Skip to main content
Erschienen in: Cancer Chemotherapy and Pharmacology 3/2021

03.01.2021 | Review Article

The use of zebrafish model in prostate cancer therapeutic development and discovery

verfasst von: Haneen Amawi, Alaa A. A. Aljabali, Sai H. S. Boddu, Sadam Amawi, Mohammad A. Obeid, Charles R. Ashby Jr., Amit K. Tiwari

Erschienen in: Cancer Chemotherapy and Pharmacology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Zebrafish is now among the leading in vivo model for cancer research, including prostate cancer. They are an alternative economic model being used to study cancer development, proliferation, and metastasis. They can also be effectively utilized for the development of cancer drugs at all levels, including target validation, and high-throughput screening for possible lead molecules. In this review, we provide a comprehensive overview of the role of zebrafish as an in vivo model in prostate cancer research. Globally, prostate cancer is a leading cause of death in men. Although many molecular mechanisms have been identified as playing a role in the pathogenesis of prostate cancer, there is still a significant need to understand the initial events of the disease. Furthermore, current treatments are limited by the emergence of severe toxicities and multidrug resistance. There is an essential need for economical and relevant research tools to improve our understanding and overcome these problems. This review provides a comprehensive summary of studies that utilized zebrafish for different aims in prostate cancer research. We discuss the use of zebrafish in prostate cancer cell proliferation and metastasis, defining signaling pathways, drug discovery and therapeutic development against prostate cancer, and toxicity studies. Finally, this review highlights limitations in this field and future directions to efficiently use zebrafish as a robust model for prostate cancer therapeutics development.
Literatur
1.
Zurück zum Zitat Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353PubMedCrossRef Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353PubMedCrossRef
3.
Zurück zum Zitat Kelland L (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40(6):827–836PubMedCrossRef Kelland L (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40(6):827–836PubMedCrossRef
4.
Zurück zum Zitat Laale HW (1977) The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review. J Fish Biol 10(2):121–173CrossRef Laale HW (1977) The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review. J Fish Biol 10(2):121–173CrossRef
5.
Zurück zum Zitat MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14(10):721–731PubMedCrossRef MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14(10):721–731PubMedCrossRef
7.
8.
Zurück zum Zitat Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4(1):35–44PubMedCrossRef Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4(1):35–44PubMedCrossRef
11.
Zurück zum Zitat Nascimento-Gonçalves E, Ferreira R, Oliveira PA, Colaço BJA (2020) An overview of current alternative models for use in the context of prostate cancer research. Altern Lab Anim 48(2):58–69PubMedCrossRef Nascimento-Gonçalves E, Ferreira R, Oliveira PA, Colaço BJA (2020) An overview of current alternative models for use in the context of prostate cancer research. Altern Lab Anim 48(2):58–69PubMedCrossRef
12.
Zurück zum Zitat Xu W, Foster BA, Richards M, Bondioli KR, Shah G, Green CC (2018) Characterization of prostate cancer cell progression in zebrafish xenograft model. Int J Oncol 52(1):252–260PubMed Xu W, Foster BA, Richards M, Bondioli KR, Shah G, Green CC (2018) Characterization of prostate cancer cell progression in zebrafish xenograft model. Int J Oncol 52(1):252–260PubMed
16.
Zurück zum Zitat Robinson DR, Zylstra CR, Williams BO (2008) Wnt signaling and prostate cancer. Curr Drug Targets 9(7):271–580CrossRef Robinson DR, Zylstra CR, Williams BO (2008) Wnt signaling and prostate cancer. Curr Drug Targets 9(7):271–580CrossRef
20.
Zurück zum Zitat Sakr WA, Grignon DJ (1997) Prostate cancer: indicators of aggressiveness. Eur Urol 32:15–23PubMed Sakr WA, Grignon DJ (1997) Prostate cancer: indicators of aggressiveness. Eur Urol 32:15–23PubMed
21.
Zurück zum Zitat Marques RB, Dits NF, Erkens-Schulze S, Van Weerden WM, Jenster G (2010) Bypass mechanisms of the androgen receptor pathway in therapy-resistant prostate cancer cell models. PLoS ONE 5(10):e13500PubMedPubMedCentralCrossRef Marques RB, Dits NF, Erkens-Schulze S, Van Weerden WM, Jenster G (2010) Bypass mechanisms of the androgen receptor pathway in therapy-resistant prostate cancer cell models. PLoS ONE 5(10):e13500PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Eissa A, Elsherbiny A, Coelho RF, Rassweiler J, Davis JW, Porpiglia F, Patel VR, Prandini N, Micali S, Sighinolfi MC, Puliatti S, Rocco B, Bianchi G (2018) The role of 68Ga-PSMA PET/CT scan in biochemical recurrence after primary treatment for prostate cancer: a systematicreview of the literature. Minerva Urol Nefrol 70(5):462–478. https://doi.org/10.23736/S0393-2249.18.03081-3CrossRefPubMed Eissa A, Elsherbiny A, Coelho RF, Rassweiler J, Davis JW, Porpiglia F, Patel VR, Prandini N, Micali S, Sighinolfi MC, Puliatti S, Rocco B, Bianchi G (2018) The role of 68Ga-PSMA PET/CT scan in biochemical recurrence after primary treatment for prostate cancer: a systematicreview of the literature. Minerva Urol Nefrol 70(5):462–478. https://​doi.​org/​10.​23736/​S0393-2249.​18.​03081-3CrossRefPubMed
24.
Zurück zum Zitat Marie A, Chisholm-Burns TLS, Malone PM, Kolesar JM, Lee KC, Brandon Bookstaver P (2019) Pharmacotherapy principles and practice, 5th edn. McGraw-Hill Education/Medical, New York Marie A, Chisholm-Burns TLS, Malone PM, Kolesar JM, Lee KC, Brandon Bookstaver P (2019) Pharmacotherapy principles and practice, 5th edn. McGraw-Hill Education/Medical, New York
25.
Zurück zum Zitat Rökman A, Ikonen T, Seppälä EH, Nupponen N, Autio V, Mononen N, Bailey-Wilson J, Trent J, Carpten J, Matikainen MP (2002) Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 70(5):1299–1304PubMedPubMedCentralCrossRef Rökman A, Ikonen T, Seppälä EH, Nupponen N, Autio V, Mononen N, Bailey-Wilson J, Trent J, Carpten J, Matikainen MP (2002) Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 70(5):1299–1304PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C (1997) Interferon action and apoptosis are defective in mice devoid of 2′, 5′-oligoadenylate-dependent RNase L. EMBO J 16(21):6355–6363PubMedPubMedCentralCrossRef Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C (1997) Interferon action and apoptosis are defective in mice devoid of 2′, 5′-oligoadenylate-dependent RNase L. EMBO J 16(21):6355–6363PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Erkko H, Xia B, Nikkilä J, Schleutker J, Syrjäkoski K, Mannermaa A, Kallioniemi A, Pylkäs K, Karppinen S-M, Rapakko K (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446(7133):316–319PubMedCrossRef Erkko H, Xia B, Nikkilä J, Schleutker J, Syrjäkoski K, Mannermaa A, Kallioniemi A, Pylkäs K, Karppinen S-M, Rapakko K (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446(7133):316–319PubMedCrossRef
28.
Zurück zum Zitat Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, Ewing C, Wilkens E, Bujnovszky P, Bova GS (1998) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20(2):175–179PubMedCrossRef Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, Ewing C, Wilkens E, Bujnovszky P, Bova GS (1998) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20(2):175–179PubMedCrossRef
29.
Zurück zum Zitat Camp NJ, Tavtigian SV (2002) Meta-analysis of associations of the Ser217Leu and Ala541Thr variants in ELAC2 (HPC2) and prostate cancer. Am J Hum Genet 71(6):1475–1478PubMedPubMedCentralCrossRef Camp NJ, Tavtigian SV (2002) Meta-analysis of associations of the Ser217Leu and Ala541Thr variants in ELAC2 (HPC2) and prostate cancer. Am J Hum Genet 71(6):1475–1478PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, Sterling D, Lange EM, Hawkins GA, Turner A (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32(2):321–325PubMedCrossRef Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, Sterling D, Lange EM, Hawkins GA, Turner A (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32(2):321–325PubMedCrossRef
31.
Zurück zum Zitat Imamoto T, Suzuki H, Yano M, Kawamura K, Kamiya N, Araki K, Komiya A, Nihei N, Naya Y, Ichikawa T (2008) The role of testosterone in the pathogenesis of prostate cancer. Int J Urol 15(6):472–480PubMedCrossRef Imamoto T, Suzuki H, Yano M, Kawamura K, Kamiya N, Araki K, Komiya A, Nihei N, Naya Y, Ichikawa T (2008) The role of testosterone in the pathogenesis of prostate cancer. Int J Urol 15(6):472–480PubMedCrossRef
32.
Zurück zum Zitat Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Can Res 65(23):10946–10951CrossRef Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Can Res 65(23):10946–10951CrossRef
34.
Zurück zum Zitat Kang HY, Huang HY, Hsieh CY, Li CF, Shyr CR, Tsai MY, Chang C, Chuang YC, Huang KE (2009) Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J Bone Miner Res 24(7):1180–1193PubMedCrossRef Kang HY, Huang HY, Hsieh CY, Li CF, Shyr CR, Tsai MY, Chang C, Chuang YC, Huang KE (2009) Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J Bone Miner Res 24(7):1180–1193PubMedCrossRef
35.
Zurück zum Zitat Sun M, Choueiri TK, Hamnvik O-PR, Preston MA, De Velasco G, Jiang W, Loeb S, Nguyen PL, Trinh Q-D (2016) Comparison of gonadotropin-releasing hormone agonists and orchiectomy: effects of androgen-deprivation therapy. JAMA Oncol 2(4):500–507PubMedCrossRef Sun M, Choueiri TK, Hamnvik O-PR, Preston MA, De Velasco G, Jiang W, Loeb S, Nguyen PL, Trinh Q-D (2016) Comparison of gonadotropin-releasing hormone agonists and orchiectomy: effects of androgen-deprivation therapy. JAMA Oncol 2(4):500–507PubMedCrossRef
36.
Zurück zum Zitat Silberstein JL, Taylor MN, Antonarakis ES (2016) Novel insights into molecular indicators of response and resistance to modern androgen-axis therapies in prostate cancer. Curr Urol Rep 17(4):29PubMedPubMedCentralCrossRef Silberstein JL, Taylor MN, Antonarakis ES (2016) Novel insights into molecular indicators of response and resistance to modern androgen-axis therapies in prostate cancer. Curr Urol Rep 17(4):29PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Burkhardt JH, Litwin MS, Rose CM, Correa RJ, Sunshine JH, Hogan C, Hayman JA (2002) Comparing the costs of radiation therapy and radical prostatectomy for the initial treatment of early-stage prostate cancer. J Clin Oncol 20(12):2869–2875PubMedCrossRef Burkhardt JH, Litwin MS, Rose CM, Correa RJ, Sunshine JH, Hogan C, Hayman JA (2002) Comparing the costs of radiation therapy and radical prostatectomy for the initial treatment of early-stage prostate cancer. J Clin Oncol 20(12):2869–2875PubMedCrossRef
38.
Zurück zum Zitat Chisholm-Burns MA, Wells BG, Schwinghammer TL (2019) Pharmacotherapy principles and practice, 5th edn. McGraw-Hill, New York Chisholm-Burns MA, Wells BG, Schwinghammer TL (2019) Pharmacotherapy principles and practice, 5th edn. McGraw-Hill, New York
39.
Zurück zum Zitat Ghotra VPS, He S, van der Horst G, Nijhoff S, de Bont H, Lekkerkerker A, Janssen R, Jenster G, van Leenders GJLH, Hoogland AMM, Verhoef EI, Baranski Z, Xiong J, van de Water B, van der Pluijm G, Snaar-Jagalska BE, Danen EHJ (2015) SYK Is a candidate kinase target for the treatment of advanced prostate cancer. Can Res 75(1):230–240. https://doi.org/10.1158/0008-5472.can-14-0629CrossRef Ghotra VPS, He S, van der Horst G, Nijhoff S, de Bont H, Lekkerkerker A, Janssen R, Jenster G, van Leenders GJLH, Hoogland AMM, Verhoef EI, Baranski Z, Xiong J, van de Water B, van der Pluijm G, Snaar-Jagalska BE, Danen EHJ (2015) SYK Is a candidate kinase target for the treatment of advanced prostate cancer. Can Res 75(1):230–240. https://​doi.​org/​10.​1158/​0008-5472.​can-14-0629CrossRef
41.
Zurück zum Zitat Garcia JA, Rini BI (2012) Castration-resistant prostate cancer: Many treatments, many options, many challenges ahead. Cancer 118(10):2583–2593PubMedCrossRef Garcia JA, Rini BI (2012) Castration-resistant prostate cancer: Many treatments, many options, many challenges ahead. Cancer 118(10):2583–2593PubMedCrossRef
43.
Zurück zum Zitat Drake C, Sharma P, Gerritsen W (2014) Metastatic castration-resistant prostate cancer: new therapies, novel combination strategies and implications for immunotherapy. Oncogene 33(43):5053–5064PubMedCrossRef Drake C, Sharma P, Gerritsen W (2014) Metastatic castration-resistant prostate cancer: new therapies, novel combination strategies and implications for immunotherapy. Oncogene 33(43):5053–5064PubMedCrossRef
44.
Zurück zum Zitat van Marion DM, Domanska UM, Timmer-Bosscha H, Walenkamp AM (2016) Studying cancer metastasis: existing models, challenges and future perspectives. Critical Rev Oncol/Hematol 97:107–117CrossRef van Marion DM, Domanska UM, Timmer-Bosscha H, Walenkamp AM (2016) Studying cancer metastasis: existing models, challenges and future perspectives. Critical Rev Oncol/Hematol 97:107–117CrossRef
46.
Zurück zum Zitat Tuveson DA, Jacks T (2002) Technologically advanced cancer modeling in mice. Curr Opin Genet Dev 12(1):105–110PubMedCrossRef Tuveson DA, Jacks T (2002) Technologically advanced cancer modeling in mice. Curr Opin Genet Dev 12(1):105–110PubMedCrossRef
48.
Zurück zum Zitat Letrado P, de Miguel I, Lamberto I, Díez-Martínez R, Oyarzabal J (2018) Zebrafish: speeding up the cancer drug discovery process. Can Res 78(21):6048–6058CrossRef Letrado P, de Miguel I, Lamberto I, Díez-Martínez R, Oyarzabal J (2018) Zebrafish: speeding up the cancer drug discovery process. Can Res 78(21):6048–6058CrossRef
50.
Zurück zum Zitat Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke C-D, Lerch MM, Bagowski CP (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC cancer 9(1):128PubMedPubMedCentralCrossRef Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke C-D, Lerch MM, Bagowski CP (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC cancer 9(1):128PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Topczewska JM, Postovit L-M, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJ (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12(8):925–932PubMedCrossRef Topczewska JM, Postovit L-M, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJ (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12(8):925–932PubMedCrossRef
52.
Zurück zum Zitat Lally BE, Geiger GA, Kridel S, Arcury-Quandt AE, Robbins ME, Kock ND, Wheeler K, Peddi P, Georgakilas A, Kao GD (2007) Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library. Can Res 67(18):8791–8799CrossRef Lally BE, Geiger GA, Kridel S, Arcury-Quandt AE, Robbins ME, Kock ND, Wheeler K, Peddi P, Georgakilas A, Kao GD (2007) Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library. Can Res 67(18):8791–8799CrossRef
53.
Zurück zum Zitat Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503PubMedPubMedCentralCrossRef Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Berghmans S, Jette C, Langenau D, Hsu K, Stewart R, Look T, Kanki JP (2005) Making waves in cancer research: new models in the zebrafish. Biotechniques 39(2):227–237PubMedCrossRef Berghmans S, Jette C, Langenau D, Hsu K, Stewart R, Look T, Kanki JP (2005) Making waves in cancer research: new models in the zebrafish. Biotechniques 39(2):227–237PubMedCrossRef
55.
Zurück zum Zitat Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1(3):229–231PubMedCrossRef Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1(3):229–231PubMedCrossRef
56.
Zurück zum Zitat Detrich HW III, Westerfield M, Zon LI (1998) Overview of the zebrafish system. Methods Cell Biol 59:3–10CrossRef Detrich HW III, Westerfield M, Zon LI (1998) Overview of the zebrafish system. Methods Cell Biol 59:3–10CrossRef
58.
Zurück zum Zitat Ung CY, Lam SH, Gong Z (2009) Comparative transcriptome analyses revealed conserved biological and transcription factor target modules between the zebrafish and human tumors. Zebrafish 6(4):425–431PubMedCrossRef Ung CY, Lam SH, Gong Z (2009) Comparative transcriptome analyses revealed conserved biological and transcription factor target modules between the zebrafish and human tumors. Zebrafish 6(4):425–431PubMedCrossRef
60.
Zurück zum Zitat Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27(33):4509–4520PubMedCrossRef Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27(33):4509–4520PubMedCrossRef
61.
Zurück zum Zitat White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189PubMedPubMedCentralCrossRef White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell–vascular interface in transparent zebrafish. Proc Natl Acad Sci 104(44):17406–17411PubMedCrossRefPubMedCentral Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell–vascular interface in transparent zebrafish. Proc Natl Acad Sci 104(44):17406–17411PubMedCrossRefPubMedCentral
63.
Zurück zum Zitat Lam S, Chua H, Gong Z, Lam T, Sin Y (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28PubMedCrossRef Lam S, Chua H, Gong Z, Lam T, Sin Y (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28PubMedCrossRef
65.
71.
Zurück zum Zitat Den Hertog J (2005) Chemical genetics: drug screens in zebrafish. Biosci Rep 25(5–6):289–297CrossRef Den Hertog J (2005) Chemical genetics: drug screens in zebrafish. Biosci Rep 25(5–6):289–297CrossRef
73.
Zurück zum Zitat Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291(5813):293–296PubMedCrossRef Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291(5813):293–296PubMedCrossRef
74.
75.
Zurück zum Zitat Stuart GW, McMURRAY JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103(2):403–412PubMedCrossRef Stuart GW, McMURRAY JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103(2):403–412PubMedCrossRef
76.
Zurück zum Zitat Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res/Fundam Mol Mechan Mutagen 576(1–2):22–38CrossRef Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res/Fundam Mol Mechan Mutagen 576(1–2):22–38CrossRef
78.
Zurück zum Zitat Fisher GH, Orsulic S, Holland E, Hively WP, Li Y, Lewis BC, Williams BO, Varmus HE (1999) Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 18(38):5253–5260PubMedCrossRef Fisher GH, Orsulic S, Holland E, Hively WP, Li Y, Lewis BC, Williams BO, Varmus HE (1999) Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 18(38):5253–5260PubMedCrossRef
79.
Zurück zum Zitat Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn Off Publ Am Assoc Anat 233(4):1560–1570 Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn Off Publ Am Assoc Anat 233(4):1560–1570
80.
Zurück zum Zitat Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9(3):139–151CrossRefPubMed Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9(3):139–151CrossRefPubMed
81.
Zurück zum Zitat Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, ten Dijke P (2013) Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 15(6):R106PubMedPubMedCentralCrossRef Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, ten Dijke P (2013) Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 15(6):R106PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Can Res 67(7):2927–2931CrossRef Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Can Res 67(7):2927–2931CrossRef
83.
Zurück zum Zitat Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish–chemotherapy response assay in vivo. Br J Haematol 153(6):786–789PubMedCrossRef Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish–chemotherapy response assay in vivo. Br J Haematol 153(6):786–789PubMedCrossRef
84.
Zurück zum Zitat Lee SLC, Rouhi P, Jensen LD, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci 106(46):19485–19490PubMedCrossRefPubMedCentral Lee SLC, Rouhi P, Jensen LD, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci 106(46):19485–19490PubMedCrossRefPubMedCentral
85.
Zurück zum Zitat Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(6):2136–2145PubMedCrossRef Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(6):2136–2145PubMedCrossRef
86.
Zurück zum Zitat Chiu C-C, Chou H-L, Chen B-H, Chang K-F, Tseng C-H, Fong Y, Fu T-F, Chang H-W, Wu C-Y, Tsai E-M (2015) BPIQ, a novel synthetic quinoline derivative, inhibits growth and induces mitochondrial apoptosis of lung cancer cells in vitro and in zebrafish xenograft model. BMC Cancer 15(1):962PubMedPubMedCentralCrossRef Chiu C-C, Chou H-L, Chen B-H, Chang K-F, Tseng C-H, Fong Y, Fu T-F, Chang H-W, Wu C-Y, Tsai E-M (2015) BPIQ, a novel synthetic quinoline derivative, inhibits growth and induces mitochondrial apoptosis of lung cancer cells in vitro and in zebrafish xenograft model. BMC Cancer 15(1):962PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Bansal N, Davis S, Tereshchenko I, Budak-Alpdogan T, Zhong H, Stein MN, Kim IY, DiPaola RS, Bertino JR, Sabaawy HE (2014) Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate 74(2):187–200PubMedCrossRef Bansal N, Davis S, Tereshchenko I, Budak-Alpdogan T, Zhong H, Stein MN, Kim IY, DiPaola RS, Bertino JR, Sabaawy HE (2014) Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate 74(2):187–200PubMedCrossRef
88.
Zurück zum Zitat Saraon P, Drabovich AP, Jarvi KA, Diamandis EP (2014) Mechanisms of androgen-independent prostate cancer. EJIFCC 25(1):42–54PubMedPubMedCentral Saraon P, Drabovich AP, Jarvi KA, Diamandis EP (2014) Mechanisms of androgen-independent prostate cancer. EJIFCC 25(1):42–54PubMedPubMedCentral
91.
Zurück zum Zitat Bakht MK, Lovnicki JM, Tubman J, Stringer KF, Chiaramonte J, Reynolds MR, Derecichei I, Ferraiuolo RM, Fifield BA, Lubanska D, Oh SW, Cheon GJ, Kwak C, Jeong CW, Kang KW, Trant JF, Morrissey C, Coleman I, Wang Y, Ahmadzadehfar H, Dong X, Porter LA (2019) Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors. J Nucl Med. https://doi.org/10.2967/jnumed.119.231068CrossRefPubMed Bakht MK, Lovnicki JM, Tubman J, Stringer KF, Chiaramonte J, Reynolds MR, Derecichei I, Ferraiuolo RM, Fifield BA, Lubanska D, Oh SW, Cheon GJ, Kwak C, Jeong CW, Kang KW, Trant JF, Morrissey C, Coleman I, Wang Y, Ahmadzadehfar H, Dong X, Porter LA (2019) Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors. J Nucl Med. https://​doi.​org/​10.​2967/​jnumed.​119.​231068CrossRefPubMed
93.
Zurück zum Zitat Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M (2008) Cancer stem cells and chemoradiation resistance. Cancer Sci 99(10):1871–1877PubMedCrossRef Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M (2008) Cancer stem cells and chemoradiation resistance. Cancer Sci 99(10):1871–1877PubMedCrossRef
94.
Zurück zum Zitat Mushtaq M, Jensen L, Davidsson S, Grygoruk OV, Andrén O, Kashuba V, Kashuba E (2018) The MRPS18-2 protein levels correlate with prostate tumor progression and it induces CXCR4-dependent migration of cancer cells. Sci Rep 8(1):1–14CrossRef Mushtaq M, Jensen L, Davidsson S, Grygoruk OV, Andrén O, Kashuba V, Kashuba E (2018) The MRPS18-2 protein levels correlate with prostate tumor progression and it induces CXCR4-dependent migration of cancer cells. Sci Rep 8(1):1–14CrossRef
95.
Zurück zum Zitat Ganaie AA, Beigh FH, Astone M, Ferrari MG, Maqbool R, Umbreen S, Parray AS, Siddique HR, Hussain T, Murugan P, Morrissey C, Koochekpour S, Deng Y, Konety BR, Hoeppner LH, Saleem M (2018) BMI1 drives metastasis of prostate cancer in caucasian and african-american men and is a potential therapeutic target: hypothesis tested in race-specific models. Clin Cancer Res 24(24):6421–6432. https://doi.org/10.1158/1078-0432.ccr-18-1394CrossRefPubMedPubMedCentral Ganaie AA, Beigh FH, Astone M, Ferrari MG, Maqbool R, Umbreen S, Parray AS, Siddique HR, Hussain T, Murugan P, Morrissey C, Koochekpour S, Deng Y, Konety BR, Hoeppner LH, Saleem M (2018) BMI1 drives metastasis of prostate cancer in caucasian and african-american men and is a potential therapeutic target: hypothesis tested in race-specific models. Clin Cancer Res 24(24):6421–6432. https://​doi.​org/​10.​1158/​1078-0432.​ccr-18-1394CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Bouaouiche S, Magadoux L, Dondaine L, Reveneau S, Isambert N, Bettaieb A, Jeannin JF, Laurens V, Plenchette S (2019) Glyceryl trinitrateinduced cytotoxicity of docetaxelresistant prostatic cancer cells is associated with differential regulation of clusterin. Int J Oncol 54(4):1446–1456. https://doi.org/10.3892/ijo.2019.4708CrossRefPubMed Bouaouiche S, Magadoux L, Dondaine L, Reveneau S, Isambert N, Bettaieb A, Jeannin JF, Laurens V, Plenchette S (2019) Glyceryl trinitrateinduced cytotoxicity of docetaxelresistant prostatic cancer cells is associated with differential regulation of clusterin. Int J Oncol 54(4):1446–1456. https://​doi.​org/​10.​3892/​ijo.​2019.​4708CrossRefPubMed
99.
Zurück zum Zitat Rostad K, Mannelqvist M, Halvorsen OJ, Oyan AM, Bo TH, Stordrange L, Olsen S, Haukaas SA, Lin B, Hood L, Jonassen I, Akslen LA, Kalland KH (2007) ERG upregulation and related ETS transcription factors in prostate cancer. Int J Oncol 30(1):19–32PubMed Rostad K, Mannelqvist M, Halvorsen OJ, Oyan AM, Bo TH, Stordrange L, Olsen S, Haukaas SA, Lin B, Hood L, Jonassen I, Akslen LA, Kalland KH (2007) ERG upregulation and related ETS transcription factors in prostate cancer. Int J Oncol 30(1):19–32PubMed
100.
Zurück zum Zitat Butler MS, Roshan-Moniri M, Hsing M, Lau D, Kim A, Yen P, Mroczek M, Nouri M, Lien S, Axerio-Cilies P, Dalal K, Yau C, Ghaidi F, Guo Y, Yamazaki T, Lawn S, Gleave ME, Gregory-Evans CY, McIntosh LP, Cox ME, Rennie PS, Cherkasov A (2017) Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer. Oncotarget 8(26):42438–42454. https://doi.org/10.18632/oncotarget.17124CrossRefPubMedPubMedCentral Butler MS, Roshan-Moniri M, Hsing M, Lau D, Kim A, Yen P, Mroczek M, Nouri M, Lien S, Axerio-Cilies P, Dalal K, Yau C, Ghaidi F, Guo Y, Yamazaki T, Lawn S, Gleave ME, Gregory-Evans CY, McIntosh LP, Cox ME, Rennie PS, Cherkasov A (2017) Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer. Oncotarget 8(26):42438–42454. https://​doi.​org/​10.​18632/​oncotarget.​17124CrossRefPubMedPubMedCentral
101.
Zurück zum Zitat Amawi H, Hussein NA, Karthikeyan C, Manivannan E, Wisner A, Williams FE, Samuel T, Trivedi P, Ashby CR Jr, Tiwari AK (2017) HM015k, a novel silybin derivative, multi-targets metastatic ovarian cancer cells and is safe in zebrafish toxicity studies. Front Pharmacol 8:498PubMedPubMedCentralCrossRef Amawi H, Hussein NA, Karthikeyan C, Manivannan E, Wisner A, Williams FE, Samuel T, Trivedi P, Ashby CR Jr, Tiwari AK (2017) HM015k, a novel silybin derivative, multi-targets metastatic ovarian cancer cells and is safe in zebrafish toxicity studies. Front Pharmacol 8:498PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Amawi H, Hussein N, Boddu SH, Karthikeyan C, Williams FE, Ashby CR, Raman D, Trivedi P, Tiwari AK (2019) Novel thienopyrimidine derivative, RP-010, induces β-catenin fragmentation and is efficacious against prostate cancer cells. Cancers 11(5):711PubMedCentralCrossRef Amawi H, Hussein N, Boddu SH, Karthikeyan C, Williams FE, Ashby CR, Raman D, Trivedi P, Tiwari AK (2019) Novel thienopyrimidine derivative, RP-010, induces β-catenin fragmentation and is efficacious against prostate cancer cells. Cancers 11(5):711PubMedCentralCrossRef
Metadaten
Titel
The use of zebrafish model in prostate cancer therapeutic development and discovery
verfasst von
Haneen Amawi
Alaa A. A. Aljabali
Sai H. S. Boddu
Sadam Amawi
Mohammad A. Obeid
Charles R. Ashby Jr.
Amit K. Tiwari
Publikationsdatum
03.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Chemotherapy and Pharmacology / Ausgabe 3/2021
Print ISSN: 0344-5704
Elektronische ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-020-04211-z

Weitere Artikel der Ausgabe 3/2021

Cancer Chemotherapy and Pharmacology 3/2021 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.