Skip to main content
Erschienen in: Journal of Nuclear Cardiology 2/2019

26.02.2019 | Original Article

The utility of 82Rb PET for myocardial viability assessment: Comparison with perfusion-metabolism 82Rb-18F-FDG PET

verfasst von: Jonathan B. Moody, PhD, Keri M. Hiller, CNMT, RT(N), Benjamin C. Lee, PhD, Alexis Poitrasson-Rivière, PhD, James R. Corbett, MD, Richard L. Weinberg, MD, Venkatesh L. Murthy, MD, PhD, Edward P. Ficaro, PhD

Erschienen in: Journal of Nuclear Cardiology | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

82Rb kinetics may distinguish scar from viable but dysfunctional (hibernating) myocardium. We sought to define the relationship between 82Rb kinetics and myocardial viability compared with conventional 82Rb and 18F-fluorodeoxyglucose (FDG) perfusion-metabolism PET imaging.

Methods

Consecutive patients (N = 120) referred for evaluation of myocardial viability prior to revascularization and normal volunteers (N = 37) were reviewed. Dynamic 82Rb 3D PET data were acquired at rest. 18F-FDG 3D PET data were acquired after metabolic preparation using a standardized hyperinsulinemic-euglycemic clamp. 82Rb kinetic parameters K1, k2, and partition coefficient (KP) were estimated by compartmental modeling

Results

Segmental 82Rb k2 and KP differed significantly between scarred and hibernating segments identified by Rb-FDG perfusion-metabolism (k2, 0.42 ± 0.25 vs. 0.22 ± 0.09 min−1; P < .0001; KP, 1.33 ± 0.62 vs. 2.25 ± 0.98 ml/g; P < .0001). As compared to Rb-FDG analysis, segmental Rb KP had a c-index, sensitivity and specificity of 0.809, 76% and 84%, respectively, for distinguishing hibernating and scarred segments. Segmental k2 performed similarly, but with lower specificity (75%, P < .001)

Conclusions

In this pilot study, 82Rb kinetic parameters k2 and KP, which are readily estimated using a compartmental model commonly used for myocardial blood flow, reliably differentiated hibernating myocardium and scar. Further study is necessary to evaluate their clinical utility for predicting benefit after revascularization.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Anavekar NS, Chareonthaitawee P, Narula J, Gersh BJ. Revascularization in patients with severe left ventricular dysfunction: is the assessment of viability still viable? J Am Coll Cardiol 2016;67(24):2874-87.CrossRefPubMed Anavekar NS, Chareonthaitawee P, Narula J, Gersh BJ. Revascularization in patients with severe left ventricular dysfunction: is the assessment of viability still viable? J Am Coll Cardiol 2016;67(24):2874-87.CrossRefPubMed
2.
Zurück zum Zitat Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007;32(7):375-410.CrossRefPubMed Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007;32(7):375-410.CrossRefPubMed
3.
Zurück zum Zitat Allman KC. Noninvasive assessment myocardial viability: Current status and future directions. J Nucl Cardiol 2013;20(4):618-37.CrossRefPubMed Allman KC. Noninvasive assessment myocardial viability: Current status and future directions. J Nucl Cardiol 2013;20(4):618-37.CrossRefPubMed
4.
Zurück zum Zitat Schelbert HR. Positron emission tomography of the heart: Methodology, findings in the normal and the diseased heart, and clinical applications. In: Phelps ME, editor. PET: Molecular Imaging and Its Biological Applications. 1st ed. New York: Springer-Verlag; 2004. p. 389-508.CrossRef Schelbert HR. Positron emission tomography of the heart: Methodology, findings in the normal and the diseased heart, and clinical applications. In: Phelps ME, editor. PET: Molecular Imaging and Its Biological Applications. 1st ed. New York: Springer-Verlag; 2004. p. 389-508.CrossRef
5.
Zurück zum Zitat Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest 1985;75(4):1131-1137. Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest 1985;75(4):1131-1137.
6.
Zurück zum Zitat Goldstein RA. Rubidium-82 kinetics after coronary occlusion: temporal relation of net myocardial accumulation and viability in open-chested dogs. J Nucl Med 1986;27(9):1456-61.PubMed Goldstein RA. Rubidium-82 kinetics after coronary occlusion: temporal relation of net myocardial accumulation and viability in open-chested dogs. J Nucl Med 1986;27(9):1456-61.PubMed
7.
Zurück zum Zitat Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991;32(1):1-9.PubMed Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991;32(1):1-9.PubMed
8.
Zurück zum Zitat Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993;22(4):984-97.CrossRefPubMed Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993;22(4):984-97.CrossRefPubMed
9.
Zurück zum Zitat vom Dahl J, Muzik O, Wolfe ER, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation 1996;93(2):238-45.CrossRef vom Dahl J, Muzik O, Wolfe ER, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation 1996;93(2):238-45.CrossRef
10.
Zurück zum Zitat Stankewicz MA, Mansour CS, Eisner RL, et al. Myocardial viability assessment by PET: 82Rb defect washout does not predict the results of metabolic-perfusion mismatch. J Nucl Med 2005;46(10):1602-9.PubMed Stankewicz MA, Mansour CS, Eisner RL, et al. Myocardial viability assessment by PET: 82Rb defect washout does not predict the results of metabolic-perfusion mismatch. J Nucl Med 2005;46(10):1602-9.PubMed
11.
Zurück zum Zitat Chien DT, Bravo P, Higuchi T, Merrill J, Bengel FM. Washout of 82Rb as a marker of impaired tissue integrity, obtained by list-mode cardiac PET/CT: relationship with perfusion/metabolism patterns of myocardial viability. Eur J Nucl Med Mol Imaging 2011;38(8):1507-15.CrossRefPubMed Chien DT, Bravo P, Higuchi T, Merrill J, Bengel FM. Washout of 82Rb as a marker of impaired tissue integrity, obtained by list-mode cardiac PET/CT: relationship with perfusion/metabolism patterns of myocardial viability. Eur J Nucl Med Mol Imaging 2011;38(8):1507-15.CrossRefPubMed
12.
Zurück zum Zitat Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J. Nucl. Cardiol 2015;22(5):935-51.CrossRefPubMed Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J. Nucl. Cardiol 2015;22(5):935-51.CrossRefPubMed
13.
Zurück zum Zitat Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33(7):1255-62.PubMed Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33(7):1255-62.PubMed
14.
Zurück zum Zitat Lee BC, Moody JB, Poitrasson-Rivière A, et al. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018;23:1-12. Lee BC, Moody JB, Poitrasson-Rivière A, et al. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018;23:1-12.
15.
Zurück zum Zitat Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14(4):455-65.CrossRefPubMed Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14(4):455-65.CrossRefPubMed
16.
Zurück zum Zitat Porenta G, Kuhle W, Czernin J, et al. Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 1992;33(9):1628-36.PubMed Porenta G, Kuhle W, Czernin J, et al. Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 1992;33(9):1628-36.PubMed
17.
Zurück zum Zitat FDG-PET/CT Technical Committee. FDG-PET/CT as an Imaging Biomarker Measuring Response to Cancer Therapy. Quantitative Imaging Biomarker Alliance, Version 1.05, Publicly Reviewed Version. QIBA; 2013. https://rsna.org/qiba. Accessed Feb 17, 2016. FDG-PET/CT Technical Committee. FDG-PET/CT as an Imaging Biomarker Measuring Response to Cancer Therapy. Quantitative Imaging Biomarker Alliance, Version 1.05, Publicly Reviewed Version. QIBA; 2013. https://​rsna.​org/​qiba. Accessed Feb 17, 2016.
18.
Zurück zum Zitat Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29(9):1257-66.CrossRefPubMed Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29(9):1257-66.CrossRefPubMed
19.
Zurück zum Zitat Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 2002;105(4):539-42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 2002;105(4):539-42.CrossRefPubMed
20.
Zurück zum Zitat Moody JB, Murthy VL, Lee BC, Corbett JR, Ficaro EP. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imaging 2015;34(11):2343-53.CrossRefPubMed Moody JB, Murthy VL, Lee BC, Corbett JR, Ficaro EP. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imaging 2015;34(11):2343-53.CrossRefPubMed
21.
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009.CrossRef Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009.CrossRef
22.
Zurück zum Zitat Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol 2008;294(1):E15-26. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol 2008;294(1):E15-26.
24.
Zurück zum Zitat Millman KJ, Aivazis M. Python for scientists and engineers. Comput Sci Eng 2011;13(2):9-12.CrossRef Millman KJ, Aivazis M. Python for scientists and engineers. Comput Sci Eng 2011;13(2):9-12.CrossRef
25.
Zurück zum Zitat Paternostro G, Camici PG, Lammertsma AA, et al. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest 1996;98(9):2094-9.CrossRefPubMedPubMedCentral Paternostro G, Camici PG, Lammertsma AA, et al. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest 1996;98(9):2094-9.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Nesterov SV, Deshayes E, Sciagrà R, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: results of RUBY-10 study. JACC Cardiovasc Imaging 2014;7(11):1119-27.CrossRefPubMedPubMedCentral Nesterov SV, Deshayes E, Sciagrà R, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: results of RUBY-10 study. JACC Cardiovasc Imaging 2014;7(11):1119-27.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Klein R, Renaud JM, Ziadi MC, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.CrossRefPubMed Klein R, Renaud JM, Ziadi MC, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.CrossRefPubMed
28.
Zurück zum Zitat Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32(10):1950-7.PubMed Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32(10):1950-7.PubMed
29.
Zurück zum Zitat Budinger TF, Yano Y, Huesman RH, et al. Positron emission tomography of the heart. Physiologist 1983;26(1):31-4.PubMed Budinger TF, Yano Y, Huesman RH, et al. Positron emission tomography of the heart. Physiologist 1983;26(1):31-4.PubMed
30.
Zurück zum Zitat Mullani NA, Goldstein RA, Gould KL, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24(10):898-906.PubMed Mullani NA, Goldstein RA, Gould KL, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24(10):898-906.PubMed
31.
Zurück zum Zitat Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34(11):1765-74.CrossRefPubMed Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34(11):1765-74.CrossRefPubMed
32.
Zurück zum Zitat Prior JO, Allenbach G, Valenta I, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39(6):1037-47.CrossRefPubMedPubMedCentral Prior JO, Allenbach G, Valenta I, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39(6):1037-47.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: what does it mean? J Nucl Med 1999;40(9):1499-502.PubMed Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: what does it mean? J Nucl Med 1999;40(9):1499-502.PubMed
34.
Zurück zum Zitat Johnson NP, Sdringola S, Gould KL. Partial volume correction incorporating Rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. J Nucl Cardiol 2011;18(2):247-58.CrossRefPubMed Johnson NP, Sdringola S, Gould KL. Partial volume correction incorporating Rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. J Nucl Cardiol 2011;18(2):247-58.CrossRefPubMed
35.
Zurück zum Zitat Renaud JM, Yip K, Guimond J, et al. Characterization of 3D PET systems for accurate quantification of myocardial blood flow. J Nucl Med 2017;58(1):103-9.CrossRefPubMed Renaud JM, Yip K, Guimond J, et al. Characterization of 3D PET systems for accurate quantification of myocardial blood flow. J Nucl Med 2017;58(1):103-9.CrossRefPubMed
36.
Zurück zum Zitat AlJaroudi W, Jaber WA, Grimm RA, Marwick T, Cerqueira MD. Alternative methods for the assessment of mechanical dyssynchrony using phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. Int J Cardiovasc Imaging 2012;28(6):1385-94.CrossRefPubMed AlJaroudi W, Jaber WA, Grimm RA, Marwick T, Cerqueira MD. Alternative methods for the assessment of mechanical dyssynchrony using phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. Int J Cardiovasc Imaging 2012;28(6):1385-94.CrossRefPubMed
Metadaten
Titel
The utility of 82Rb PET for myocardial viability assessment: Comparison with perfusion-metabolism 82Rb-18F-FDG PET
verfasst von
Jonathan B. Moody, PhD
Keri M. Hiller, CNMT, RT(N)
Benjamin C. Lee, PhD
Alexis Poitrasson-Rivière, PhD
James R. Corbett, MD
Richard L. Weinberg, MD
Venkatesh L. Murthy, MD, PhD
Edward P. Ficaro, PhD
Publikationsdatum
26.02.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Nuclear Cardiology / Ausgabe 2/2019
Print ISSN: 1071-3581
Elektronische ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-019-01615-0

Weitere Artikel der Ausgabe 2/2019

Journal of Nuclear Cardiology 2/2019 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.