Skip to main content
Erschienen in: Insights into Imaging 1/2020

Open Access 01.12.2020 | Original Article

The value of 2D speckle-tracking strain echocardiography in evaluating the relationship between carotid elasticity and left ventricular systolic function in patients with diabetic nephropathy

verfasst von: Xiuyun Li, Hongju Kou, Yanyan Dong, Chao Zheng, Pengfei Wang, Maosheng Xu, Chunpeng Zou, Liang Wang

Erschienen in: Insights into Imaging | Ausgabe 1/2020

Abstract

Objective

To investigate the relationship between the elasticity of the carotid artery and the LV (left ventricle) systolic function in patients with diabetic nephropathy (DN) by using two-dimensional speckle-tracking strain echocardiography (2D-STE).

Methods

DN patients (n = 108) and control subjects (n = 112), all of whom underwent echocardiography and carotid ultrasound. Analysis of LV GLS (global longitudinal strain) from the apical two-chamber (2C), three-chamber (3C), and four-chamber (4C) views. Meanwhile, the circumferential strain (CS) of the carotid artery was obtained from the view of the short-axis right common carotid artery. The differences between the two groups were compared, and a correlation analysis between CS and GLS was performed.

Results

The 4CGLS, 2CGLS, 3CGLS, and CS of the DN group were significantly lower at significant levels in contrast to the control group (p < 0.05). There was a significantly positive correlation of CS with 4CGLS, 2CGLS, and 3CGLS in all subjects (r = 0.809, p = 0.000; r = 0.830, p = 0.000; r = 0.830, p = 0.000, respectively).

Conclusion

2D-STE is a relatively new technique for assessing the mechanical characteristics of the carotid artery in patients with DN. Reduced values of CS correlate with reduced LV systolic function as evaluated by strain measurements, which can predict the risk of systolic dysfunction of LV.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
2C
Two-chamber
2D-STE
Two-dimensional speckle-tracking strain echocardiography
3C
Three-chamber
4C
Four-chamber
BMI
Body mass index
CAD
Coronary artery disease
CCA
Common carotid artery
CS
Circumferential strain
CVD
Cardiovascular disease
DBP
Diastolic blood pressure
DM
Diabetes mellitus
DN
Diabetic nephropathy
EDV
End-diastolic flow velocity
FBG
Fasting blood glucose
GLS
Global longitudinal strain
HbA1c
Glycated hemoglobin A1c
HDL-C
High-density lipoprotein cholesterol
HR
Heart rate
IMT
Intima-media thickness
LDL-C
Low-density lipoprotein cholesterol
LV
Left ventricle
PI
Pulsatility index
PSV
Peak flow velocity
RI
Resistance index
SBP
Systolic blood pressure
TC
Total cholesterol
TG
Triglycerides

Key points

• Increased arterial stiffness measured by 2D-STE is indicative of a potential link between vascular changes and LV systolic function.
• Reduced CS values correlate with reduced LV systolic function evaluated by strain measurements.
• 2D-STE can detect the relationship between CS and GLS in the early stage.

Introduction

Diabetes mellitus (DM) is a serious threat to human health and life. It can lead to a variety of complications [13]. Among all the complications of DM, cardiovascular complications are important causes of disability and death [4], and diabetic nephropathy (DN) is the major cause of end-stage renal failure. Renal disease is also an important cause of cardiovascular disease (CVD), including sudden cardiac death and stroke [5, 6]. Thus, DN patients have a high risk of CVD, which is identified as the leading reason of death in these patients.
It was reported that stiffness in arteries was a major and robust independent predictor of CVD [7, 8]. Arterial stiffness was recommended as a proof of damage to the target organs in the European guidelines for the hypertension diagnosis and treatment [9]. There are several methods of evaluating arterial stiffness, such as vascular catheterization, ultrasound, magnetic resonance imaging [10], and arterial tonometry [11]. 2D-STE (two-dimensional speckle-tracking strain echocardiography) is a useful technology that has been developed in recent years [12, 13]. It is an accurate, angle-independent, and noninvasive method for evaluating cardiac function [14]. It can be used to obtain myocardial deformation by tracking intramyocardial speckles, accordingly calculating the strain (S) and strain rate (Sr) of the myocardium [15]. This strain-based imaging technique has been shown to have clinical utility in a variety of settings [16]. It can predict severe coronary artery disease (CAD) in women with normal LV function [17]. It can be used to identify the ischemic etiology of LV systolic dysfunction [18]. The study by Atici et al. showed that GLS (global longitudinal strain) evaluated through 2D-STE is a potential method for predicting CAD in patients with non-ST-segment elevation myocardial infarction [19]. 2D-STE can assess the impairment of left atrial phasic function in patients with heart failure with mid-range ejection fraction (EF) [20]. At present, this technique is also used to evaluate the elasticity of the carotid artery, and the obtained strain has a good correlation with carotid elasticity [21]. The aortic circumferential strain and the rate of strain estimated by 2D strain imaging enable accurate and simple evaluation of the stiffness of the aorta [22]. However, the relationship between the elasticity of the carotid artery and the systolic function of the LV remains unclear. The study aimed to examine the association between carotid elasticity and LV systolic function in DN patients using 2D-STE.

Materials and methods

Patients

Between May 2017 and November 2019, 139 patients newly diagnosed with DN participated in this study. DN was diagnosed according to the Tervaert criteria [23]. The exclusion criteria were as follows: ①patients with congenital vascular disease and ② patients with vascular diseases secondary to hypertension, hyperlipidemia, cardiac dysfunction, or endocrine diseases. The final study consisted of 108 patients (62 women, 46 men, mean age 50.16 ± 12.30 years). Meanwhile, 112 healthy individuals served as a control group (67 women, 45 men, mean age 47.41 ± 9.72 years). All subjects did not suffer from any CVD or associated risk factors that were known. Coffee and alcohol were not administered within 24 h before examination.
All of the above candidates received detailed clinical evaluation and biochemical tests. Detailed clinical evaluation items included medical history, height, weight, BMI (body mass index), blood pressure, and cardiovascular examination. Biochemical test items included FBG (fasting blood glucose), HbA1c (hemoglobin A1c), TG (triglycerides), TC (total cholesterol), HDL-C (high-density lipoprotein cholesterol), and LDL-C (low-density lipoprotein cholesterol).

Carotid ultrasound

Carotid ultrasound was performed with a GE Vivid E9 (GE Healthcare) ultrasound system, equipped with a 10-L probe (frequency ranged 7.5~10 MHz) and M4S probe (frequency ranged 1.5~5.0 MHz). Digitized images of the right common carotid artery (CCA) were obtained by 10 L probe. Carotid IMT (intima-media thickness) was measured in right CCA at end diastole, 1.0 cm proximal to the carotid bulb [24, 25]. Plaque formation was defined as IMT ≥ 1.2 mm [26]. Patients with presented plaque were excluded from this study. Color Doppler ultrasonography was used to detect PSV (peak flow velocity), EDV (end-diastolic flow velocity), PI (pulsatility index), and RI (resistance index) of the carotid artery. Then, an inflatable balloon containing 100 ml saline was used to increase the surface contact and improve the acoustic window, and the equipment was switched to the M4S probe. Dynamic images of the short axis of the carotid artery were obtained and stored for up to three consecutive cardiac cycles.

Echocardiography

Echocardiography was also performed with the GE Vivid E9 equipped with an M4S probe. Conventional 2-D and Doppler echocardiography were carried out to exclude any unconfirmed structural disease of the heart including LV hypertrophy, valvular disease, pericardial disease, or cardiomyopathy. EF was obtained by biplane Simpson method [27]. Cine-loop clips of three consecutive cardiac cycles were obtained from the apical 4C, 2C, and 3C view.

STE imaging analysis

All clips were acquired at 50–70 frames/s. These images were exported from the ultrasound equipment and then analyzed offline with the EchoPAC software (GE Healthcare, IL, USA). The procedure began with manually distinguishing the endocardial at a single frame at end systole, with a region of interest that covers of the myocardial wall thickness (Figs. 1 and 2). The EchoPAC software was used to automatically calculate the strain, including 4CGLS, 2CGLS, and 3CGLS. The circumferential strain (CS) of CCA was also obtained (Figs. 3 and 4).

Statistical evaluation

Statistical evaluations were carried out using SPSS V 17.0 (SPSS Inc., Chicago, USA). Mean ± SD was used to express quantitative data. Comparisons among the two groups were accomplished with the t test of the independent samples. The relationship between CS of the CCA and 4CGLS, 2CGLS, and 3CGLS of the LV was assessed by Pearson’s correlation analysis. P < 0.05 was deemed a statistically significant difference.

Results

Detailed clinical evaluation versus biochemical test

In the DN group, FBG and glycated HbA1c in the DN group were much higher in contrast to the control group (p = 0.000). No significant variation was observed in terms of age, BMI, SBP (systolic blood pressure), DBP (diastolic blood pressure), HR (heart rate), TG, TC, HDL-C, and LDL-C among the two groups (p > 0.05) (Table 1).
Table 1
Comparison of clinical evaluation and biochemical test
Variables
Group
p
Control (n = 112)
DN (n = 108)
AGE (years)
47.41 ± 9.72
50.16 ± 12.30
0.063
BMI (kg/m2)
20.82 ± 0.95
21.05 ± 0.95
0.073
SBP (mmHg)
117.11 ± 4.33
118.13 ± 4.89
0.102
DBP (mmHg)
72.13 ± 3.72
72.95 ± 3.93
0.114
HR (bpm)
76.13 ± 5.72
75.04 ± 5.19
0.138
FPG (mmol/l)
5.32 ± 0.41
11.58 ± 2.20
0.000
HbA1c (%)
5.05 ± 0.43
10.38 ± 2.92
0.000
TG (mmol/l)
1.36 ± 0.29
1.31 ± 0.37
0.264
TC (mmol/l)
4.40 ± 0.31
4.44 ± 0.33
0.389
HDL-C (mmol/l)
1.36 ± 0.19
1.32 ± 0.26
0.239
LDL-C (mmol/l)
2.51 ± 0.27
2.48 ± 0.29
0.371
BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, HR heart rate, FBG fasting blood glucose, HbA1c glycated hemoglobin A1c, TG triglycerides, TC total cholesterol, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol

The carotid ultrasound

There was no significant difference in IMT, PSV, EDV, PI, and RI between the two groups (p > 0.05) (Table 2).
Table 2
Comparison of conventional ultrasound parameters
Variables
Group
p
Control (n = 112)
DN (n = 108)
IMT (mm)
0.73 ± 0.12
0.76 ± 0.13
0.061
PSV (cm/s)
70.48 ± 9.90
67.74 ± 12.26
0.069
EDV (cm/s)
18.67 ± 3.70
18.74 ± 4.08
0.900
PI
1.16 ± 0.11
1.13 ± 0.10
0.058
RI
0.73 ± 0.04
0.72 ± 0.04
0.071
EF (%)
64.41 ± 2.95
63.78 ± 2.35
0.084
IMT intima-media thickness, PSV peak flow velocity, EDV end-diastolic flow velocity, PI pulsatility index, RI resistance index, EF ejection fraction

STE imaging analysis

The CS in the DN group was lower at the significant levels in contrast to the control group (p = 0.000). The 4C GLS, 2C GLS, and 3C GLS in the DN group were lower at significant levels in contrast to the control group (p = 0.000, p = 0.000, p = 0.000) (Table 3).
Table 3
Comparison of STE parameters
Variables
Group
p
Control (n = 112)
DN (n = 108)
CS (%)
7.71 ± 1.64
4.94 ± 1.45
0.000
4CGLS (%)
− 20.73 ± 1.77
− 17.06 ± 2.92
0.000
2CGLS (%)
− 21.49 ± 1.97
− 16.91 ± 2.98
0.000
3CGLS (%)
− 21.05 ± 2.19
− 16.24 ± 2.55
0.000
CS circumferential strain, GLS global longitudinal strain, 4C four-chamber, 2C two-chamber, 3C three-chamber
The correlation coefficient among CS and 4CGLS was 0.809 (p = 0.000). The correlation coefficient among CS and 2CGLS was 0.830 (p = 0.000). The correlation coefficient among CS and 3CGLS was 0.830 (p = 0.000) (Fig. 5).

Discussion

Atherosclerosis includes structural and functional abnormalities. Carotid IMT has long been regarded as a good indicator of structural abnormalities and can be used to evaluate atherosclerosis [2426]. Functional abnormalities include a reduction in the distensibility coefficient, an increase in stiffness index, and an incremental increase in elastic modulus [28]. Functional abnormalities occur earlier than structural changes do [28]. 2D-STE has been used to evaluate aortic stiffness [22]. The strain and strain rate obtained from 2D-STE are widely used in the evaluation of myocardial and vascular wall deformation [15, 21, 22]. In this study, the carotid CS in the DN group were lower at significant levels in contrast to the control group, but the difference in IMT among the two groups was not significant. This indicated that the carotid artery stiffness increased in patients with DN, and the functional changes occurred earlier than structural changes, which was consistent with previous studies [28].
The myocardium is divided into three layers: shallow, middle, and deep. The shallow layer is left-handed spiral, the middle layer is circular, and the deep layer is right-handed spiral. The special structure of the myocardial fiber determines that the myocardium has radial contraction, longitudinal contraction, circumferential movement, and rotational movement [29]. Longitudinal contraction of myocardial fibers plays an important role in cardiac movement and has important clinical significance [30]. It was reported that the GLS of the myocardium can be used to evaluate the early systolic function of the heart [3032]. Radwan and Hussein found a positive correlation at significant levels between GLS and EF, and measurement of GLS using 2D-STE to be accurate and sensitive tool in severe CAD prediction [33]. The study by Shiino et al. showed that GLS is more sensitive than conventional LV EF to detect early improvement in systolic function of the LV after severe aortic valve stenosis patients underwent transcatheter aortic valve implantation and preserved LV systolic function [34]. In our study, the GLS in the DN group were lower at significant levels in contrast to the control group, which indicated that the systolic function of LV was impaired in patients with DN.
Some studies have shown a close relation between arterial stiffness to left ventricular diastolic function [8, 35]. However, there are only few reports on the association between left ventricular systolic function and arterial stiffness. In this study, the outcomes revealed that there was a positive correlation at significant levels between the CS of the carotid artery and the GLS of LV, which indicated that the greater the stiffness of the carotid artery, the greater the impairment of cardiac systolic function. This reason may be that the carotid artery belongs to the elastic artery and is rich in elastic fibers. When LV ejection occurs, the intra-arterial pressure increases, the large artery dilates passively, and the volume increases, so the deformation in the circumferential direction is increased. When arterial stiffness increases, the mean elasticity decreases, the burden of the LV contraction is increased, and the systolic function is impaired.
In conclusion, increased arterial stiffness measured by 2D-STE is indicative of a potential link between vascular changes and LV systolic function. When the CS decreases, the GLS is impaired. The CS has a certain predictive effect on the early reduction of LV systolic function. 2D-STE can detect the relationship between CS and GLS in the early stage.

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (No. 81670777), the Natural Science Foundation of Zhejiang Province (No. LY18H310010), the Natural Science Foundation of Zhejiang Province (No. LZ19H020001), and Key Medical Science and Technology Plan of Zhejiang Province (No. WKJ-ZJ-1625). The authors also thank their colleagues in the Department of Endocrinology for their cooperations.
This study was conducted as per the Declaration of Helsinki. The approval to the protocol was done by our institutional Research Ethics Committee and each regulation was followed. Each patient was made aware of the procedures and then consent was obtained from them.
Each participant gave a signed consent to publish.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149PubMedCrossRef Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149PubMedCrossRef
4.
Zurück zum Zitat Wang J, Wang F, Liu S, Zhou M, Zhang L, Zhao M (2017) Reduced kidney function, albuminuria, and risks for all-cause and cardiovascular mortality in China: a population-based cohort study. BMC Nephrol 18:188PubMedPubMedCentralCrossRef Wang J, Wang F, Liu S, Zhou M, Zhang L, Zhao M (2017) Reduced kidney function, albuminuria, and risks for all-cause and cardiovascular mortality in China: a population-based cohort study. BMC Nephrol 18:188PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081 Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081
6.
Zurück zum Zitat Sasso FC, Chiodini P, Carbonara O et al (2012) High cardiovascular risk in patients with type 2 diabetic nephropathy: the predictive role of albuminuria and glomerular filtration rate. The NID-2 Prospective Cohort Study. Nephrol Dial Transplant 27:2269–2274PubMedCrossRef Sasso FC, Chiodini P, Carbonara O et al (2012) High cardiovascular risk in patients with type 2 diabetic nephropathy: the predictive role of albuminuria and glomerular filtration rate. The NID-2 Prospective Cohort Study. Nephrol Dial Transplant 27:2269–2274PubMedCrossRef
7.
Zurück zum Zitat Laurent S, Katsahian S, Fassot C et al (2003) Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 34:1203–1206PubMedCrossRef Laurent S, Katsahian S, Fassot C et al (2003) Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 34:1203–1206PubMedCrossRef
8.
Zurück zum Zitat Chow B, Rabkin SW (2015) The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis. Heart Fail Rev 20:291–303PubMedCrossRef Chow B, Rabkin SW (2015) The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis. Heart Fail Rev 20:291–303PubMedCrossRef
9.
Zurück zum Zitat Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:1462–1536PubMed Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:1462–1536PubMed
10.
Zurück zum Zitat Groenink M, de Roos A, Mulder BJ, Spaan JA, van der Wall EE (1998) Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol 82:203–208PubMedCrossRef Groenink M, de Roos A, Mulder BJ, Spaan JA, van der Wall EE (1998) Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol 82:203–208PubMedCrossRef
11.
Zurück zum Zitat Mackenzie IS, Wilkinson IB, Cockcroft JR (2002) Assessment of arterial stiffness in clinical practice. QJM 95:67–74PubMedCrossRef Mackenzie IS, Wilkinson IB, Cockcroft JR (2002) Assessment of arterial stiffness in clinical practice. QJM 95:67–74PubMedCrossRef
12.
Zurück zum Zitat Chan J, Shiino K, Obonyo NG et al (2017) Left ventricular global strain analysis by two-dimensional speckle-tracking echocardiography: the learning curve. J Am Soc Echocardiogr 30:1081–1090PubMedCrossRef Chan J, Shiino K, Obonyo NG et al (2017) Left ventricular global strain analysis by two-dimensional speckle-tracking echocardiography: the learning curve. J Am Soc Echocardiogr 30:1081–1090PubMedCrossRef
13.
14.
Zurück zum Zitat Ryczek R, Krzesinski P, Krzywicki P, Smurzynski P, Cwetsch A (2011) Two-dimensional longitudinal strain for the assessment of the left ventricular systolic function as compared with conventional echocardiographic methods in patients with acute coronary syndromes. Kardiol Pol 69:357–362PubMed Ryczek R, Krzesinski P, Krzywicki P, Smurzynski P, Cwetsch A (2011) Two-dimensional longitudinal strain for the assessment of the left ventricular systolic function as compared with conventional echocardiographic methods in patients with acute coronary syndromes. Kardiol Pol 69:357–362PubMed
15.
Zurück zum Zitat Moreira HT, Nwabuo CC, Armstrong AC et al (2017) Reference ranges and regional patterns of left ventricular strain and strain rate using two-dimensional speckle-tracking echocardiography in a healthy middle-aged black and white population: the CARDIA study. J Am Soc Echocardiogr 30:647–658PubMedPubMedCentralCrossRef Moreira HT, Nwabuo CC, Armstrong AC et al (2017) Reference ranges and regional patterns of left ventricular strain and strain rate using two-dimensional speckle-tracking echocardiography in a healthy middle-aged black and white population: the CARDIA study. J Am Soc Echocardiogr 30:647–658PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69:1043–1056PubMedCrossRef Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69:1043–1056PubMedCrossRef
17.
Zurück zum Zitat Hubbard RT, Arciniegas Calle MC, Barros-Gomes S et al (2017) 2-dimensional speckle tracking echocardiography predicts severe coronary artery disease in women with normal left ventricular function: a case-control study. BMC Cardiovasc Disord 17:231PubMedPubMedCentralCrossRef Hubbard RT, Arciniegas Calle MC, Barros-Gomes S et al (2017) 2-dimensional speckle tracking echocardiography predicts severe coronary artery disease in women with normal left ventricular function: a case-control study. BMC Cardiovasc Disord 17:231PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Kowalczyk E, Kasprzak JD, Wejner-Mik P, Wdowiak-Okrojek K, Lipiec P (2019) Diagnostic utility of two-dimensional speckle tracking echocardiography to identify ischemic etiology of left ventricular systolic dysfunction. Echocardiography 36:702–706PubMedCrossRef Kowalczyk E, Kasprzak JD, Wejner-Mik P, Wdowiak-Okrojek K, Lipiec P (2019) Diagnostic utility of two-dimensional speckle tracking echocardiography to identify ischemic etiology of left ventricular systolic dysfunction. Echocardiography 36:702–706PubMedCrossRef
19.
Zurück zum Zitat Atici A, Barman HA, Durmaz E et al (2019) Predictive value of global and territorial longitudinal strain imaging in detecting significant coronary artery disease in patients with myocardial infarction without persistent ST-segment elevation. Echocardiography 36:512–520PubMedCrossRef Atici A, Barman HA, Durmaz E et al (2019) Predictive value of global and territorial longitudinal strain imaging in detecting significant coronary artery disease in patients with myocardial infarction without persistent ST-segment elevation. Echocardiography 36:512–520PubMedCrossRef
20.
Zurück zum Zitat Al Saikhan L, Hughes AD, Chung WS, Alsharqi M, Nihoyannopoulos P (2019) Left atrial function in heart failure with mid-range ejection fraction differs from that of heart failure with preserved ejection fraction: a 2D speckle-tracking echocardiographic study. Eur Heart J Cardiovasc Imaging 20:279–290PubMedCrossRef Al Saikhan L, Hughes AD, Chung WS, Alsharqi M, Nihoyannopoulos P (2019) Left atrial function in heart failure with mid-range ejection fraction differs from that of heart failure with preserved ejection fraction: a 2D speckle-tracking echocardiographic study. Eur Heart J Cardiovasc Imaging 20:279–290PubMedCrossRef
21.
Zurück zum Zitat Zou C, Jiao Y, Li X, Zheng C, Chen M, Hu C (2015) Role of ultrasonography in the evaluation of correlation between strain and elasticity of common carotid artery in patients with diabetic nephropathy. Int J Clin Exp Med 8:17765–17772PubMedPubMedCentral Zou C, Jiao Y, Li X, Zheng C, Chen M, Hu C (2015) Role of ultrasonography in the evaluation of correlation between strain and elasticity of common carotid artery in patients with diabetic nephropathy. Int J Clin Exp Med 8:17765–17772PubMedPubMedCentral
22.
Zurück zum Zitat Oishi Y, Mizuguchi Y, Miyoshi H, Iuchi A, Nagase N, Oki T (2008) A novel approach to assess aortic stiffness related to changes in aging using a two-dimensional strain imaging. Echocardiography 25:941–945PubMedCrossRef Oishi Y, Mizuguchi Y, Miyoshi H, Iuchi A, Nagase N, Oki T (2008) A novel approach to assess aortic stiffness related to changes in aging using a two-dimensional strain imaging. Echocardiography 25:941–945PubMedCrossRef
23.
Zurück zum Zitat Tervaert TW, Mooyaart AL, Amann K et al (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–563CrossRef Tervaert TW, Mooyaart AL, Amann K et al (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–563CrossRef
24.
Zurück zum Zitat Li R, Cai J, Tegeler C, Sorlie P, Metcalf PA, Heiss G (1996) Reproducibility of extracranial carotid atherosclerotic lesions assessed by B-mode ultrasound: the Atherosclerosis Risk in Communities Study. Ultrasound Med Biol 22:791–799PubMedCrossRef Li R, Cai J, Tegeler C, Sorlie P, Metcalf PA, Heiss G (1996) Reproducibility of extracranial carotid atherosclerotic lesions assessed by B-mode ultrasound: the Atherosclerosis Risk in Communities Study. Ultrasound Med Biol 22:791–799PubMedCrossRef
25.
Zurück zum Zitat Nambi V, Chambless L, He M et al (2012) Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study. Eur Heart J 33:183–190PubMedCrossRef Nambi V, Chambless L, He M et al (2012) Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study. Eur Heart J 33:183–190PubMedCrossRef
26.
Zurück zum Zitat Johnson HM, Turke TL, Grossklaus M et al (2011) Effects of an office-based carotid ultrasound screening intervention. J Am Soc Echocardiogr 24:738–747PubMedPubMedCentralCrossRef Johnson HM, Turke TL, Grossklaus M et al (2011) Effects of an office-based carotid ultrasound screening intervention. J Am Soc Echocardiogr 24:738–747PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Polak JF, Alessi-Chinetti JM, Estes JM, Patel AR (2015) Left ventricular ejection time derived from the common carotid artery Doppler waveform: association with left ventricular ejection fraction and prediction of heart failure. J Ultrasound Med 34:1237–1242PubMedCrossRef Polak JF, Alessi-Chinetti JM, Estes JM, Patel AR (2015) Left ventricular ejection time derived from the common carotid artery Doppler waveform: association with left ventricular ejection fraction and prediction of heart failure. J Ultrasound Med 34:1237–1242PubMedCrossRef
28.
Zurück zum Zitat Rhee MY, Chang HK, Kim SK (2007) Intima-media thickness and arterial stiffness of carotid artery in Korean patients with Behcet’s disease. J Korean Med Sci 22:387–392PubMedPubMedCentralCrossRef Rhee MY, Chang HK, Kim SK (2007) Intima-media thickness and arterial stiffness of carotid artery in Korean patients with Behcet’s disease. J Korean Med Sci 22:387–392PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Price DJ, Wallbridge DR, Stewart MJ (2000) Tissue Doppler imaging: current and potential clinical applications. Heart 84(Suppl 2):II11–II18PubMedPubMedCentral Price DJ, Wallbridge DR, Stewart MJ (2000) Tissue Doppler imaging: current and potential clinical applications. Heart 84(Suppl 2):II11–II18PubMedPubMedCentral
30.
Zurück zum Zitat Triantafyllou KA, Karabinos E, Kalkandi H, Kranidis AI, Babalis D (2009) Clinical implications of the echocardiographic assessment of left ventricular long axis function. Clin Res Cardiol 98:521–532PubMedCrossRef Triantafyllou KA, Karabinos E, Kalkandi H, Kranidis AI, Babalis D (2009) Clinical implications of the echocardiographic assessment of left ventricular long axis function. Clin Res Cardiol 98:521–532PubMedCrossRef
31.
Zurück zum Zitat Shanks M, Thompson RB, Paterson ID et al (2013) Systolic and diastolic function assessment in fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J Am Soc Echocardiogr 26:1407–1414PubMedCrossRef Shanks M, Thompson RB, Paterson ID et al (2013) Systolic and diastolic function assessment in fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J Am Soc Echocardiogr 26:1407–1414PubMedCrossRef
32.
Zurück zum Zitat Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T (2008) The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. J Am Soc Echocardiogr 21:1138–1144PubMedCrossRef Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T (2008) The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. J Am Soc Echocardiogr 21:1138–1144PubMedCrossRef
33.
Zurück zum Zitat Radwan H, Hussein E (2017) Value of global longitudinal strain by two dimensional speckle tracking echocardiography in predicting coronary artery disease severity. Egypt Heart J 69:95–101PubMedCrossRef Radwan H, Hussein E (2017) Value of global longitudinal strain by two dimensional speckle tracking echocardiography in predicting coronary artery disease severity. Egypt Heart J 69:95–101PubMedCrossRef
34.
Zurück zum Zitat Shiino K, Yamada A, Scalia GM et al (2019) Early changes of myocardial function after transcatheter aortic valve implantation using multilayer strain speckle tracking echocardiography. Am J Cardiol 123:956–960PubMedCrossRef Shiino K, Yamada A, Scalia GM et al (2019) Early changes of myocardial function after transcatheter aortic valve implantation using multilayer strain speckle tracking echocardiography. Am J Cardiol 123:956–960PubMedCrossRef
35.
Zurück zum Zitat Vriz O, Bossone E, Bettio M, Pavan D, Carerj S, Antonini-Canterin F (2011) Carotid artery stiffness and diastolic function in subjects without known cardiovascular disease. J Am Soc Echocardiogr 24:915–921PubMedCrossRef Vriz O, Bossone E, Bettio M, Pavan D, Carerj S, Antonini-Canterin F (2011) Carotid artery stiffness and diastolic function in subjects without known cardiovascular disease. J Am Soc Echocardiogr 24:915–921PubMedCrossRef
Metadaten
Titel
The value of 2D speckle-tracking strain echocardiography in evaluating the relationship between carotid elasticity and left ventricular systolic function in patients with diabetic nephropathy
verfasst von
Xiuyun Li
Hongju Kou
Yanyan Dong
Chao Zheng
Pengfei Wang
Maosheng Xu
Chunpeng Zou
Liang Wang
Publikationsdatum
01.12.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2020
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-020-00897-0

Weitere Artikel der Ausgabe 1/2020

Insights into Imaging 1/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.