Skip to main content

06.09.2024 | Head and Neck

The utility and reliability of a deep learning algorithm as a diagnosis support tool in head & neck non-melanoma skin malignancies

verfasst von: Alfonso Medela, Alberto Sabater, Ignacio Hernández Montilla, Taig MacCarthy, Andy Aguilar, Carlos Miguel Chiesa-Estomba

Erschienen in: European Archives of Oto-Rhino-Laryngology

Einloggen, um Zugang zu erhalten

Abstract

Objective

The incidence of non-melanoma skin cancers, encompassing basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), is on the rise globally and new methods to improve skin malignancy diagnosis are necessary. This study aims to assess the performance of a CE-certified medical device as a diagnosis support tool in a head & neck (H&N) outpatient clinic, specifically focusing on the classification of three key diagnostics: BCC, cSCC, and non-malignant lesions (such as Actinic Cheilitis, Actinic Keratosis, and Seborrheic Keratosis).

Methods

a prospective, longitudinal, non-randomized study was designed to evaluate the performance of a deep learning-based method as a diagnosis tool in a group of patients referred to the head & neck clinic for suspicious skin lesions.

Results

135 patients were included, 92 (68.1%) were male and 43 (31.9%) were female. The median age was 71 years +/- 9 (Min: 56/Max: 91). Of those, 108 were malignant pathologies (54 basal cell carcinoma and 54 squamous cell carcinoma) and 27 benign pathologies (14 seborrheic keratoses, 2 actinic keratoses, and 11 actinic cheilitis). Of special significance is the remarkable performance of the medical device in identifying malignant lesions (basal cell carcinoma and squamous cell carcinoma) within the top-5 most likely diagnoses in above 90% of cases, underscoring its potential utility for early diagnosis and treatment.

Conclusion

In this study, the effectiveness of deep learning methods, with a particular focus on vision transformers, as a diagnostic aid for H&N cutaneous non-melanoma skin cancers was demonstrated, highlighting its potential value for early detection and treatment of non-melanoma skin cancers. In this vein, further research is needed in the future to elucidate the role of this technology, because of its potential in the primary care clinic, dermatology, and head & neck surgery clinic as well as in patients with suspicious lesions, as a self-exploration tool.
Literatur
1.
Zurück zum Zitat Karia PS, Jambusaria-Pahlajani A, Harrington DP, Murphy GF, Qureshi AA, Schmults CD (2014) Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and women’s Hospital tumor staging for cutaneous squamous cell carcinoma. J Clin Oncol 32(4):327CrossRefPubMed Karia PS, Jambusaria-Pahlajani A, Harrington DP, Murphy GF, Qureshi AA, Schmults CD (2014) Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and women’s Hospital tumor staging for cutaneous squamous cell carcinoma. J Clin Oncol 32(4):327CrossRefPubMed
2.
Zurück zum Zitat Apalla Z, Nashan D, Weller RB, Castellsagué X (2017) Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatology Therapy 7:5–19CrossRefPubMedPubMedCentral Apalla Z, Nashan D, Weller RB, Castellsagué X (2017) Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatology Therapy 7:5–19CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Rowe DE, Carroll RJ, Day CL Jr (1992) Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of thse skin, ear, and lip: implications for treatment modality selection. J Am Acad Dermatol 26(6):976–990CrossRefPubMed Rowe DE, Carroll RJ, Day CL Jr (1992) Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of thse skin, ear, and lip: implications for treatment modality selection. J Am Acad Dermatol 26(6):976–990CrossRefPubMed
4.
Zurück zum Zitat Burton KA, Ashack KA, Khachemoune A (2016) Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol 17:491–450CrossRefPubMed Burton KA, Ashack KA, Khachemoune A (2016) Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol 17:491–450CrossRefPubMed
5.
Zurück zum Zitat Gray DT, Suman VJ, Su WD, Clay RP, Harmsen WS, Roenigk RK (1997) Trends in the population-based incidence of squamous cell carcinoma of the skin first diagnosed between 1984 and 1992. Arch Dermatol 133(6):735–740CrossRefPubMed Gray DT, Suman VJ, Su WD, Clay RP, Harmsen WS, Roenigk RK (1997) Trends in the population-based incidence of squamous cell carcinoma of the skin first diagnosed between 1984 and 1992. Arch Dermatol 133(6):735–740CrossRefPubMed
6.
Zurück zum Zitat Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 30(5):774–778CrossRefPubMed Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 30(5):774–778CrossRefPubMed
7.
Zurück zum Zitat Motaparthi K, Kapil JP, Velazquez EF (2017) Cutaneous squamous cell carcinoma: review of the eighth edition of the American Joint Committee on cancer staging guidelines, prognostic factors, and histopathologic variants. Adv Anat Pathol 24(4):171–194CrossRefPubMed Motaparthi K, Kapil JP, Velazquez EF (2017) Cutaneous squamous cell carcinoma: review of the eighth edition of the American Joint Committee on cancer staging guidelines, prognostic factors, and histopathologic variants. Adv Anat Pathol 24(4):171–194CrossRefPubMed
8.
Zurück zum Zitat Neelapu R, Devi GL, Rao KS (2018) Deep learning based conventional neural network architecture for medical image classification. Traitement Du Signal 35(2):169CrossRef Neelapu R, Devi GL, Rao KS (2018) Deep learning based conventional neural network architecture for medical image classification. Traitement Du Signal 35(2):169CrossRef
9.
Zurück zum Zitat Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H (2003) Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Arch Dermatol 139(3):361–367CrossRefPubMed Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H (2003) Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Arch Dermatol 139(3):361–367CrossRefPubMed
10.
Zurück zum Zitat Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Rubegni P (2004) Melanoma computer-aided diagnosis: reliability and feasibility study. Clin Cancer Res 10(6):1881–1886CrossRefPubMed Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Rubegni P (2004) Melanoma computer-aided diagnosis: reliability and feasibility study. Clin Cancer Res 10(6):1881–1886CrossRefPubMed
11.
Zurück zum Zitat Kittler H, Pehamberger H, Wolff K, Binder M J. T. I. O. (2002). Diagnostic accuracy of dermoscopy. Lancet Oncol, 3(3), 159–165 Kittler H, Pehamberger H, Wolff K, Binder M J. T. I. O. (2002). Diagnostic accuracy of dermoscopy. Lancet Oncol, 3(3), 159–165
12.
Zurück zum Zitat Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015), October Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In International workshop on machine learning in medical imaging (pp. 118–126). Cham: Springer International Publishing Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015), October Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In International workshop on machine learning in medical imaging (pp. 118–126). Cham: Springer International Publishing
13.
Zurück zum Zitat Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397
14.
Zurück zum Zitat Binder M, Kittler H, Seeber A, Steiner A, Pehamberger H, Wolff K (1998) Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Melanoma Res 8(3):261–266CrossRefPubMed Binder M, Kittler H, Seeber A, Steiner A, Pehamberger H, Wolff K (1998) Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Melanoma Res 8(3):261–266CrossRefPubMed
15.
Zurück zum Zitat Hoffmann K (1997) In: Altmeyer P, Stücker M (eds) Skin cancer and UV radiation. Springer, Berlin, pp 219–226 Hoffmann K (1997) In: Altmeyer P, Stücker M (eds) Skin cancer and UV radiation. Springer, Berlin, pp 219–226
16.
Zurück zum Zitat WH JR CLARK (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1983–1904 WH JR CLARK (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1983–1904
17.
Zurück zum Zitat Schindewolf T, Stolz W, Albert R, Abmayr W, Harms H (1993) Classification of melanocytic lesions with color and texture analysis using digital image processing. Anal Quant Cytol Histol 15(1):1–11PubMed Schindewolf T, Stolz W, Albert R, Abmayr W, Harms H (1993) Classification of melanocytic lesions with color and texture analysis using digital image processing. Anal Quant Cytol Histol 15(1):1–11PubMed
18.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMedPubMedCentral Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Zalaudek I (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842CrossRefPubMed Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Zalaudek I (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842CrossRefPubMed
20.
Zurück zum Zitat Marchetti MA, Codella NC, Dusza SW, Gutman DA, Helba B, Kalloo A, International Skin Imaging Collaboration (2018) …. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Journal of the American Academy of Dermatology, 78(2), 270–277 Marchetti MA, Codella NC, Dusza SW, Gutman DA, Helba B, Kalloo A, International Skin Imaging Collaboration (2018) …. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Journal of the American Academy of Dermatology, 78(2), 270–277
21.
Zurück zum Zitat Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, Utikal JS (2019) Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer 119:11–17CrossRefPubMed Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, Utikal JS (2019) Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer 119:11–17CrossRefPubMed
22.
Zurück zum Zitat Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
23.
Zurück zum Zitat Lomas ALBJ, Leonardi-Bee J, Bath‐Hextall FJBJ (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRefPubMed Lomas ALBJ, Leonardi-Bee J, Bath‐Hextall FJBJ (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRefPubMed
24.
Zurück zum Zitat Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthetic Surg 5(1):3–10CrossRef Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthetic Surg 5(1):3–10CrossRef
25.
Zurück zum Zitat Loftus TJ, Shickel B, Ozrazgat-Baslanti T, Ren Y, Glicksberg BS, Cao J, Bihorac A (2022) Artificial intelligence-enabled decision support in nephrology. Nat Rev Nephrol 18(7):452–465CrossRefPubMedPubMedCentral Loftus TJ, Shickel B, Ozrazgat-Baslanti T, Ren Y, Glicksberg BS, Cao J, Bihorac A (2022) Artificial intelligence-enabled decision support in nephrology. Nat Rev Nephrol 18(7):452–465CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Liang H, Tsui BY, Ni H, Valentim CC, Baxter SL, Liu G, Xia H (2019) Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med 25(3):433–438CrossRefPubMed Liang H, Tsui BY, Ni H, Valentim CC, Baxter SL, Liu G, Xia H (2019) Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med 25(3):433–438CrossRefPubMed
27.
Zurück zum Zitat Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N (2021) Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 13:1–17CrossRef Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N (2021) Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 13:1–17CrossRef
28.
Zurück zum Zitat Hincapié MA, Gallego JC, Gempeler A, Piñeros JA, Nasner D, Escobar MF (2020) Implementation and usefulness of telemedicine during the COVID-19 pandemic: a scoping review. J Prim care Community Health 11:2150132720980612CrossRefPubMedPubMedCentral Hincapié MA, Gallego JC, Gempeler A, Piñeros JA, Nasner D, Escobar MF (2020) Implementation and usefulness of telemedicine during the COVID-19 pandemic: a scoping review. J Prim care Community Health 11:2150132720980612CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep Learn Nat 521(7553):436–444 LeCun Y, Bengio Y, Hinton G (2015) Deep Learn Nat 521(7553):436–444
30.
Zurück zum Zitat Asbeck SM, Imo BU, Okobi OE, Dorcé-Medard J (2023) The dermatologic care needs of a Rural Community in South Florida. Int J Environ Res Public Health 20(4):3071CrossRefPubMedPubMedCentral Asbeck SM, Imo BU, Okobi OE, Dorcé-Medard J (2023) The dermatologic care needs of a Rural Community in South Florida. Int J Environ Res Public Health 20(4):3071CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, Coz D (2020) A deep learning system for differential diagnosis of skin diseases. Nat Med 26(6):900–908CrossRefPubMed Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, Coz D (2020) A deep learning system for differential diagnosis of skin diseases. Nat Med 26(6):900–908CrossRefPubMed
32.
Zurück zum Zitat Ameri A (2020) A deep learning approach to skin cancer detection in dermoscopy images. J Biomedical Phys Eng 10(6):801CrossRef Ameri A (2020) A deep learning approach to skin cancer detection in dermoscopy images. J Biomedical Phys Eng 10(6):801CrossRef
33.
Zurück zum Zitat SM J, Aravindan PM, C., Appavu R (2023) Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimedia Tools Appl 82(10):15763–15778CrossRef SM J, Aravindan PM, C., Appavu R (2023) Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimedia Tools Appl 82(10):15763–15778CrossRef
34.
Zurück zum Zitat Serrano C, Lazo M, Serrano A, Toledo-Pastrana T, Barros-Tornay R, Acha B (2022) Clinically inspired skin lesion classification through the detection of dermoscopic criteria for basal cell carcinoma. J Imaging 8(7):197CrossRefPubMedPubMedCentral Serrano C, Lazo M, Serrano A, Toledo-Pastrana T, Barros-Tornay R, Acha B (2022) Clinically inspired skin lesion classification through the detection of dermoscopic criteria for basal cell carcinoma. J Imaging 8(7):197CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Sharma AN, Shwe S, Mesinkovska NA (2022) Current state of machine learning for non-melanoma skin cancer. Arch Dermatol Res 314(4):325–327CrossRefPubMed Sharma AN, Shwe S, Mesinkovska NA (2022) Current state of machine learning for non-melanoma skin cancer. Arch Dermatol Res 314(4):325–327CrossRefPubMed
36.
Zurück zum Zitat Du-Harpur X, Arthurs C, Ganier C, Woolf R, Laftah Z, Lakhan M, Lynch MD (2021) Clinically relevant vulnerabilities of deep machine learning systems for skin cancer diagnosis. J Invest Dermatol 141(4):916CrossRefPubMedPubMedCentral Du-Harpur X, Arthurs C, Ganier C, Woolf R, Laftah Z, Lakhan M, Lynch MD (2021) Clinically relevant vulnerabilities of deep machine learning systems for skin cancer diagnosis. J Invest Dermatol 141(4):916CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, Haenssle HA (2019) Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatology 155(10):1135–1141CrossRefPubMedPubMedCentral Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, Haenssle HA (2019) Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatology 155(10):1135–1141CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Montilla IH, Carthy M, Aguilar T, A., Medela A (2023) Dermatology Image Quality Assessment (DIQA): Artificial intelligence to ensure the clinical utility of images for remote consultations and clinical trials. J Am Acad Dermatol 88(4):927–928CrossRef Montilla IH, Carthy M, Aguilar T, A., Medela A (2023) Dermatology Image Quality Assessment (DIQA): Artificial intelligence to ensure the clinical utility of images for remote consultations and clinical trials. J Am Acad Dermatol 88(4):927–928CrossRef
Metadaten
Titel
The utility and reliability of a deep learning algorithm as a diagnosis support tool in head & neck non-melanoma skin malignancies
verfasst von
Alfonso Medela
Alberto Sabater
Ignacio Hernández Montilla
Taig MacCarthy
Andy Aguilar
Carlos Miguel Chiesa-Estomba
Publikationsdatum
06.09.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Oto-Rhino-Laryngology
Print ISSN: 0937-4477
Elektronische ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-024-08951-z

Neu im Fachgebiet HNO

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Kopf-Hals-Tumore: Lebensqualität von Langzeitüberlebenden

Eine aktuelle Studie des Universitätsklinikums Erlangen verdeutlicht, dass Langzeitüberlebende von Kopf-Hals-Tumoren eine geringe Symptomlast aufweisen. Die am häufigsten auftretenden Beschwerden – Müdigkeit, Angstzustände, Schläfrigkeit und Schmerzen – sollten von den behandelnden Ärztinnen und Ärzten gezielt adressiert werden.

Schlafapnoe – es lag an einer verbogenen Nasenscheidewand

Tritt eine obstruktive Schlafapnoe vor allem in einer bestimmten Seitenlage auf, kann dies auch an einem verbogenen Nasenseptum liegen. Eine Septumplastik lindert die Beschwerden mitunter deutlich.

Das alles ändert sich für Arztpraxen in 2025

  • 31.12.2024
  • EBM
  • Nachrichten

Ab Januar greifen jede Menge Neuerungen – ob im EBM, Arbeits- und Steuerrecht oder bei der digitalen Vernetzung. Darunter einige Verbesserungen, aber teils auch Mehraufwand. „Same procedure as every year?“ – Ein Überblick.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.