Int. 2015;2015:8.CrossRef Leu M, Mehlig K, Hunsberger M, et al. Quality assessment of 25(OH)D, insulin, total cholesterol, triglycerides, and potassium in 40-year-old frozen serum. Epidemiol Res Int. 2015;2015:8.CrossRef
84.
Zurück zum Zitat Kirsch SH, Knapp J, Herrmann W, Obeid R. Quantification of key folate forms in serum using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2010;878:68–75.CrossRef Kirsch SH, Knapp J, Herrmann W, Obeid R. Quantification of key folate forms in serum using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2010;878:68–75.CrossRef
87.
Zurück zum Zitat Cuadros-Rodriguez L, Bagur-Gonzalez MG, Sanchez-Vinas M, Gonzalez-Casado A, Gomez-Saez AM. Principles of analytical calibration/quantification for the separation sciences. J Chromatogr A. 2007;1158:33–46.PubMedCrossRef Cuadros-Rodriguez L, Bagur-Gonzalez MG, Sanchez-Vinas M, Gonzalez-Casado A, Gomez-Saez AM. Principles of analytical calibration/quantification for the separation sciences. J Chromatogr A. 2007;1158:33–46.PubMedCrossRef
88.
Zurück zum Zitat Temmerman L, Livera AMD, Bowne JB, et al. Cross-platform urine metabolomics of experimental hyperglycemia in type 2 diabetes. J Diabetes Metab. 2012;S6:002. doi:10.4172/2155-6156.S6-002. Temmerman L, Livera AMD, Bowne JB, et al. Cross-platform urine metabolomics of experimental hyperglycemia in type 2 diabetes. J Diabetes Metab. 2012;S6:002. doi:10.​4172/​2155-6156.​S6-002.
89.
Zurück zum Zitat van der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J Proteome Res. 2009;8:5132–41.PubMedCrossRef van der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J Proteome Res. 2009;8:5132–41.PubMedCrossRef
90.
Zurück zum Zitat Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst. 2006;131:1075–8.PubMedCrossRef Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst. 2006;131:1075–8.PubMedCrossRef
91.
Zurück zum Zitat De Livera AM, Dias DA, De Souza D, et al. Normalizing and integrating metabolomics data. Anal Chem. 2012;84:10768–76.PubMedCrossRef De Livera AM, Dias DA, De Souza D, et al. Normalizing and integrating metabolomics data. Anal Chem. 2012;84:10768–76.PubMedCrossRef
92.
Zurück zum Zitat Dolan JW. Calibration curves, part V: curve weighting. LC GC N Am. 2009;27:534. Dolan JW. Calibration curves, part V: curve weighting. LC GC N Am. 2009;27:534.
93.
Zurück zum Zitat Bictash M, Ebbels TM, Chan Q, et al. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol. 2010;63:970–9.PubMedPubMedCentralCrossRef Bictash M, Ebbels TM, Chan Q, et al. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol. 2010;63:970–9.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Benton HP, Ivanisevic J, Mahieu NG, et al. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 2015;87:884–91.PubMedCrossRef Benton HP, Ivanisevic J, Mahieu NG, et al. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 2015;87:884–91.PubMedCrossRef
95.
Zurück zum Zitat Dunn WB, Erban A, Weber RJM, et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics. 2013;9:S44–66.CrossRef Dunn WB, Erban A, Weber RJM, et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics. 2013;9:S44–66.CrossRef
96.
Zurück zum Zitat Lynn K, Cheng M, Chen Y, et al. Metabolite identification for mass spectrometry-based metabolomics using multiple types of correlated ion information. Anal Chem. 2015;87:2143–51.PubMedCrossRef Lynn K, Cheng M, Chen Y, et al. Metabolite identification for mass spectrometry-based metabolomics using multiple types of correlated ion information. Anal Chem. 2015;87:2143–51.PubMedCrossRef
97.
Zurück zum Zitat Kuhl C, Tautenhahn R, Boettcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2012;84:283–9.PubMedCrossRef Kuhl C, Tautenhahn R, Boettcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2012;84:283–9.PubMedCrossRef
98.
Zurück zum Zitat Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41:D801–7.PubMedCrossRef Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41:D801–7.PubMedCrossRef
101.
Zurück zum Zitat Kirkwood JS, Maier C, Stevens JF. Simultaneous, untargeted metabolic profiling of polar and nonpolar metabolites by LC-Q-TOF mass spectrometry. Curr Protoc Toxicol. 2013;Chapter 4:Unt4.39. doi:10.1002/0471140856.tx0439s56. Kirkwood JS, Maier C, Stevens JF. Simultaneous, untargeted metabolic profiling of polar and nonpolar metabolites by LC-Q-TOF mass spectrometry. Curr Protoc Toxicol. 2013;Chapter 4:Unt4.39. doi:10.​1002/​0471140856.​tx0439s56.
102.
Zurück zum Zitat Gurdeniz G, Kristensen M, Skov T, Dragsted LO. The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites. 2012;2:77–99.PubMedPubMedCentralCrossRef Gurdeniz G, Kristensen M, Skov T, Dragsted LO. The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites. 2012;2:77–99.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Smith C, Want E, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.PubMedCrossRef Smith C, Want E, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.PubMedCrossRef
104.
Zurück zum Zitat Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem. 2007;363:185–95.PubMedCrossRef Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem. 2007;363:185–95.PubMedCrossRef
105.
Zurück zum Zitat Gromski P, Xu Y, Hollywood K, Turner M, Goodacre R. The influence of scaling metabolomics data on model classification accuracy. Metabolomics. 2015;11:684–95.CrossRef Gromski P, Xu Y, Hollywood K, Turner M, Goodacre R. The influence of scaling metabolomics data on model classification accuracy. Metabolomics. 2015;11:684–95.CrossRef
106.
Zurück zum Zitat van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom. 2006;7:142.CrossRef van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom. 2006;7:142.CrossRef
107.
Zurück zum Zitat Huan T, Li L. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform. Anal Chem. 2015;87:1306–13.PubMedCrossRef Huan T, Li L. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform. Anal Chem. 2015;87:1306–13.PubMedCrossRef
108.
Zurück zum Zitat Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere. 2006;65:2434–9.PubMedCrossRef Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere. 2006;65:2434–9.PubMedCrossRef
109.
Zurück zum Zitat Hrydziuszko O, Viant MR. Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline. Metabolomics. 2012;8:S161–74.CrossRef Hrydziuszko O, Viant MR. Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline. Metabolomics. 2012;8:S161–74.CrossRef
110.
Zurück zum Zitat Goodacre R, Broadhurst D, Smilde AK, et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics. 2007;3:231–41.CrossRef Goodacre R, Broadhurst D, Smilde AK, et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics. 2007;3:231–41.CrossRef
111.
Zurück zum Zitat Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Introduction, measurement error in nonlinear models a modern perspective. Boca Raton: Chapman and Hall/CRC; 2006. p. 1–24. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Introduction, measurement error in nonlinear models a modern perspective. Boca Raton: Chapman and Hall/CRC; 2006. p. 1–24.
112.
113.
Zurück zum Zitat Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–7.PubMedCrossRef Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–7.PubMedCrossRef
114.
Zurück zum Zitat Perkins NJ, Schisterman EF, Vexler A. Generalized ROC curve inference for a biomarker subject to a limit of detection and measurement error. Stat Med. 2009;28:1841–60.PubMedPubMedCentralCrossRef Perkins NJ, Schisterman EF, Vexler A. Generalized ROC curve inference for a biomarker subject to a limit of detection and measurement error. Stat Med. 2009;28:1841–60.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Perkins N, Schisterman E. The Youden index and the optimal cut-point corrected for measurement error. Biom J. 2005;47:428–41.PubMedCrossRef Perkins N, Schisterman E. The Youden index and the optimal cut-point corrected for measurement error. Biom J. 2005;47:428–41.PubMedCrossRef
116.
Zurück zum Zitat White MT, Xie SX. Adjustment for measurement error in evaluating diagnostic biomarkers by using an internal reliability sample. Stat Med. 2013;32:4709–25.PubMedCrossRef White MT, Xie SX. Adjustment for measurement error in evaluating diagnostic biomarkers by using an internal reliability sample. Stat Med. 2013;32:4709–25.PubMedCrossRef
117.
Zurück zum Zitat Van Batenburg MF, Coulier L, van Eeuwijk F, Smilde AK, Westerhuis JA. New figures of merit for comprehensive functional genomics data: the metabolomics case. Anal Chem. 2011;83:3267–74.PubMedCrossRef Van Batenburg MF, Coulier L, van Eeuwijk F, Smilde AK, Westerhuis JA. New figures of merit for comprehensive functional genomics data: the metabolomics case. Anal Chem. 2011;83:3267–74.PubMedCrossRef
118.
Zurück zum Zitat Smilde AK, van der Werf MJ, Schaller J, Kistemaker C. Characterizing the precision of mass-spectrometry-based metabolic profiling platforms. Analyst. 2009;134:2281–5.PubMedCrossRef Smilde AK, van der Werf MJ, Schaller J, Kistemaker C. Characterizing the precision of mass-spectrometry-based metabolic profiling platforms. Analyst. 2009;134:2281–5.PubMedCrossRef
119.
Zurück zum Zitat Guo Y, Little RJ. Regression analysis with covariates that have heteroscedastic measurement error. Stat Med. 2011;30:2278–94.PubMedCrossRef Guo Y, Little RJ. Regression analysis with covariates that have heteroscedastic measurement error. Stat Med. 2011;30:2278–94.PubMedCrossRef
120.
Zurück zum Zitat Pollack AZ, Perkins NJ, Mumford SL, Ye A, Schisterman EF. Correlated biomarker measurement error: an important threat to inference in environmental epidemiology. Am J Epidemiol. 2013;177:84–92.PubMedCrossRef Pollack AZ, Perkins NJ, Mumford SL, Ye A, Schisterman EF. Correlated biomarker measurement error: an important threat to inference in environmental epidemiology. Am J Epidemiol. 2013;177:84–92.PubMedCrossRef
121.
Zurück zum Zitat Chen H, Quandt SA, Grzywacz JG, Arcury TA. A distribution-based multiple imputation method for handling bivariate pesticide data with values below the limit of detection. Environ Health Perspect. 2011;119:351–6.PubMedCrossRef Chen H, Quandt SA, Grzywacz JG, Arcury TA. A distribution-based multiple imputation method for handling bivariate pesticide data with values below the limit of detection. Environ Health Perspect. 2011;119:351–6.PubMedCrossRef
122.
Zurück zum Zitat Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Important concepts, measurement error in nonlinear models a modern perspective. Boca Raton: Chapman and Hall/CRC; 2006. p. 25–39. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Important concepts, measurement error in nonlinear models a modern perspective. Boca Raton: Chapman and Hall/CRC; 2006. p. 25–39.
123.
Zurück zum Zitat Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6:2812–31.CrossRef Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6:2812–31.CrossRef
124.
Zurück zum Zitat Fonville JM, Richards SE, Barton RH, et al. The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemometrics. 2010;24:636–49.CrossRef Fonville JM, Richards SE, Barton RH, et al. The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemometrics. 2010;24:636–49.CrossRef
125.
Zurück zum Zitat Hendriks MMWB, van Eeuwijk FA, Jellema RH, et al. Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem. 2011;30:1685–98.CrossRef Hendriks MMWB, van Eeuwijk FA, Jellema RH, et al. Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem. 2011;30:1685–98.CrossRef
126.
Zurück zum Zitat Tzoulaki I, Ebbels TMD, Valdes A, Elliott P, Ioannidis JPA. Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. Am J Epidemiol. 2014;180:129–39.PubMedCrossRef Tzoulaki I, Ebbels TMD, Valdes A, Elliott P, Ioannidis JPA. Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. Am J Epidemiol. 2014;180:129–39.PubMedCrossRef
127.
Zurück zum Zitat Kjeldahl K, Bro R. Some common misunderstandings in chemometrics. J Chemom. 2010;24:558–64.CrossRef Kjeldahl K, Bro R. Some common misunderstandings in chemometrics. J Chemom. 2010;24:558–64.CrossRef
128.
Zurück zum Zitat Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform. 2012;7:96–108.PubMedPubMedCentralCrossRef Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform. 2012;7:96–108.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9:280–99.PubMedCrossRef Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9:280–99.PubMedCrossRef
130.
Zurück zum Zitat Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics. 2006;2:171–96.CrossRef Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics. 2006;2:171–96.CrossRef
131.
Zurück zum Zitat Storey J. A direct approach to false discovery rates. J R Stat Soc Ser B Stat Methodol. 2002;64:479–98.CrossRef Storey J. A direct approach to false discovery rates. J R Stat Soc Ser B Stat Methodol. 2002;64:479–98.CrossRef
132.
Zurück zum Zitat Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
133.
Zurück zum Zitat Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. 2014;10:361–74.CrossRef Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. 2014;10:361–74.CrossRef
134.
Zurück zum Zitat Dunn WB, Lin W, Broadhurst D, et al. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics. 2015;11:9–26.PubMedCrossRef Dunn WB, Lin W, Broadhurst D, et al. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics. 2015;11:9–26.PubMedCrossRef
135.
Zurück zum Zitat Sampson JN, Boca SM, Shu XO, et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomarkers Prev. 2013;22:631–40.PubMedPubMedCentralCrossRef Sampson JN, Boca SM, Shu XO, et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomarkers Prev. 2013;22:631–40.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Ferreia JA, Zwinderman A. Approximate power and sample size calculations with the Benjamini–Hochberg method. Int J Biostat. 2006;2:1–36. Ferreia JA, Zwinderman A. Approximate power and sample size calculations with the Benjamini–Hochberg method. Int J Biostat. 2006;2:1–36.
137.
Zurück zum Zitat Glueck DH, Mandel J, Karimpour-Fard A, Hunter L, Muller KE. Exact calculations of average power for the Benjamini–Hochberg procedure. Int J Biostat. 2008;4:1–20. Glueck DH, Mandel J, Karimpour-Fard A, Hunter L, Muller KE. Exact calculations of average power for the Benjamini–Hochberg procedure. Int J Biostat. 2008;4:1–20.
138.
Zurück zum Zitat Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134:714–7.PubMedCrossRef Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134:714–7.PubMedCrossRef
139.
Zurück zum Zitat Bro R, Kamstrup-Nielsen M, Engelsen S, et al. Forecasting individual breast cancer risk using plasma metabolomics and biocontours. Metabolomics 2015;11:1376–80. Bro R, Kamstrup-Nielsen M, Engelsen S, et al. Forecasting individual breast cancer risk using plasma metabolomics and biocontours. Metabolomics 2015;11:1376–80.
140.
Zurück zum Zitat Bro R, Nielsen HJ, Savorani F, et al. Data fusion in metabolomic cancer diagnostics. Metabolomics. 2013;9:3–8.PubMedCrossRef Bro R, Nielsen HJ, Savorani F, et al. Data fusion in metabolomic cancer diagnostics. Metabolomics. 2013;9:3–8.PubMedCrossRef
141.
Zurück zum Zitat Freedman LS, Kipnis V, Schatzkin A, Tasevska N, Potischman N. Can we use biomarkers in combination with self-reports to strengthen the analysis of nutritional epidemiologic studies? Epidemiol Perspect Innov. 2010;7:2.PubMedPubMedCentralCrossRef Freedman LS, Kipnis V, Schatzkin A, Tasevska N, Potischman N. Can we use biomarkers in combination with self-reports to strengthen the analysis of nutritional epidemiologic studies? Epidemiol Perspect Innov. 2010;7:2.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Ried JS, Shin S, Krumsiek J, et al. Novel genetic associations with serum level metabolites identified by phenotype set enrichment analyses. Hum Mol Genet. 2014;23:5847–57.PubMedPubMedCentralCrossRef Ried JS, Shin S, Krumsiek J, et al. Novel genetic associations with serum level metabolites identified by phenotype set enrichment analyses. Hum Mol Genet. 2014;23:5847–57.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Dharuri H, Demirkan A, van Klinken JB, et al. Genetics of the human metabolome, What is next? Biochim Biophys Acta Mol Basis Dis. 2014;1842:1923–31.CrossRef Dharuri H, Demirkan A, van Klinken JB, et al. Genetics of the human metabolome, What is next? Biochim Biophys Acta Mol Basis Dis. 2014;1842:1923–31.CrossRef
144.
Zurück zum Zitat Shin S, Petersen A, Wahl S, et al. Interrogating causal pathways linking genetic variants, small molecule metabolites, and circulating lipids. Genom Med. 2014;6:25.CrossRef Shin S, Petersen A, Wahl S, et al. Interrogating causal pathways linking genetic variants, small molecule metabolites, and circulating lipids. Genom Med. 2014;6:25.CrossRef
145.
Zurück zum Zitat Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.PubMedPubMedCentralCrossRef Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61:5R–10R.PubMedCrossRef Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61:5R–10R.PubMedCrossRef
147.
Zurück zum Zitat Petersen A, Zeilinger S, Kastenmueller G, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23:534–45.PubMedCrossRef Petersen A, Zeilinger S, Kastenmueller G, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23:534–45.PubMedCrossRef
149.
Zurück zum Zitat Darwanto A, Curtis MP, Schrag M, et al. A modified, “Cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. J Biol Chem. 2010;285:21868–76.PubMedPubMedCentralCrossRef Darwanto A, Curtis MP, Schrag M, et al. A modified, “Cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. J Biol Chem. 2010;285:21868–76.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.PubMedCrossRef Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.PubMedCrossRef
151.
Zurück zum Zitat Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9:577–89.PubMedCrossRef Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9:577–89.PubMedCrossRef
152.
Zurück zum Zitat Griffin JL, Wang X, Stanley E. does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet. 2015;8:187–91.PubMedPubMedCentralCrossRef Griffin JL, Wang X, Stanley E. does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet. 2015;8:187–91.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106:3698–703.PubMedPubMedCentralCrossRef Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106:3698–703.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat O’Donovan CB, Walsh MC, Nugent AP, et al. Use of metabotyping for the delivery of personalised nutrition. Mol Nutr Food Res. 2015;59:377–85.PubMedCrossRef O’Donovan CB, Walsh MC, Nugent AP, et al. Use of metabotyping for the delivery of personalised nutrition. Mol Nutr Food Res. 2015;59:377–85.PubMedCrossRef
155.
Zurück zum Zitat Fuhrer T, Zamboni N. High-throughput discovery metabolomics. Curr Opin Biotechnol. 2015;31:73–8.PubMedCrossRef Fuhrer T, Zamboni N. High-throughput discovery metabolomics. Curr Opin Biotechnol. 2015;31:73–8.PubMedCrossRef
156.
Zurück zum Zitat Allwood JW, Erban A, de Koning S, et al. Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics. 2009;5:479–96.PubMedPubMedCentralCrossRef Allwood JW, Erban A, de Koning S, et al. Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics. 2009;5:479–96.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Klavins K, Neubauer S, Al Chalabi A, et al. Interlaboratory comparison for quantitative primary metabolite profiling in Pichia pastoris. Anal Bioanal Chem. 2013;405:5159–69.PubMedCrossRef Klavins K, Neubauer S, Al Chalabi A, et al. Interlaboratory comparison for quantitative primary metabolite profiling in Pichia pastoris. Anal Bioanal Chem. 2013;405:5159–69.PubMedCrossRef
158.
Zurück zum Zitat Weiner M, Tröndle J, Schmideder A, et al. Parallelized small-scale production of uniformly 13C-labeled cell extract for quantitative metabolome analysis. Anal Biochem. 2015;478:134–40.PubMedCrossRef Weiner M, Tröndle J, Schmideder A, et al. Parallelized small-scale production of uniformly 13C-labeled cell extract for quantitative metabolome analysis. Anal Biochem. 2015;478:134–40.PubMedCrossRef
159.
Zurück zum Zitat Pinto RC, Gerber L, Eliasson M, Sundberg B, Trygg J. Strategy for minimizing between-study variation of large-scale phenotypic experiments using multivariate analysis. Anal Chem. 2012;84:8675–81.PubMedCrossRef Pinto RC, Gerber L, Eliasson M, Sundberg B, Trygg J. Strategy for minimizing between-study variation of large-scale phenotypic experiments using multivariate analysis. Anal Chem. 2012;84:8675–81.PubMedCrossRef
Metadaten
Titel
The use of mass spectrometry for analysing metabolite biomarkers in epidemiology: methodological and statistical considerations for application to large numbers of biological samples
verfasst von
Mads V. Lind
Otto I. Savolainen
Alastair B. Ross
Publikationsdatum
26.05.2016
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology / Ausgabe 8/2016
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-016-0166-2

Weitere Artikel der Ausgabe 8/2016

European Journal of Epidemiology 8/2016 Zur Ausgabe