Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 4/2010

01.12.2010

The Vestibular System Mediates Sensation of Low-Frequency Sounds in Mice

verfasst von: Gareth P. Jones, Victoria A. Lukashkina, Ian J. Russell, Andrei N. Lukashkin

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

The mammalian inner ear contains sense organs responsible for detecting sound, gravity and linear acceleration, and angular acceleration. Of these organs, the cochlea is involved in hearing, while the sacculus and utriculus serve to detect linear acceleration. Recent evidence from birds and mammals, including humans, has shown that the sacculus, a hearing organ in many lower vertebrates, has retained some of its ancestral acoustic sensitivity. Here we provide not only more evidence for the retained acoustic sensitivity of the sacculus, but we also found that acoustic stimulation of the sacculus has behavioral significance in mammals. We show that the amplitude of an elicited auditory startle response is greater when the startle stimuli are presented simultaneously with a low-frequency masker, including masker tones that are outside the sensitivity range of the cochlea. Masker-enhanced auditory startle responses were also observed in otoconia-absent Nox3 mice, which lack otoconia but have no obvious cochlea pathology. However, masker enhancement was not observed in otoconia-absent Nox3 mice if the low-frequency masker tones were outside the sensitivity range of the cochlea. This last observation confirms that otoconial organs, most likely the sacculus, contribute to behavioral responses to low-frequency sounds in mice.
Literatur
Zurück zum Zitat Bickford RG, Jacobson JL, Cody DTR (1964) Nature of average evoked potentials to sound and other stimuli in man. Ann NY Acad Sci 112:204–218CrossRefPubMed Bickford RG, Jacobson JL, Cody DTR (1964) Nature of average evoked potentials to sound and other stimuli in man. Ann NY Acad Sci 112:204–218CrossRefPubMed
Zurück zum Zitat Burian M, Gstoettner W (1988) Projection of primary vestibular afferent fibres to the cochlear nucleus in the guinea pig. Neurosci Lett 84:13–17CrossRefPubMed Burian M, Gstoettner W (1988) Projection of primary vestibular afferent fibres to the cochlear nucleus in the guinea pig. Neurosci Lett 84:13–17CrossRefPubMed
Zurück zum Zitat Carlson S, Willott JF (2001) Modulation of the Acoustic Startle Response by background sound in C57BL/6J mice. In: Willott JF (ed) The handbook of mouse auditory research from behaviour to molecular biology. CRC Press LLC, pp 82–90 Carlson S, Willott JF (2001) Modulation of the Acoustic Startle Response by background sound in C57BL/6J mice. In: Willott JF (ed) The handbook of mouse auditory research from behaviour to molecular biology. CRC Press LLC, pp 82–90
Zurück zum Zitat Cazals Y, Aran JM, Erre JP, Guilhaume A, Aurousseau C (1983) Vestibular acoustic reception in the guinea pig: a saccular function? Acta Otolaryngol 95:211–217CrossRefPubMed Cazals Y, Aran JM, Erre JP, Guilhaume A, Aurousseau C (1983) Vestibular acoustic reception in the guinea pig: a saccular function? Acta Otolaryngol 95:211–217CrossRefPubMed
Zurück zum Zitat Didier A, Cazals Y (1989) Acoustic responses recorded from the saccular bundle on the eighth nerve of the guinea pig. Hear Res 37:123–128CrossRefPubMed Didier A, Cazals Y (1989) Acoustic responses recorded from the saccular bundle on the eighth nerve of the guinea pig. Hear Res 37:123–128CrossRefPubMed
Zurück zum Zitat Ferber-Viart C, Dubreuil C, Duclaux R (1999) Vestibular evoked myogenic potentials in humans a review. Acta Otolaryngol 119:6–15PubMed Ferber-Viart C, Dubreuil C, Duclaux R (1999) Vestibular evoked myogenic potentials in humans a review. Acta Otolaryngol 119:6–15PubMed
Zurück zum Zitat Koch M (1999) The neurobiology of startle. Prog Neurobio 59:107–128CrossRef Koch M (1999) The neurobiology of startle. Prog Neurobio 59:107–128CrossRef
Zurück zum Zitat Legan KP, Lukashkina VA, Goodyear RJ, Kossl M, Russell IJ, Richardson GP (2000) A targeted deletion in a-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–285CrossRefPubMed Legan KP, Lukashkina VA, Goodyear RJ, Kossl M, Russell IJ, Richardson GP (2000) A targeted deletion in a-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–285CrossRefPubMed
Zurück zum Zitat Mccue MP, Guinan JJ Jr (1994) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070PubMed Mccue MP, Guinan JJ Jr (1994) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070PubMed
Zurück zum Zitat Mccue MP, Guinan JJ Jr (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572PubMed Mccue MP, Guinan JJ Jr (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572PubMed
Zurück zum Zitat Müller M, Hünerbein K, Hoidis S, Smolders J (2005) A physiological place–frequency map of the cochlea. Hear Res 202:63–73CrossRefPubMed Müller M, Hünerbein K, Hoidis S, Smolders J (2005) A physiological place–frequency map of the cochlea. Hear Res 202:63–73CrossRefPubMed
Zurück zum Zitat Murofushi T, Iwasaki S, Takai Y, Takegoshi H (2005) Sound-evoked neurogenic responses with short latency: are they of vestibular origin? Clin Neurophysiol 116:401–405CrossRefPubMed Murofushi T, Iwasaki S, Takai Y, Takegoshi H (2005) Sound-evoked neurogenic responses with short latency: are they of vestibular origin? Clin Neurophysiol 116:401–405CrossRefPubMed
Zurück zum Zitat Nyby JG (2001) Auditory communication among adults. In: Willott JF (ed) The handbook of mouse auditory research from behaviour to molecular biology. CRC Press LLC, pp 3–18 Nyby JG (2001) Auditory communication among adults. In: Willott JF (ed) The handbook of mouse auditory research from behaviour to molecular biology. CRC Press LLC, pp 3–18
Zurück zum Zitat Paffenholz R, Bergstrom R, Pasutto F, Wabnitz P, Munroe R, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti J, Bergstrom D (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491CrossRefPubMed Paffenholz R, Bergstrom R, Pasutto F, Wabnitz P, Munroe R, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti J, Bergstrom D (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491CrossRefPubMed
Zurück zum Zitat Parham K, Willott J (1988) Acoustic startle response in young and aging C57BL/6J and CBA/J mice. Behav Neurosci 102:881–886CrossRefPubMed Parham K, Willott J (1988) Acoustic startle response in young and aging C57BL/6J and CBA/J mice. Behav Neurosci 102:881–886CrossRefPubMed
Zurück zum Zitat Popper A, Platt C, Saidel W (1982) Acoustic function in the fish ear. Trends Neurosci 5:276–280CrossRef Popper A, Platt C, Saidel W (1982) Acoustic function in the fish ear. Trends Neurosci 5:276–280CrossRef
Zurück zum Zitat Schanbacher A, Koch M, Pilz PK, Schnitzler HU (1996) Lesions of the amygdala do not affect the enhancement of the acoustic startle response by background noise. Physiol Behav 60:1341–1346CrossRefPubMed Schanbacher A, Koch M, Pilz PK, Schnitzler HU (1996) Lesions of the amygdala do not affect the enhancement of the acoustic startle response by background noise. Physiol Behav 60:1341–1346CrossRefPubMed
Zurück zum Zitat Sheykholeslami K, Kaga K (2002) The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies. Hear Res 165:62–67CrossRefPubMed Sheykholeslami K, Kaga K (2002) The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies. Hear Res 165:62–67CrossRefPubMed
Zurück zum Zitat Stein B, Carpenter M (1967) Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey. Am J Anat 120:281–317CrossRef Stein B, Carpenter M (1967) Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey. Am J Anat 120:281–317CrossRef
Zurück zum Zitat Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibres in the mouse. J Neurophysiol 93:557–569CrossRefPubMed Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibres in the mouse. J Neurophysiol 93:557–569CrossRefPubMed
Zurück zum Zitat Todd N (2001) Evidence for a behavioral significance of saccular acoustic sensitivity in humans. J Acoust Soc Am 110:380–390CrossRefPubMed Todd N (2001) Evidence for a behavioral significance of saccular acoustic sensitivity in humans. J Acoust Soc Am 110:380–390CrossRefPubMed
Zurück zum Zitat Wang S, Young Y (2003) Vestibular evoked myogenic potentials using simultaneous binaural acoustic stimulation. Hear Res 185:43–48CrossRefPubMed Wang S, Young Y (2003) Vestibular evoked myogenic potentials using simultaneous binaural acoustic stimulation. Hear Res 185:43–48CrossRefPubMed
Zurück zum Zitat Wit H, Bleeker J, Mulder H (1984) Responses of pigeon vestibular nerve fibers to sound and vibration with audio frequencies. J Acoust Soc Am 75:202–208CrossRefPubMed Wit H, Bleeker J, Mulder H (1984) Responses of pigeon vestibular nerve fibers to sound and vibration with audio frequencies. J Acoust Soc Am 75:202–208CrossRefPubMed
Zurück zum Zitat Yeomans J, Li L, Scott B, Frankland P (2002) Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci Biobehav Rev 26:1–11CrossRefPubMed Yeomans J, Li L, Scott B, Frankland P (2002) Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci Biobehav Rev 26:1–11CrossRefPubMed
Zurück zum Zitat Young E, Fernández C, Goldberg J (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360CrossRefPubMed Young E, Fernández C, Goldberg J (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360CrossRefPubMed
Metadaten
Titel
The Vestibular System Mediates Sensation of Low-Frequency Sounds in Mice
verfasst von
Gareth P. Jones
Victoria A. Lukashkina
Ian J. Russell
Andrei N. Lukashkin
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 4/2010
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-010-0230-7

Weitere Artikel der Ausgabe 4/2010

Journal of the Association for Research in Otolaryngology 4/2010 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.