Skip to main content
Erschienen in: Archives of Virology 7/2020

30.04.2020 | Original Article

The Vif protein of caprine arthritis encephalitis virus inhibits interferon production

verfasst von: Yali Fu, Dong Lu, Yanxin Su, Heng Chi, Jiashun Wang, Jinhai Huang

Erschienen in: Archives of Virology | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Abstract

Caprine arthritis-encephalitis (CAE) is a chronic progressive infectious disease caused by caprine arthritis-encephalitis virus (CAEV) that seriously threatens the goat industry. Chronic infection and life-long multi-tissue inflammation are the typical features of the disease. Innate antiviral immunity is essential for the host defense system that rapidly recognizes and eliminates invading viruses. Interferon β (IFN-β) is important for innate immunity and regulates immunity against a broad spectrum of viruses. To investigate the details of the IFN-β response to CAEV infection, the effects of six viral proteins and the molecular mechanisms by which they affect IFN-β production were analyzed. Overexpression of DU and Vif promote virus proliferation and inhibit the production of IFN-β. qRT-PCR and luciferase reporter assays showed that overexpression of Vif inhibits the expression of luciferase under the control of the ISRE, NF-κB or IFN-β promoter but does not affect the expression of IFN-β activated by IRF3, indicating that Vif negatively regulates IFN-β production by affecting upstream signal transduction of IRF3. Amino acids 149-164 of Vif were found to be necessary for the inhibitory effect of IFN-β production. Our results indicate that CAEV evades surveillance and clearance by intracellular innate immunity by downregulating IFN-β production.
Literatur
1.
Zurück zum Zitat O’Sullivan BM, Eaves FW, Baxendell SA, Rowan KJ (1978) Leucoencephalomyelitis of goat kids. Aust Vet J 54:479–483PubMedCrossRef O’Sullivan BM, Eaves FW, Baxendell SA, Rowan KJ (1978) Leucoencephalomyelitis of goat kids. Aust Vet J 54:479–483PubMedCrossRef
2.
Zurück zum Zitat Adams DS, Crawford TB, Klevjer-Anderson P (1980) A pathogenetic study of the early connective tissue lesions of viral caprine arthritis–encephalitis. Am J Pathol 99:257–278PubMedPubMedCentral Adams DS, Crawford TB, Klevjer-Anderson P (1980) A pathogenetic study of the early connective tissue lesions of viral caprine arthritis–encephalitis. Am J Pathol 99:257–278PubMedPubMedCentral
3.
Zurück zum Zitat Crawford TB, Adams DS, Cheevers WP, Cork LC (1980) Chronic arthritis in goats caused by a retrovirus. Science 207:997–999PubMedCrossRef Crawford TB, Adams DS, Cheevers WP, Cork LC (1980) Chronic arthritis in goats caused by a retrovirus. Science 207:997–999PubMedCrossRef
4.
Zurück zum Zitat Lamara A, Fieni F, Chatagnon G, Larrat M, Dubreil L, Chebloune Y (2013) Caprine arthritis encephalitis virus (CAEV) replicates productively in cultured epididymal cells from goats. Comp Immunol Microbiol Infect Dis 36:397–404PubMedCrossRef Lamara A, Fieni F, Chatagnon G, Larrat M, Dubreil L, Chebloune Y (2013) Caprine arthritis encephalitis virus (CAEV) replicates productively in cultured epididymal cells from goats. Comp Immunol Microbiol Infect Dis 36:397–404PubMedCrossRef
5.
Zurück zum Zitat Li Y, Zhou F, Li X, Wang J, Zhao X, Huang J (2013) Development of TaqMan-based qPCR method for detection of caprine arthritis-encephalitis virus (CAEV) infection. Arch Virol 158:2135–2141PubMedCrossRefPubMedCentral Li Y, Zhou F, Li X, Wang J, Zhao X, Huang J (2013) Development of TaqMan-based qPCR method for detection of caprine arthritis-encephalitis virus (CAEV) infection. Arch Virol 158:2135–2141PubMedCrossRefPubMedCentral
6.
Zurück zum Zitat Crawford TB, Adams DS (1981) Caprine arthritis–encephalitis: clinical features and presence of antibody in selected goat populations. J Am Vet Med Assoc 178:713–719PubMed Crawford TB, Adams DS (1981) Caprine arthritis–encephalitis: clinical features and presence of antibody in selected goat populations. J Am Vet Med Assoc 178:713–719PubMed
7.
Zurück zum Zitat Tageldin MH, Johnson EH, Al-Busaidi RM, Al-Habsi KR, Al-Habsi SS (2012) Serological evidence of caprine arthritis-encephalitis virus (CAEV) infection in indigenous goats in the Sultanate of Oman. Trop Anim Health Prod 44:1–3PubMedCrossRef Tageldin MH, Johnson EH, Al-Busaidi RM, Al-Habsi KR, Al-Habsi SS (2012) Serological evidence of caprine arthritis-encephalitis virus (CAEV) infection in indigenous goats in the Sultanate of Oman. Trop Anim Health Prod 44:1–3PubMedCrossRef
8.
Zurück zum Zitat Tu PA, Shiu JS, Lee SH, Pang VF, Wang DC, Wang PH (2017) Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis–encephalitis virus (CAEV) infection. J Virol Methods 243:98–104PubMedCrossRef Tu PA, Shiu JS, Lee SH, Pang VF, Wang DC, Wang PH (2017) Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis–encephalitis virus (CAEV) infection. J Virol Methods 243:98–104PubMedCrossRef
9.
Zurück zum Zitat Michiels R, Van Mael E, Quinet C, Welby S, Cay AB, De Regge N (2018) Seroprevalence and risk factors related to small ruminant lentivirus infections in Belgian sheep and goats. Prev Vet Med 151:13–20PubMedCrossRef Michiels R, Van Mael E, Quinet C, Welby S, Cay AB, De Regge N (2018) Seroprevalence and risk factors related to small ruminant lentivirus infections in Belgian sheep and goats. Prev Vet Med 151:13–20PubMedCrossRef
10.
Zurück zum Zitat Adedeji AO, Barr B, Gomez-Lucia E, Murphy B (2013) A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease. Viruses 5:2005–2018PubMedCrossRefPubMedCentral Adedeji AO, Barr B, Gomez-Lucia E, Murphy B (2013) A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease. Viruses 5:2005–2018PubMedCrossRefPubMedCentral
11.
Zurück zum Zitat Hess JL, Pyper JM, Clements JE (1986) Nucleotide sequence and transcriptional activity of the caprine arthritis–encephalitis virus long terminal repeat. J Virol 60:385–393PubMedCrossRefPubMedCentral Hess JL, Pyper JM, Clements JE (1986) Nucleotide sequence and transcriptional activity of the caprine arthritis–encephalitis virus long terminal repeat. J Virol 60:385–393PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Barros SC, Andresdottir V, Fevereiro M (2005) Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences. Arch Virol 150:201–213PubMedCrossRef Barros SC, Andresdottir V, Fevereiro M (2005) Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences. Arch Virol 150:201–213PubMedCrossRef
13.
Zurück zum Zitat Oskarsson T, Hreggvidsdottir HS, Agnarsdottir G, Matthiasdottir S, Ogmundsdottir MH, Jonsson SR, Georgsson G, Ingvarsson S, Andresson OS, Andresdottir V (2007) Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence. J Virol 81:4052–4057PubMedCrossRefPubMedCentral Oskarsson T, Hreggvidsdottir HS, Agnarsdottir G, Matthiasdottir S, Ogmundsdottir MH, Jonsson SR, Georgsson G, Ingvarsson S, Andresson OS, Andresdottir V (2007) Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence. J Virol 81:4052–4057PubMedCrossRefPubMedCentral
14.
Zurück zum Zitat L’Homme Y, Leboeuf A, Arsenault J, Fras M (2015) Identification and characterization of an emerging small ruminant lentivirus circulating recombinant form (CRF). Virology 475:159–171PubMedCrossRef L’Homme Y, Leboeuf A, Arsenault J, Fras M (2015) Identification and characterization of an emerging small ruminant lentivirus circulating recombinant form (CRF). Virology 475:159–171PubMedCrossRef
15.
Zurück zum Zitat Valas S, Benoit C, Baudry C, Perrin G, Mamoun RZ (2000) Variability and immunogenicity of caprine arthritis–encephalitis virus surface glycoprotein. J Virol 74:6178–6185PubMedCrossRefPubMedCentral Valas S, Benoit C, Baudry C, Perrin G, Mamoun RZ (2000) Variability and immunogenicity of caprine arthritis–encephalitis virus surface glycoprotein. J Virol 74:6178–6185PubMedCrossRefPubMedCentral
16.
Zurück zum Zitat Harmache A, Russo P, Guiguen F, Vitu C, Vignoni M, Bouyac M, Hieblot C, Pepin M, Vigne R, Suzan M (1996) Requirement of caprine arthritis encephalitis virus vif gene for in vivo replication. Virology 224:246–255PubMedCrossRef Harmache A, Russo P, Guiguen F, Vitu C, Vignoni M, Bouyac M, Hieblot C, Pepin M, Vigne R, Suzan M (1996) Requirement of caprine arthritis encephalitis virus vif gene for in vivo replication. Virology 224:246–255PubMedCrossRef
17.
Zurück zum Zitat Schoborg RV, Saltarelli MJ, Clements JE (1994) A Rev protein is expressed in caprine arthritis encephalitis virus (CAEV)-infected cells and is required for efficient viral replication. Virology 202:1–15PubMedCrossRef Schoborg RV, Saltarelli MJ, Clements JE (1994) A Rev protein is expressed in caprine arthritis encephalitis virus (CAEV)-infected cells and is required for efficient viral replication. Virology 202:1–15PubMedCrossRef
18.
Zurück zum Zitat Korb J, Travnicek M, Riman J (1976) The oncornavirus maturation process: quantitative correlation between morphological changes and conversion of genomic virion RNA. Intervirology 7:211–224PubMedCrossRef Korb J, Travnicek M, Riman J (1976) The oncornavirus maturation process: quantitative correlation between morphological changes and conversion of genomic virion RNA. Intervirology 7:211–224PubMedCrossRef
19.
Zurück zum Zitat Lamara A, Fieni F, Mselli-Lakhal L, Chatagnon G, Bruyas JF, Tainturier D, Battut I, Fornazero C, Chebloune Y (2002) Early embryonic cells from in vivo-produced goat embryos transmit the caprine arthritis-encephalitis virus (CAEV). Theriogenology 58:1153–1163PubMedCrossRef Lamara A, Fieni F, Mselli-Lakhal L, Chatagnon G, Bruyas JF, Tainturier D, Battut I, Fornazero C, Chebloune Y (2002) Early embryonic cells from in vivo-produced goat embryos transmit the caprine arthritis-encephalitis virus (CAEV). Theriogenology 58:1153–1163PubMedCrossRef
20.
Zurück zum Zitat Lamara A, Fieni F, Mselli-Lakhal L, Tainturier D, Chebloune Y (2001) Efficient replication of caprine arthritis-encephalitis virus in goat granulosa cells. Virus Res 79:165–172PubMedCrossRef Lamara A, Fieni F, Mselli-Lakhal L, Tainturier D, Chebloune Y (2001) Efficient replication of caprine arthritis-encephalitis virus in goat granulosa cells. Virus Res 79:165–172PubMedCrossRef
21.
Zurück zum Zitat Cardinaux L, Zahno ML, Deubelbeiss M, Zanoni R, Vogt HR, Bertoni G (2013) Virological and phylogenetic characterization of attenuated small ruminant lentivirus isolates eluding efficient serological detection. Vet Microbiol 162:572–581PubMedCrossRef Cardinaux L, Zahno ML, Deubelbeiss M, Zanoni R, Vogt HR, Bertoni G (2013) Virological and phylogenetic characterization of attenuated small ruminant lentivirus isolates eluding efficient serological detection. Vet Microbiol 162:572–581PubMedCrossRef
22.
Zurück zum Zitat Blacklaws BA (2012) Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 35:259–269PubMedCrossRef Blacklaws BA (2012) Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 35:259–269PubMedCrossRef
23.
Zurück zum Zitat Jarczak J, Kaba J, Reczynska D, Bagnicka E (2016) Impaired expression of cytokines as a result of viral infections with an emphasis on small ruminant lentivirus infection in goats. Viruses 8(186):1–12CrossRefPubMedCentral Jarczak J, Kaba J, Reczynska D, Bagnicka E (2016) Impaired expression of cytokines as a result of viral infections with an emphasis on small ruminant lentivirus infection in goats. Viruses 8(186):1–12CrossRefPubMedCentral
24.
Zurück zum Zitat Medin CL, Rothman AL (2006) Cell type-specific mechanisms of interleukin-8 induction by dengue virus and differential response to drug treatment. J Infect Dis 193:1070–1077PubMedCrossRef Medin CL, Rothman AL (2006) Cell type-specific mechanisms of interleukin-8 induction by dengue virus and differential response to drug treatment. J Infect Dis 193:1070–1077PubMedCrossRef
25.
Zurück zum Zitat Tanji T, Ip YT (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26:193–198PubMedCrossRef Tanji T, Ip YT (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26:193–198PubMedCrossRef
26.
Zurück zum Zitat Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, Stockinger S, Decker T, Akira S, Muller M, Kuchler K (2011) Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol 186:3104–3112PubMedCrossRef Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, Stockinger S, Decker T, Akira S, Muller M, Kuchler K (2011) Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol 186:3104–3112PubMedCrossRef
27.
Zurück zum Zitat Li J, Liu Y, Zhang X (2010) Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol 84:6472–6482PubMedCrossRefPubMedCentral Li J, Liu Y, Zhang X (2010) Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol 84:6472–6482PubMedCrossRefPubMedCentral
28.
Zurück zum Zitat Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44PubMedCrossRef Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44PubMedCrossRef
29.
Zurück zum Zitat Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, Iwai K, Dikic I, Hiscott J, Lin R (2012) Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS–TRAF3 complex. Cell Host Microbe 12:211–222PubMedCrossRef Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, Iwai K, Dikic I, Hiscott J, Lin R (2012) Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS–TRAF3 complex. Cell Host Microbe 12:211–222PubMedCrossRef
30.
Zurück zum Zitat Liu X, Wang Q, Pan Y, Wang C (2015) Sensing and responding to cytosolic viruses invasions: an orchestra of kaleidoscopic ubiquitinations. Cytokine Growth Factor Rev 26:379–387PubMedCrossRef Liu X, Wang Q, Pan Y, Wang C (2015) Sensing and responding to cytosolic viruses invasions: an orchestra of kaleidoscopic ubiquitinations. Cytokine Growth Factor Rev 26:379–387PubMedCrossRef
31.
Zurück zum Zitat Thanos D, Maniatis T (1995) Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100PubMedCrossRef Thanos D, Maniatis T (1995) Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100PubMedCrossRef
32.
Zurück zum Zitat Shi P, Su Y, Li R, Liang Z, Dong S, Huang J (2019) PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res 265:57–66PubMedCrossRefPubMedCentral Shi P, Su Y, Li R, Liang Z, Dong S, Huang J (2019) PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res 265:57–66PubMedCrossRefPubMedCentral
33.
Zurück zum Zitat Cheevers WP, Beyer JC, Hotzel I (2001) Plasmid DNA encoding caprine interferon gamma inhibits antibody response to caprine arthritis-encephalitis virus (CAEV) surface protein encoded by a co-administered plasmid expressing CAEV env and tat genes. Vaccine 19:3209–3215PubMedCrossRef Cheevers WP, Beyer JC, Hotzel I (2001) Plasmid DNA encoding caprine interferon gamma inhibits antibody response to caprine arthritis-encephalitis virus (CAEV) surface protein encoded by a co-administered plasmid expressing CAEV env and tat genes. Vaccine 19:3209–3215PubMedCrossRef
34.
Zurück zum Zitat Hariya Y, Yokosawa N, Yonekura N, Kohama G, Fuji N (2013) Mumps virus can suppress the effective augmentation of HPC-induced apoptosis by IFN-gamma through disruption of IFN signaling in U937 cells. Microbiol Immunol 44:537–541CrossRef Hariya Y, Yokosawa N, Yonekura N, Kohama G, Fuji N (2013) Mumps virus can suppress the effective augmentation of HPC-induced apoptosis by IFN-gamma through disruption of IFN signaling in U937 cells. Microbiol Immunol 44:537–541CrossRef
35.
Zurück zum Zitat Peng Q, Lan X, Wang C, Ren Y, Yue N, Wang J, Zhong B, Zhu Q (2017) Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2–IRF9 and STAT2–STAT2 complex formation. Virology 507:161PubMedCrossRef Peng Q, Lan X, Wang C, Ren Y, Yue N, Wang J, Zhong B, Zhu Q (2017) Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2–IRF9 and STAT2–STAT2 complex formation. Virology 507:161PubMedCrossRef
36.
Zurück zum Zitat Murphy B, Hillman C, Castillo D, Vapniarsky N, Rowe J (2012) The presence or absence of the gamma-activated site determines IFN gamma-mediated transcriptional activation in CAEV promoters cloned from the mammary gland and joint synovium of a single CAEV-infected goat. Virus Res 163:537–545PubMedCrossRef Murphy B, Hillman C, Castillo D, Vapniarsky N, Rowe J (2012) The presence or absence of the gamma-activated site determines IFN gamma-mediated transcriptional activation in CAEV promoters cloned from the mammary gland and joint synovium of a single CAEV-infected goat. Virus Res 163:537–545PubMedCrossRef
37.
Zurück zum Zitat White-Ziegler CA, Low DA (1992) Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol 174:7003PubMedCrossRefPubMedCentral White-Ziegler CA, Low DA (1992) Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol 174:7003PubMedCrossRefPubMedCentral
38.
Zurück zum Zitat Turelli P, Guiguen F, Mornex JF, Vigne R, Querat G (1997) dUTPase-minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. J Virol 71:4522–4530PubMedCrossRefPubMedCentral Turelli P, Guiguen F, Mornex JF, Vigne R, Querat G (1997) dUTPase-minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. J Virol 71:4522–4530PubMedCrossRefPubMedCentral
39.
Zurück zum Zitat Carruth LM, Hardwick JM, Morse BA, Clements JE (1994) Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains. J Virol 68:6137–6146PubMedCrossRefPubMedCentral Carruth LM, Hardwick JM, Morse BA, Clements JE (1994) Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains. J Virol 68:6137–6146PubMedCrossRefPubMedCentral
40.
Zurück zum Zitat Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J (2019) E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1alpha protein and degrading host IKKbeta kinase. Virology 532:55–68PubMedCrossRef Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J (2019) E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1alpha protein and degrading host IKKbeta kinase. Virology 532:55–68PubMedCrossRef
41.
Zurück zum Zitat Shi P, Su Y, Li R, Zhang L, Chen C, Zhang L, Faaberg K, Huang J (2018) Dual regulation of host TRAIP post-translation and nuclear/plasma distribution by porcine reproductive and respiratory syndrome virus non-structural protein 1alpha promotes viral proliferation. Front Immunol 9:3023PubMedCrossRefPubMedCentral Shi P, Su Y, Li R, Zhang L, Chen C, Zhang L, Faaberg K, Huang J (2018) Dual regulation of host TRAIP post-translation and nuclear/plasma distribution by porcine reproductive and respiratory syndrome virus non-structural protein 1alpha promotes viral proliferation. Front Immunol 9:3023PubMedCrossRefPubMedCentral
42.
Zurück zum Zitat Pulido MR, Sáiz M (2017) Molecular mechanisms of foot-and-mouth disease virus targeting the host antiviral response. Front Cell Infect Microbiol 7:252CrossRef Pulido MR, Sáiz M (2017) Molecular mechanisms of foot-and-mouth disease virus targeting the host antiviral response. Front Cell Infect Microbiol 7:252CrossRef
43.
Zurück zum Zitat Zhang HL, Ye HQ, Liu SQ, Deng CL, Li XD, Shi PY, Zhang B (2017) West Nile virus NS1 antagonizes interferon-Î2 production by targeting RIG-I and MDA5. J Virol 91:JVI.02396-16CrossRef Zhang HL, Ye HQ, Liu SQ, Deng CL, Li XD, Shi PY, Zhang B (2017) West Nile virus NS1 antagonizes interferon-Î2 production by targeting RIG-I and MDA5. J Virol 91:JVI.02396-16CrossRef
44.
Zurück zum Zitat Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM (2008) HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373:85–97PubMedCrossRef Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM (2008) HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373:85–97PubMedCrossRef
45.
Zurück zum Zitat Park SY, Waheed AA, Zhang ZR, Freed EO, Bonifacino JS (2014) HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor. J Biol Chem 289:35102–35110PubMedCrossRefPubMedCentral Park SY, Waheed AA, Zhang ZR, Freed EO, Bonifacino JS (2014) HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor. J Biol Chem 289:35102–35110PubMedCrossRefPubMedCentral
46.
49.
Zurück zum Zitat Harmache A, Bouyac M, Audoly G, Hieblot C, Peveri P, Vigne R, Suzan M (1995) The vif gene is essential for efficient replication of caprine arthritis encephalitis virus in goat synovial membrane cells and affects the late steps of the virus replication cycle. J Virol 69:3247–3257PubMedCrossRefPubMedCentral Harmache A, Bouyac M, Audoly G, Hieblot C, Peveri P, Vigne R, Suzan M (1995) The vif gene is essential for efficient replication of caprine arthritis encephalitis virus in goat synovial membrane cells and affects the late steps of the virus replication cycle. J Virol 69:3247–3257PubMedCrossRefPubMedCentral
50.
Zurück zum Zitat Seroude V, Audoly G, Gluschankof P, Suzan M (2001) Tryptophan 95, an amino acid residue of the Caprine arthritis encephalitis virus vif protein which is essential for virus replication. Virology 280:232–242PubMedCrossRef Seroude V, Audoly G, Gluschankof P, Suzan M (2001) Tryptophan 95, an amino acid residue of the Caprine arthritis encephalitis virus vif protein which is essential for virus replication. Virology 280:232–242PubMedCrossRef
51.
Zurück zum Zitat Sauter D, Kirchhoff F (2018) Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 40:3–12PubMedCrossRef Sauter D, Kirchhoff F (2018) Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 40:3–12PubMedCrossRef
Metadaten
Titel
The Vif protein of caprine arthritis encephalitis virus inhibits interferon production
verfasst von
Yali Fu
Dong Lu
Yanxin Su
Heng Chi
Jiashun Wang
Jinhai Huang
Publikationsdatum
30.04.2020
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 7/2020
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-020-04637-z

Weitere Artikel der Ausgabe 7/2020

Archives of Virology 7/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.