Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2022

Open Access 01.12.2022 | Case report

Therapeutic bronchoscopy followed by sequential radiochemotherapy in the management of life-threatening tracheal adenoid cystic carcinoma: a case report

verfasst von: Mia Elhidsi, Jamal Zaini, Aziza Ghanie, Aida Lutfi Huswatun, Romi Beginta, Susan Hendriarini Mety, Elisna Syahruddin

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2022

Abstract

Background

Adenoid cystic carcinoma of the lung is a distinctive salivary-gland-type malignant epithelial neoplasm that rarely presents as a primary tumor of the respiratory tract. Complete surgical resection remains the treatment of choice for adenoid cystic carcinoma. We present a case of large ACC tumors that caused severe central airway obstruction and were effectively treated with therapeutic bronchoscopy followed by radiotherapy and chemotherapy.

Case presentation

A 31-year-old Malay Indonesian female patient who was a nonsmoker and had no family history of cancer was admitted to the emergency ward because of worsening breathlessness accompanied by stridor since 1 week prior. Chest computed tomography revealed segmental atelectasis of the left lung; a mass on the left main bronchus, with infiltrates in segments 1, 2, and 3 of the left lung; and consolidation in the left inferior lobe, with narrowing of the main left bronchus. Lobulated masses obstructing almost the entire distal trachea up to the carina and the entire left main bronchus were found on bronchoscopy. Owing to the large tumors causing severe central airway obstruction, the medical team decided to perform central airway mass removal through rigid bronchoscopy. A neodymium-doped yttrium-aluminum-garnet laser was used first to facilitate mass shrinkage. After the laser treatment, mechanical mass removal using a rigid scope was performed. The tracheal and carinal lumens were opened to > 50% of their diameter, with the left main bronchus lumen opened only slightly. After the treatment, the patient was stable, and no stridor was found. Adjuvant intensity-modulated radiotherapy and chemotherapy were performed after the therapeutic bronchoscopy. At the end of the entire treatment, reevaluation by thoracic computed tomography scan and bronchoscopy revealed no remaining mass.

Conclusions

In cases of nonresectable large adenoid cystic carcinoma tumors with life-threatening central airway obstruction, therapeutic bronchoscopy followed by sequential radiochemotherapy might achieve a complete response outcome.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACC
Adenoid cystic carcinoma
CT
Computed tomography
APC
Argon plasma coagulation
IMRT
Intensity-modulated radiotherapy

Background

Adenoid cystic carcinoma (ACC) of the lung is a distinctive salivary-gland-type malignant epithelial neoplasm that rarely presents as a primary tumor of the respiratory tract. It accounts for 10% of all salivary gland tumors, 1–2% of all head and neck malignancies, and < 1% of all bronchopulmonary cancers [1, 2]. However, its incidence was reported to be higher in tracheal tumors, at 15% [3]. Owing to its relatively low incidence, its clinical presentation and disease course have not yet been fully elucidated.
According to current evidence, complete surgical resection is still the treatment of choice for patients with ACC [4]. Despite the effectiveness of complete surgical resection, cases that require emergency treatment or those with large tumors involving the trachea and lungs that have ill-defined margins pose a significant challenge to surgery. Therefore, we present a case of large ACC tumors causing a life-threatening central airway obstruction that showed complete response to nonsurgical management with laser and rigid bronchoscopic debulking followed by sequential radiochemotherapy.

Case presentation

A 31-year-old Malay Indonesian female patient who was a nonsmoker and had no family history of cancer was admitted to the emergency ward with worsening breathlessness accompanied by wheezing since 1 week prior. The patient also had recurring hemoptysis, which started 2 years before and worsened in the past 6 months. Previously, she received antituberculosis treatment for 6 months, along with inhaled long-acting bronchodilator and steroid therapies. However, no clinical improvement was observed.
Upon physical examination, severe dyspnea with stridor and decreasing vesicular breath sounds in the left lung were found. Chest radiography and computed tomography (CT) performed 1 week earlier revealed a mass on the left main bronchus (Fig. 1A, E) and segmental atelectasis of the left lung (Fig. 1C), with infiltrates in segments 1, 2, and 3 of the left lung, along with consolidation in the left inferior lobe and narrowing of the main left bronchus.
The multidisciplinary medical team decided that the case was inoperable due to the large tumors, severe central airway obstruction, and large lung involvement; thus, therapeutic bronchoscopy was the best feasible treatment plan for the patient. After discussing with the patient and her family, 3 days after the patient’s admission, the medical team decided to perform bronchoscopic examination and tracheobronchial mass removal through rigid bronchoscopy. Lobulated masses obstructing almost the entire distal tracheal lumen up to the carina and the entire left main bronchus lumen were found on bronchoscopy (Fig. 2A). A neodymium-doped yttrium-aluminum-garnet laser was used first to facilitate mass shrinkage. After the laser treatment, mechanical debulking using a rigid scope was performed. Intraprocedure bleeding was managed with argon plasma coagulation (APC) through posttherapeutic bronchoscopy. The tracheal and carinal lumens were opened to > 50% of their diameter, with the left main bronchus lumen opened only slightly (Fig. 2B). After bronchoscopic mass removal, the patient was stable, and no stridor was found. The dyspnea was relieved with 96–98% peripheral oxygen saturation in room air.
Pathological examination using hematoxylin–eosin staining confirmed the presence of a tumor mass with solid islets and a cribriform structure. The tumor cells had relatively uniform and basaloid nuclei. Mitosis was rarely found. The bronchial mucosa was visible above the surface of the tumor, and no perineural invasion was found (Fig. 3A, B). The pathological diagnosis was therefore concluded to be grade 2 adenoid cystic carcinoma. Molecular or cancer-related genetic testing and immunohistochemical staining to confirm the diagnosis were not performed because of insurance limitations.
Definitive intensity-modulated radiotherapy (IMRT) targeting the tracheobronchial mass, including the distal trachea, carina, and left main bronchus as gross tumor volume (GTV), was commenced 2 weeks after the therapeutic bronchoscopy. The clinical target volume (CTV) was GTV + 1 cm, and the planning target volume was CTV + 0.5 cm. The total dose plan amounted to 60 Gy, but the radiation dose could be delivered at 40 Gy and administered in 20 fractions of 2 Gy. After 20 fractions of radiation over 4 weeks, the patient developed esophagitis and dysphagia. Positioning the patient with thermoplastic masks was difficult because of mucous hypersecretion and persistent coughing. Two weeks after the radiotherapy series, the patient received a chemotherapy regimen consisting of carboplatin with an area under the curve of 5 and paclitaxel 175 mg/m2, given three times weekly for a total of six cycles. The patient tolerated the treatment well and did not experience any toxicities.
Two months after completion of the treatment, the patient had no dyspnea. In reevaluation by chest CT scan, no mass in either lung or the mediastinum and no lymph node enlargement were visible (Fig. 1D). The trachea and main bronchi were normal (Fig. 1B, F). Bronchoscopy also revealed no mass and only slight malacia (Fig. 3C). Finally, the patient was planned to undergo routine evaluation by thoracic CT scan every 3–6 months. Figure 4 shows the patient’s treatment and follow-up timelines.

Discussion

Malignant endoluminal central airway obstruction still proves challenging for clinicians and thus requires individualized strategies with specific interventions that can be performed in a particular healthcare center. In the present case, surgery was not performed because of the tumor location and size. Previous studies have reported that surgical management of ACC tracheobronchial cases was only indicated for locoregional tumors. Complete tumor resection and negative airway margins were considered indicators of successful surgery [5]. On the other hand, nonsurgical interventions may include bronchoscopic therapy, external-beam radiotherapy, and chemotherapy [6].
In life-threatening cases, immediate-effect bronchoscopy is the modality of choice. We chose a combination of rigid scope, laser, and argon plasma coagulation in the present case. Lasers are capable of resecting and vaporizing tissues and therefore produce an excellent coagulation effect [7, 8]. The combination of laser treatment with rigid and flexible bronchoscopy has shown good performance in intraluminal mass removal [9, 10]. Rigid bronchoscopy by skilled bronchoscopists is superior to its flexible counterparts because of its large caliber and rigid tube that allow operators to access and control the airway, providing ventilation, while accommodating the laser, APC instruments, and suction simultaneously [11]. The scope barrel neatly functions as a tampon in cases of hemorrhage [12]. In the present case, tumor shrinkage by laser followed by rigid bronchoscopy debulking was proven to be safe, with no massive bleeding or airway laceration. This finding is in line with the excellent efficacy and safety of the rigid scope in airway recanalization reported in a previous study [13]. Post-laser-treatment APC was also used in our case because it has been reported to achieve good hemostasis for mucosal bleeding and to confer a minimal risk of airway perforation [14].
ACC has been reported to exhibit low radiation sensitivity, but some studies have reported good radiotherapy response [15, 16]. After the therapeutic bronchoscopy, IMRT was planned at a dose of 60 Gy to avoid the risk of complications associated with higher doses [5]. As patients in previous reports experienced esophagitis due to radiation toxicity, only 40 Gy was delivered to our patient. In this case, chemotherapy was administered after the radiotherapy. Current evidence shows that radiochemotherapy after therapeutic bronchoscopy has a good clinical outcome [17]. Several case studies have also reported that combining carboplatin and paclitaxel chemotherapy regimens with radiotherapy could be an effective option for unresectable ACC [18, 19]. For our case, follow-up examinations with serial CT scans over a posttreatment course of 5 years were planned.

Conclusion

Surgical resection is a widely recommended treatment for localized tracheal ACC. In nonresectable large ACC tumors with life-threatening central airway obstruction, therapeutic bronchoscopy may be lifesaving, and sequential radiochemotherapy after mass removal might achieve a complete response outcome.

Acknowledgements

None.

Declarations

Not applicable.
Written informed consent was obtained from the patient for the publication of this case report and any accompanying images. A copy of the written consent form is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

Literatur
1.
Zurück zum Zitat Jang S, Patel PN, Kimple RJ, McCulloch TM. Clinical outcomes and prognostic factors of adenoid cystic carcinoma of the head and neck. Anticancer Res. 2017;37:3045–52.PubMedPubMedCentral Jang S, Patel PN, Kimple RJ, McCulloch TM. Clinical outcomes and prognostic factors of adenoid cystic carcinoma of the head and neck. Anticancer Res. 2017;37:3045–52.PubMedPubMedCentral
2.
Zurück zum Zitat Mondal A, Saha DK. Primary adenoid cystic carcinoma of the lung: a clinicopathologic study. Indian J Thorac Cardiovasc Surg. 2008;24:240–3.CrossRef Mondal A, Saha DK. Primary adenoid cystic carcinoma of the lung: a clinicopathologic study. Indian J Thorac Cardiovasc Surg. 2008;24:240–3.CrossRef
3.
Zurück zum Zitat Urdaneta AI, Yu JB, Wilson LD. Population based cancer registry analysis of primary tracheal carcinoma. Am J Clin Oncol. 2011;34:32–7.CrossRef Urdaneta AI, Yu JB, Wilson LD. Population based cancer registry analysis of primary tracheal carcinoma. Am J Clin Oncol. 2011;34:32–7.CrossRef
4.
Zurück zum Zitat Gaissert HA, Grillo HC, Shadmehr MB, Shadmehr MB, Wright CD, Gokhale M, et al. Long-term survival after resection of primary adenoid cystic and squamous cell carcinoma of the trachea and carina. Ann Thorac Surg. 2004;78:1889–96.CrossRef Gaissert HA, Grillo HC, Shadmehr MB, Shadmehr MB, Wright CD, Gokhale M, et al. Long-term survival after resection of primary adenoid cystic and squamous cell carcinoma of the trachea and carina. Ann Thorac Surg. 2004;78:1889–96.CrossRef
5.
Zurück zum Zitat Gaissert HA, Grillo HC, Shadmehr MB, Wright CD, Gokhale M, Wain JC, et al. Long-term survival after resection of primary adenoid cystic and squamous cell carcinoma of the trachea and carina. Ann Thorac Surg. 2004;78:1889–96.CrossRef Gaissert HA, Grillo HC, Shadmehr MB, Wright CD, Gokhale M, Wain JC, et al. Long-term survival after resection of primary adenoid cystic and squamous cell carcinoma of the trachea and carina. Ann Thorac Surg. 2004;78:1889–96.CrossRef
6.
Zurück zum Zitat Mudambi L, Miller R, Eapen GA. Malignant central airway obstruction. J Thorac Dis. 2017;9(Suppl 10):S1087-1110.CrossRef Mudambi L, Miller R, Eapen GA. Malignant central airway obstruction. J Thorac Dis. 2017;9(Suppl 10):S1087-1110.CrossRef
7.
Zurück zum Zitat Ramser ER, Beamis JF Jr. Laser bronchoscopy. Clin Chest Med. 1995;16:415–26.CrossRef Ramser ER, Beamis JF Jr. Laser bronchoscopy. Clin Chest Med. 1995;16:415–26.CrossRef
8.
Zurück zum Zitat Bolliger CT, Sutedja TG, Strausz J, Freitag L. Therapeutic bronchoscopy with immediate effect: laser, electrocautery, argon plasma coagulation and stents. Eur Respir J. 2006;27:1258–71.CrossRef Bolliger CT, Sutedja TG, Strausz J, Freitag L. Therapeutic bronchoscopy with immediate effect: laser, electrocautery, argon plasma coagulation and stents. Eur Respir J. 2006;27:1258–71.CrossRef
9.
Zurück zum Zitat Squiers JJ, Teeter WA, Hoopman JE, Piepenbrok K, Wagner R, Ferguson R, et al. Holmium:YAG laser bronchoscopy ablation of benign and malignant airway obstructions: an 8-year experience. Lasers Med Sci. 2014;29:1437–43.CrossRef Squiers JJ, Teeter WA, Hoopman JE, Piepenbrok K, Wagner R, Ferguson R, et al. Holmium:YAG laser bronchoscopy ablation of benign and malignant airway obstructions: an 8-year experience. Lasers Med Sci. 2014;29:1437–43.CrossRef
10.
Zurück zum Zitat Venuta F, Rendina EA, De Giacomo T, Mercadante E, Francioni F, Pugliese F, et al. Nd:YAG laser resection of lung cancer invading the airway as a bridge to surgery and palliative treatment. Ann Thorac Surg. 2002;74:995–8.CrossRef Venuta F, Rendina EA, De Giacomo T, Mercadante E, Francioni F, Pugliese F, et al. Nd:YAG laser resection of lung cancer invading the airway as a bridge to surgery and palliative treatment. Ann Thorac Surg. 2002;74:995–8.CrossRef
11.
Zurück zum Zitat Shepherd RW, Radchenko C. Bronchoscopic ablation techniques in the management of lung cancer. Ann Transl Med. 2019;7:362.CrossRef Shepherd RW, Radchenko C. Bronchoscopic ablation techniques in the management of lung cancer. Ann Transl Med. 2019;7:362.CrossRef
12.
Zurück zum Zitat Gorden JA. Rigid bronchoscopy. In: Ernst A, Herth FJ, editors. Principles and practice of interventional pulmonology. New York: Springer; 2016. p. 251–95. Gorden JA. Rigid bronchoscopy. In: Ernst A, Herth FJ, editors. Principles and practice of interventional pulmonology. New York: Springer; 2016. p. 251–95.
13.
Zurück zum Zitat Vishwanath G, Madan K, Bal A, Aggarwal AN, Gupta D, Agarwal R. Rigid bronchoscopy and mechanical debulking in the management of central airway tumors: an Indian experience. J Broncholog Interv Pulmonol. 2013;20:127–33.CrossRef Vishwanath G, Madan K, Bal A, Aggarwal AN, Gupta D, Agarwal R. Rigid bronchoscopy and mechanical debulking in the management of central airway tumors: an Indian experience. J Broncholog Interv Pulmonol. 2013;20:127–33.CrossRef
14.
Zurück zum Zitat Chaddha U, Hogarth DK, Murgu S. Bronchoscopic ablative therapies for malignant central airway obstruction and peripheral lung tumors. Ann Am Thorac Soc. 2019;16:1220–9.CrossRef Chaddha U, Hogarth DK, Murgu S. Bronchoscopic ablative therapies for malignant central airway obstruction and peripheral lung tumors. Ann Am Thorac Soc. 2019;16:1220–9.CrossRef
17.
Zurück zum Zitat Jiang M, Lei Q, Lv X, Zou L, Liu J, Meng J. Clinical features and prognosis analysis of 57 patients with primary tracheal tumors. Transl Cancer Res. 2020;9:613–9.CrossRef Jiang M, Lei Q, Lv X, Zou L, Liu J, Meng J. Clinical features and prognosis analysis of 57 patients with primary tracheal tumors. Transl Cancer Res. 2020;9:613–9.CrossRef
18.
Zurück zum Zitat Suzuki T. What is the best management strategy for adenoid cystic carcinoma of the trachea? Ann Thorac Cardiovasc Surg. 2011;17:535–8.CrossRef Suzuki T. What is the best management strategy for adenoid cystic carcinoma of the trachea? Ann Thorac Cardiovasc Surg. 2011;17:535–8.CrossRef
19.
Zurück zum Zitat Högerle BA, Lasitschka F, Muley T, Bougatf N, Herfarth K, Adeberg S, et al. Primary adenoid cystic carcinoma of the trachea: clinical outcome of 38 patients after interdisciplinary treatment in a single institution. Radiat Oncol. 2019;14:117.CrossRef Högerle BA, Lasitschka F, Muley T, Bougatf N, Herfarth K, Adeberg S, et al. Primary adenoid cystic carcinoma of the trachea: clinical outcome of 38 patients after interdisciplinary treatment in a single institution. Radiat Oncol. 2019;14:117.CrossRef
Metadaten
Titel
Therapeutic bronchoscopy followed by sequential radiochemotherapy in the management of life-threatening tracheal adenoid cystic carcinoma: a case report
verfasst von
Mia Elhidsi
Jamal Zaini
Aziza Ghanie
Aida Lutfi Huswatun
Romi Beginta
Susan Hendriarini Mety
Elisna Syahruddin
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2022
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-022-03452-1

Weitere Artikel der Ausgabe 1/2022

Journal of Medical Case Reports 1/2022 Zur Ausgabe