Skip to main content
Erschienen in: European Spine Journal 12/2016

04.10.2016 | Original Article

Thoracic spine morphology of a pseudo-biped animal model (kangaroo) and comparisons with human and quadruped animals

verfasst von: Sriram Balasubramanian, James R. Peters, Lucy F. Robinson, Anita Singh, Richard W. Kent

Erschienen in: European Spine Journal | Ausgabe 12/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Based on the structural anatomy, loading condition and range of motion (ROM), no quadruped animal has been shown to accurately mimic the structure and biomechanical function of the human spine. The objective of this study is to quantify the thoracic vertebrae geometry of the kangaroo, and compare with adult human, pig, sheep, and deer.

Methods

The thoracic vertebrae (T1–T12) from whole body CT scans of ten juvenile kangaroos (ages 11–14 months) were digitally reconstructed and geometric dimensions of the vertebral bodies, endplates, pedicles, spinal canal, processes, facets and intervertebral discs were recorded. Similar data available in the literature on the adult human, pig, sheep, and deer were compared to the kangaroo. A non-parametric trend analysis was performed.

Results

Thoracic vertebral dimensions of the juvenile kangaroo were found to be generally smaller than those of the adult human and quadruped animals. The most significant (p < 0.001) correlations (Rho) found between the human and kangaroo were in vertebrae and endplate dimensions (0.951 ≤ Rho ≤ 0.963), pedicles (0.851 ≤ Rho ≤ 0.951), and inter-facet heights (0.891 ≤ Rho ≤ 0.967). The deer displayed the least similar trends across vertebral levels.

Conclusions

Similarities in thoracic spine vertebral geometry, particularly of the vertebrae, pedicles and facets may render the kangaroo a more clinically relevant human surrogate for testing spinal implants. The pseudo-biped kangaroo may also be a more suitable model for the human thoracic spine for simulating spine deformities, based on previously published similarities in biomechanical loading, posture and ROM.
Literatur
1.
Zurück zum Zitat Akbarnia BA, Cheung K, Noordeen H et al. (2013). Next Generation of Growth-Sparing Technique: Preliminary Clinical Results of a Magnetically Controlled Growing Rod (MCGR) in 14 Patients With Early Onset Scoliosis. Spine 38(8):665–70CrossRefPubMed Akbarnia BA, Cheung K, Noordeen H et al. (2013). Next Generation of Growth-Sparing Technique: Preliminary Clinical Results of a Magnetically Controlled Growing Rod (MCGR) in 14 Patients With Early Onset Scoliosis. Spine 38(8):665–70CrossRefPubMed
2.
Zurück zum Zitat Deviren V, Acaroglu E, Lee J et al (2005) Pedicle screw fixation of the thoracic spine: an in vitro biomechanical study on different configurations. Spine 30(22):2530–2537CrossRefPubMed Deviren V, Acaroglu E, Lee J et al (2005) Pedicle screw fixation of the thoracic spine: an in vitro biomechanical study on different configurations. Spine 30(22):2530–2537CrossRefPubMed
3.
Zurück zum Zitat Helgeson MD, Kang DG, Lehman RA Jr, Dmitriev AE, Luhmann SJ (2013) Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J. 13(8):957–965CrossRefPubMed Helgeson MD, Kang DG, Lehman RA Jr, Dmitriev AE, Luhmann SJ (2013) Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J. 13(8):957–965CrossRefPubMed
4.
Zurück zum Zitat Mannen EM, Anderson JT, Arnold PM, Friis EA (2015) Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. J Biomech 48(10):2060–2066CrossRefPubMed Mannen EM, Anderson JT, Arnold PM, Friis EA (2015) Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. J Biomech 48(10):2060–2066CrossRefPubMed
5.
Zurück zum Zitat McCarthy RE, Luhmann S, Lenke L, McCullough FL (2014) The shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop 34(1):1–7CrossRefPubMed McCarthy RE, Luhmann S, Lenke L, McCullough FL (2014) The shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop 34(1):1–7CrossRefPubMed
6.
Zurück zum Zitat Olgun ZD, Ahmadiadli H, Alanay A, Yazici M (2012) Vertebral body growth during growing rod instrumentation: growth preservation or stimulation? J Pediatr Orthop 32(2):184–189CrossRefPubMed Olgun ZD, Ahmadiadli H, Alanay A, Yazici M (2012) Vertebral body growth during growing rod instrumentation: growth preservation or stimulation? J Pediatr Orthop 32(2):184–189CrossRefPubMed
7.
Zurück zum Zitat Janssen MM, de Wilde RF, Kouwenhoven JW, Castelein RM (2011) Experimental animal models in scoliosis research: a review of the literature. Spine J 11(4):347–358CrossRefPubMed Janssen MM, de Wilde RF, Kouwenhoven JW, Castelein RM (2011) Experimental animal models in scoliosis research: a review of the literature. Spine J 11(4):347–358CrossRefPubMed
8.
Zurück zum Zitat Agadir M, Sevastik B, Sevastik JA, Persson A, Isberg B (1988) Induction of scoliosis in the growing rabbit by unilateral rib-growth stimulation. Spine 13(9):1065–1069CrossRefPubMed Agadir M, Sevastik B, Sevastik JA, Persson A, Isberg B (1988) Induction of scoliosis in the growing rabbit by unilateral rib-growth stimulation. Spine 13(9):1065–1069CrossRefPubMed
9.
Zurück zum Zitat Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN (2006) Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine. 31(12):1314–1320CrossRefPubMed Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN (2006) Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine. 31(12):1314–1320CrossRefPubMed
10.
Zurück zum Zitat Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN (2006) Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine 31(13):1410–1414CrossRefPubMed Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN (2006) Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine 31(13):1410–1414CrossRefPubMed
11.
Zurück zum Zitat Fekete TF, Kleinstück FS, Mannion AF, Kendik ZS, Jeszenszky DJ (2011) Prospective study of the effect of pedicle screw placement on development of the immature vertebra in an in vivo porcine model. Eur Spine J 20(11):1892–1898CrossRefPubMedPubMedCentral Fekete TF, Kleinstück FS, Mannion AF, Kendik ZS, Jeszenszky DJ (2011) Prospective study of the effect of pedicle screw placement on development of the immature vertebra in an in vivo porcine model. Eur Spine J 20(11):1892–1898CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kanemura T, Kawakami N, Deguchi M, Mimatsu K, Iwata H (1997) Natural Course of experimental scoliosis in pinealectomized chickens. Spine 22(14):1563–1567CrossRefPubMed Kanemura T, Kawakami N, Deguchi M, Mimatsu K, Iwata H (1997) Natural Course of experimental scoliosis in pinealectomized chickens. Spine 22(14):1563–1567CrossRefPubMed
13.
Zurück zum Zitat McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 vertebrae comparison of large animal models for the human lumbar spine. Spine 27(8):E200–E206CrossRefPubMed McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 vertebrae comparison of large animal models for the human lumbar spine. Spine 27(8):E200–E206CrossRefPubMed
14.
Zurück zum Zitat Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S (2011) Effects of intraoperative tensioning of an anterolateral spinal tether on spinal growth modulation in a porcine model. Spine 36(2):109–117CrossRefPubMed Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S (2011) Effects of intraoperative tensioning of an anterolateral spinal tether on spinal growth modulation in a porcine model. Spine 36(2):109–117CrossRefPubMed
15.
Zurück zum Zitat Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT (2002) Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine 27(7):689–693CrossRefPubMed Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT (2002) Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine 27(7):689–693CrossRefPubMed
16.
Zurück zum Zitat Olson EJ, Hanley EN, Rudert MJ, Baratz ME (1991) Vertebral column allografts for the treatment of segmental spine defects—an experimental investigation in dogs. Spine 16(9):1081–1088CrossRefPubMed Olson EJ, Hanley EN, Rudert MJ, Baratz ME (1991) Vertebral column allografts for the treatment of segmental spine defects—an experimental investigation in dogs. Spine 16(9):1081–1088CrossRefPubMed
17.
Zurück zum Zitat Alini M, Eisenstein SM, Ito K et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17(1):2–19CrossRefPubMed Alini M, Eisenstein SM, Ito K et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17(1):2–19CrossRefPubMed
18.
Zurück zum Zitat Kettler A, Liakos L, Haegele B, Wilke HJ (2007) Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J 16(12):2186–2192CrossRefPubMedPubMedCentral Kettler A, Liakos L, Haegele B, Wilke HJ (2007) Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J 16(12):2186–2192CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sheng SR, Wang XY, Xu HZ, Zhu GQ, Zhou YF (2010) Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J 19(1):46–56CrossRefPubMed Sheng SR, Wang XY, Xu HZ, Zhu GQ, Zhou YF (2010) Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J 19(1):46–56CrossRefPubMed
20.
Zurück zum Zitat Boszczyk BM, Boszczyk AA, Putz R (2001) Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec 264:157–168CrossRefPubMed Boszczyk BM, Boszczyk AA, Putz R (2001) Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec 264:157–168CrossRefPubMed
21.
Zurück zum Zitat Busscher I, van der Veen AJ, van Dieen JH, Kingma I, Verkerke GJ, Veldhuizen AG (2010) In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments. Spine 35(2):E35–E42CrossRefPubMed Busscher I, van der Veen AJ, van Dieen JH, Kingma I, Verkerke GJ, Veldhuizen AG (2010) In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments. Spine 35(2):E35–E42CrossRefPubMed
22.
Zurück zum Zitat Jiang H, Moreau M, Raso JV, Russell G, Bagnall K (1995) A comparison of spinal ligaments-differences between bipeds and quadrupeds. J Anat 187:85–91PubMedPubMedCentral Jiang H, Moreau M, Raso JV, Russell G, Bagnall K (1995) A comparison of spinal ligaments-differences between bipeds and quadrupeds. J Anat 187:85–91PubMedPubMedCentral
23.
24.
Zurück zum Zitat Animal models in orthopaedic research. Boca Raton, Florida: CRC Press LLC, 1999 Animal models in orthopaedic research. Boca Raton, Florida: CRC Press LLC, 1999
25.
Zurück zum Zitat Boden SD, Moskovitz PA, Morone MA, Toribitake Y (1996) Video-assisted lateral intertransverse process arthrodesis validation of a new minimally invasive lumbar spinal fusion technique in the rabbit and nonhuman primate (Rhesus) Models. Spine 21(22):2689–2697CrossRefPubMed Boden SD, Moskovitz PA, Morone MA, Toribitake Y (1996) Video-assisted lateral intertransverse process arthrodesis validation of a new minimally invasive lumbar spinal fusion technique in the rabbit and nonhuman primate (Rhesus) Models. Spine 21(22):2689–2697CrossRefPubMed
26.
Zurück zum Zitat Tominaga T, Dickman CA, Sonntag VKH, Coons S (1995) Comparative anatomy of the baboon and human cervical spine. Spine. 20(2):131–137CrossRefPubMed Tominaga T, Dickman CA, Sonntag VKH, Coons S (1995) Comparative anatomy of the baboon and human cervical spine. Spine. 20(2):131–137CrossRefPubMed
27.
Zurück zum Zitat Colliard C, Rivard CH (1996) Vertebral deformities and scoliosis. Eur Spine J 5:91–100CrossRef Colliard C, Rivard CH (1996) Vertebral deformities and scoliosis. Eur Spine J 5:91–100CrossRef
28.
Zurück zum Zitat Deguchi M, Kawakami N, Kanemura T (1996) Correction of scoliosis by rib resection in pinealectomized chickens. J Spinal Disord 9(3):207–213CrossRefPubMed Deguchi M, Kawakami N, Kanemura T (1996) Correction of scoliosis by rib resection in pinealectomized chickens. J Spinal Disord 9(3):207–213CrossRefPubMed
29.
Zurück zum Zitat Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1993) An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine 18(12):1609–1615CrossRefPubMed Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1993) An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine 18(12):1609–1615CrossRefPubMed
30.
Zurück zum Zitat Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Jt Surg 77:134–138 Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Jt Surg 77:134–138
31.
Zurück zum Zitat Machida M, Miyashita Y, Murai I, Dubousset J, Yamada T, Kimura J (1997) Role of Serotonin for scoliosis deformity in pinealectomized chickens. Spine. 22(12):1297–1301CrossRefPubMed Machida M, Miyashita Y, Murai I, Dubousset J, Yamada T, Kimura J (1997) Role of Serotonin for scoliosis deformity in pinealectomized chickens. Spine. 22(12):1297–1301CrossRefPubMed
32.
Zurück zum Zitat Wang XY, Jiang H, Raso JV et al (1997) Characterization of the scoliosis that develops after pinealectomy in the chicken and comparison with adolescent idiopathic scoliosis in humans. Spine. 23(22):2626–2635CrossRef Wang XY, Jiang H, Raso JV et al (1997) Characterization of the scoliosis that develops after pinealectomy in the chicken and comparison with adolescent idiopathic scoliosis in humans. Spine. 23(22):2626–2635CrossRef
33.
Zurück zum Zitat Hodge AJ, Neethling WM, Glancy R (2004) Evaluation of stentless kangaroo aortic valves in the mitral position of juvenile sheep. J Heart Valve Dis 13(4):681–688PubMed Hodge AJ, Neethling WM, Glancy R (2004) Evaluation of stentless kangaroo aortic valves in the mitral position of juvenile sheep. J Heart Valve Dis 13(4):681–688PubMed
34.
Zurück zum Zitat Narine KK, Kramm K, Dumont K et al (2006) Hydrodynamic evaluation of kangaroo aortic valve matrices for tissue valve engineering. Artif Organs 30(6):432–439CrossRefPubMed Narine KK, Kramm K, Dumont K et al (2006) Hydrodynamic evaluation of kangaroo aortic valve matrices for tissue valve engineering. Artif Organs 30(6):432–439CrossRefPubMed
35.
Zurück zum Zitat Neethling WM, Papadimitriou JM, Swarts E, Hodge AJ (2000) Kangaroo versus porcine aortic valve tissue–valve geometry morphology, tensile strength and calcification potential. J Cardiovasc Surg (Torino). 41(3):341–348PubMed Neethling WM, Papadimitriou JM, Swarts E, Hodge AJ (2000) Kangaroo versus porcine aortic valve tissue–valve geometry morphology, tensile strength and calcification potential. J Cardiovasc Surg (Torino). 41(3):341–348PubMed
36.
Zurück zum Zitat Lau SH (2013) Assessment of Macropus giganteus as a biomechanical model of the pediatric thorax: the school of engineering and applied sciences, University of Verginia Lau SH (2013) Assessment of Macropus giganteus as a biomechanical model of the pediatric thorax: the school of engineering and applied sciences, University of Verginia
37.
Zurück zum Zitat Hutchinson JR (2004) Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. J Morphol 262(1):421–440CrossRefPubMed Hutchinson JR (2004) Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. J Morphol 262(1):421–440CrossRefPubMed
39.
Zurück zum Zitat Peters JR, Chandrasekaran C, Robinson LF, Servaes SE, Campbell RM Jr, Balasubramanian S (2015) Age- and gender-related changes in pediatric thoracic vertebral morphology. Spine J 15(5):1000–1020CrossRefPubMed Peters JR, Chandrasekaran C, Robinson LF, Servaes SE, Campbell RM Jr, Balasubramanian S (2015) Age- and gender-related changes in pediatric thoracic vertebral morphology. Spine J 15(5):1000–1020CrossRefPubMed
40.
Zurück zum Zitat Panjabi MM, Oxland T, Takata K, Goel V, Duranceau J, Krag M (1993) Articular facets of the human spine quantitative three-dimensional anatomy. Spine 18(10):1298–1310CrossRefPubMed Panjabi MM, Oxland T, Takata K, Goel V, Duranceau J, Krag M (1993) Articular facets of the human spine quantitative three-dimensional anatomy. Spine 18(10):1298–1310CrossRefPubMed
41.
Zurück zum Zitat Panjabi MM, Takata K, Goel V et al (1991) Thoracic human vertebrae quantitative three-dimensional anatomy. Spine 16(8):888–901CrossRefPubMed Panjabi MM, Takata K, Goel V et al (1991) Thoracic human vertebrae quantitative three-dimensional anatomy. Spine 16(8):888–901CrossRefPubMed
42.
Zurück zum Zitat Zindrick MR, Knight GW, Sartori MJ, Carnevale TJ, Patwardhan AG, Lorenz MA (2000) Pedicle morphology of the immature thoracolumbar spine. Spine 25(21):2726–2735CrossRefPubMed Zindrick MR, Knight GW, Sartori MJ, Carnevale TJ, Patwardhan AG, Lorenz MA (2000) Pedicle morphology of the immature thoracolumbar spine. Spine 25(21):2726–2735CrossRefPubMed
43.
Zurück zum Zitat Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19(7):1104–1114CrossRefPubMedPubMedCentral Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19(7):1104–1114CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Kumar N, Kukreti S, Ishaque M, Mulholland R (2000) Anatomy of deer spine and its comparison to the human spine. Anat Rec 260:189–203CrossRefPubMed Kumar N, Kukreti S, Ishaque M, Mulholland R (2000) Anatomy of deer spine and its comparison to the human spine. Anat Rec 260:189–203CrossRefPubMed
45.
Zurück zum Zitat Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374CrossRefPubMed Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374CrossRefPubMed
46.
Zurück zum Zitat Standring S (2008) Gray’s anatomy, 40th edn. Elsevier, Churchill Livingstone Standring S (2008) Gray’s anatomy, 40th edn. Elsevier, Churchill Livingstone
47.
Zurück zum Zitat White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. J.B. Lippincott Company, Philadelphia White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. J.B. Lippincott Company, Philadelphia
48.
Zurück zum Zitat Nahum AM, Melvin J (2002) Accidental injury: biomechanics and prevention. Springer, New YorkCrossRef Nahum AM, Melvin J (2002) Accidental injury: biomechanics and prevention. Springer, New YorkCrossRef
49.
Zurück zum Zitat Kretzer RM, Chaput C, Sciubba DM et al (2011) A computed tomography-based morphometric study of thoracic pedicle anatomy in a random United States trauma population. J Neurosurg Spine 14(2):235–243CrossRefPubMed Kretzer RM, Chaput C, Sciubba DM et al (2011) A computed tomography-based morphometric study of thoracic pedicle anatomy in a random United States trauma population. J Neurosurg Spine 14(2):235–243CrossRefPubMed
50.
Zurück zum Zitat Parent S, Labelle H, Skalli W, de Guise J (2001) Thoracic pedicle morphometry in vertebrae from scoliotic spines. Spine J 29(3):239–248CrossRef Parent S, Labelle H, Skalli W, de Guise J (2001) Thoracic pedicle morphometry in vertebrae from scoliotic spines. Spine J 29(3):239–248CrossRef
51.
Zurück zum Zitat Lee MC, Solomito M, Patel A (2013) Supine magnetic resonance imaging cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine 38(11):E656–E661CrossRefPubMed Lee MC, Solomito M, Patel A (2013) Supine magnetic resonance imaging cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine 38(11):E656–E661CrossRefPubMed
52.
Zurück zum Zitat Yazici M, Acaroglu ER, Alanay A, Deviren V, Cila A, Surat A (2001) Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop 21:252–256PubMed Yazici M, Acaroglu ER, Alanay A, Deviren V, Cila A, Surat A (2001) Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop 21:252–256PubMed
53.
Zurück zum Zitat Hasler C, Sprecher CM, Milz S (2010) Comparison of the immature sheep spine and the growing human spine a spondylometric database for growth modulating research. Spine 35(23):E1262–E1272CrossRefPubMed Hasler C, Sprecher CM, Milz S (2010) Comparison of the immature sheep spine and the growing human spine a spondylometric database for growth modulating research. Spine 35(23):E1262–E1272CrossRefPubMed
54.
Zurück zum Zitat Chen X, Milne N, O’Higgins P (2005) Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J Morphol 266(2):167–181CrossRefPubMed Chen X, Milne N, O’Higgins P (2005) Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J Morphol 266(2):167–181CrossRefPubMed
55.
Zurück zum Zitat Ouellet J, Odent T (2013) Animal models for scoliosis research: state of the art, current concepts and future perspective applications. Eur Spine J 22(Suppl 2):S81–S95 CrossRefPubMed Ouellet J, Odent T (2013) Animal models for scoliosis research: state of the art, current concepts and future perspective applications. Eur Spine J 22(Suppl 2):S81–S95 CrossRefPubMed
56.
Zurück zum Zitat Bozkus H, Crawford NR, Chamberlain RH, Valenzuela TD, Espinoza A, Yüksel Z, Dickman CA (2005) Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surg Endosc 19(12):1652–1665CrossRefPubMed Bozkus H, Crawford NR, Chamberlain RH, Valenzuela TD, Espinoza A, Yüksel Z, Dickman CA (2005) Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surg Endosc 19(12):1652–1665CrossRefPubMed
Metadaten
Titel
Thoracic spine morphology of a pseudo-biped animal model (kangaroo) and comparisons with human and quadruped animals
verfasst von
Sriram Balasubramanian
James R. Peters
Lucy F. Robinson
Anita Singh
Richard W. Kent
Publikationsdatum
04.10.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Spine Journal / Ausgabe 12/2016
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-016-4776-x

Weitere Artikel der Ausgabe 12/2016

European Spine Journal 12/2016 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.