Skip to main content
Erschienen in: Current Reviews in Musculoskeletal Medicine 1/2021

07.01.2021 | Emerging Trends in Design for Musculoskeletal Medicine (S Goldchmit and M Queiroz, Section Editors)

Three-Dimensional Printing in Orthopedics: from the Basics to Surgical Applications

Erschienen in: Current Reviews in Musculoskeletal Medicine | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Additive manufacturing (AM) is a rapidly evolving field traditionally utilized in non-medical industries. Recently, the medical use of AM is expanding, especially in orthopedics. The goal of this article is presenting the principles of AM and its main applications in orthopedics.

Recent Findings

The main indications for AM in orthopedics are education, orthotics, surgical planning, surgical guides, and custom-made implants. Three-dimensional (3D) digital models can be obtained from tomographic scans using available free software. Then, it can be used to create a physical model, plan surgeries, or develop surgical guides which can aid the orthopedic surgeon during complex cases. Recent studies demonstrated the benefits of using printed models in educating patients and medical residents. Custom-made implants also have been evaluated with promising clinical outcomes.

Summary

Using 3D technology has become a reality in orthopedics. Surgeons should expect exponential growth of its applications in the upcoming years. It is paramount that orthopedists get familiar with this disruptive technology.
Literatur
1.
Zurück zum Zitat Wang C, Huang W, Zhou Y, He L, Zhi H, Chen Z, et al. 3D printing of bone tissue engineering scaffolds. Bioactive Mater. 2020:82–91. Wang C, Huang W, Zhou Y, He L, Zhi H, Chen Z, et al. 3D printing of bone tissue engineering scaffolds. Bioactive Mater. 2020:82–91.
2.
Zurück zum Zitat Whitaker M. The history of 3D printing in healthcare. The Bulletin of the Royal College of Surgeons of England. Royal College of Surgeons; 2014;96:228–9. Whitaker M. The history of 3D printing in healthcare. The Bulletin of the Royal College of Surgeons of England. Royal College of Surgeons; 2014;96:228–9.
3.
Zurück zum Zitat •• Barrios-Muriel J, Romero-Sánchez F, Alonso-Sánchez FJ, Rodriguez SD. Advances in orthotic and prosthetic manufacturing: a technology review. Materials. 2020;13 Review on the types of additive manufacturing technologies. •• Barrios-Muriel J, Romero-Sánchez F, Alonso-Sánchez FJ, Rodriguez SD. Advances in orthotic and prosthetic manufacturing: a technology review. Materials. 2020;13 Review on the types of additive manufacturing technologies.
4.
Zurück zum Zitat Telfer S, Pallari J, Munguia J, Dalgarno K, McGeough M, Woodburn J. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet Disord. 2012;13:84.CrossRef Telfer S, Pallari J, Munguia J, Dalgarno K, McGeough M, Woodburn J. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet Disord. 2012;13:84.CrossRef
5.
Zurück zum Zitat Sarcar MMM, Mallikarjuna Rao K, Lalit NK. Computer aided design and manufacturing: PHI Learning Pvt. Ltd.; 2008. Sarcar MMM, Mallikarjuna Rao K, Lalit NK. Computer aided design and manufacturing: PHI Learning Pvt. Ltd.; 2008.
6.
Zurück zum Zitat Diwakar M, Kumar M. A review on CT image noise and its denoising. Biomed Signal Process Control. 2018;42:73–88.CrossRef Diwakar M, Kumar M. A review on CT image noise and its denoising. Biomed Signal Process Control. 2018;42:73–88.CrossRef
7.
Zurück zum Zitat Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin C-W. Deep learning on image denoising: an overview. Neural Netw. 2020;131:251–75. Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin C-W. Deep learning on image denoising: an overview. Neural Netw. 2020;131:251–75.
8.
Zurück zum Zitat Haleem A, Javaid M. 3D scanning applications in medical field: a literature-based review. Clin Epidemiol Glob Health. 2019;7:199–210.CrossRef Haleem A, Javaid M. 3D scanning applications in medical field: a literature-based review. Clin Epidemiol Glob Health. 2019;7:199–210.CrossRef
9.
Zurück zum Zitat Dal Maso A, Cosmi F. 3D-printed ankle-foot orthosis: a design method. Mater Today Proc. 2019;12:252–61.CrossRef Dal Maso A, Cosmi F. 3D-printed ankle-foot orthosis: a design method. Mater Today Proc. 2019;12:252–61.CrossRef
10.
Zurück zum Zitat Ballester A, Pierola A, Parrilla E, Izquierdo M, Uriel J, Nacher B, et al. Fast, portable and low-cost 3D foot digitizers: validity and reliability of measurements. Proceedings of 3DBODY.TECH 2017 - 8th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Montreal QC, Canada, 11–12 Oct. 2017. 2017. Ballester A, Pierola A, Parrilla E, Izquierdo M, Uriel J, Nacher B, et al. Fast, portable and low-cost 3D foot digitizers: validity and reliability of measurements. Proceedings of 3DBODY.TECH 2017 - 8th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Montreal QC, Canada, 11–12 Oct. 2017. 2017.
11.
Zurück zum Zitat Numajiri T, Nakamura H, Sowa Y, Nishino K. Low-cost design and manufacturing of surgical guides for mandibular reconstruction using a fibula. Plastic and reconstructive surgery global open. Wolters Kluwer Health. 2016;4:e805–5. Numajiri T, Nakamura H, Sowa Y, Nishino K. Low-cost design and manufacturing of surgical guides for mandibular reconstruction using a fibula. Plastic and reconstructive surgery global open. Wolters Kluwer Health. 2016;4:e805–5.
12.
Zurück zum Zitat Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: a technological marvel. J Clin Orthop Trauma. 2018/08/03. Elsevier; 2018;9:260–8. Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: a technological marvel. J Clin Orthop Trauma. 2018/08/03. Elsevier; 2018;9:260–8.
13.
Zurück zum Zitat Herbert N, Simpson D, Spence WD, Ion W. A preliminary investigation into the development of 3-D printing of prosthetic sockets. J Rehabil Res Dev. Superintendent of Documents. 2005;42:141.CrossRef Herbert N, Simpson D, Spence WD, Ion W. A preliminary investigation into the development of 3-D printing of prosthetic sockets. J Rehabil Res Dev. Superintendent of Documents. 2005;42:141.CrossRef
14.
Zurück zum Zitat Vaishya R, Vaish A. 3D printing in orthopedics. In: Iyer KM, Khan WS, editors. General principles of orthopedics and trauma. Cham: Springer International Publishing; 2019. p. 583–90.CrossRef Vaishya R, Vaish A. 3D printing in orthopedics. In: Iyer KM, Khan WS, editors. General principles of orthopedics and trauma. Cham: Springer International Publishing; 2019. p. 583–90.CrossRef
15.
Zurück zum Zitat Vaish A, Vaish R. 3D printing and its applications in orthopedics. J Clin Orthop Trauma. 2018:S74–5. Vaish A, Vaish R. 3D printing and its applications in orthopedics. J Clin Orthop Trauma. 2018:S74–5.
16.
Zurück zum Zitat Wei D, Li C, Xu Y. Research progress of three-dimensional printing technique in foot and ankle surgery. Zhongguo xiu fu chong jian wai ke za zhi= Zhongguo xiufu chongjian waike zazhi= Chinese journal of reparative and reconstructive surgery. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31:880–4.PubMed Wei D, Li C, Xu Y. Research progress of three-dimensional printing technique in foot and ankle surgery. Zhongguo xiu fu chong jian wai ke za zhi= Zhongguo xiufu chongjian waike zazhi= Chinese journal of reparative and reconstructive surgery. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31:880–4.PubMed
17.
Zurück zum Zitat Telfer S, Abbott M, Steultjens MPM, Woodburn J. Dose–response effects of customised foot orthoses on lower limb kinematics and kinetics in pronated foot type. J Biomech. 2013;46:1489–95.CrossRef Telfer S, Abbott M, Steultjens MPM, Woodburn J. Dose–response effects of customised foot orthoses on lower limb kinematics and kinetics in pronated foot type. J Biomech. 2013;46:1489–95.CrossRef
18.
Zurück zum Zitat Telfer S, Abbott M, Steultjens M, Rafferty D, Woodburn J. Dose–response effects of customised foot orthoses on lower limb muscle activity and plantar pressures in pronated foot type. Gait Posture. 2013;38:443–9.CrossRef Telfer S, Abbott M, Steultjens M, Rafferty D, Woodburn J. Dose–response effects of customised foot orthoses on lower limb muscle activity and plantar pressures in pronated foot type. Gait Posture. 2013;38:443–9.CrossRef
19.
Zurück zum Zitat Gibson KS, Woodburn J, Porter D, Telfer S. Functionally optimized orthoses for early rheumatoid arthritis foot disease: a study of mechanisms and patient experience. Arthritis Care Res. 2014;66:1456–64.CrossRef Gibson KS, Woodburn J, Porter D, Telfer S. Functionally optimized orthoses for early rheumatoid arthritis foot disease: a study of mechanisms and patient experience. Arthritis Care Res. 2014;66:1456–64.CrossRef
20.
Zurück zum Zitat Schrank ES, Stanhope SJ. Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework. J Rehabil Res Dev. 2011:31. Schrank ES, Stanhope SJ. Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework. J Rehabil Res Dev. 2011:31.
21.
Zurück zum Zitat Artioli BO, Kunkel ME, Mestanza SN. Feasibility study of a methodology using additive manufacture to produce silicone ear prostheses. World Congress on Medical Physics and Biomedical Engineering 2018. Springer Singapore; 2019. p. 211–215. Artioli BO, Kunkel ME, Mestanza SN. Feasibility study of a methodology using additive manufacture to produce silicone ear prostheses. World Congress on Medical Physics and Biomedical Engineering 2018. Springer Singapore; 2019. p. 211–215.
22.
Zurück zum Zitat Salles A, Gyi D. The specification and evaluation of personalized footwear for additive manufacturing. Advances in human factors, ergonomics, and safety in manufacturing and service industries. 2010. p. 355–66. Salles A, Gyi D. The specification and evaluation of personalized footwear for additive manufacturing. Advances in human factors, ergonomics, and safety in manufacturing and service industries. 2010. p. 355–66.
23.
Zurück zum Zitat Salles AS, Gyi DE. An evaluation of personalised insoles developed using additive manufacturing. J Sports Sci. 2013;31:442–50.CrossRef Salles AS, Gyi DE. An evaluation of personalised insoles developed using additive manufacturing. J Sports Sci. 2013;31:442–50.CrossRef
24.
Zurück zum Zitat Xu R, Wang Z, Ma T, Ren Z, Jin H. Effect of 3D printing individualized ankle-foot orthosis on plantar biomechanics and pain in patients with plantar fasciitis: a randomized controlled trial. Med Sci Monit. 2019;25:1392–400.CrossRef Xu R, Wang Z, Ma T, Ren Z, Jin H. Effect of 3D printing individualized ankle-foot orthosis on plantar biomechanics and pain in patients with plantar fasciitis: a randomized controlled trial. Med Sci Monit. 2019;25:1392–400.CrossRef
25.
Zurück zum Zitat Telfer S, Woodburn J, Collier A, Cavanagh PR. Virtually optimized insoles for offloading the diabetic foot: a randomized crossover study. J Biomech. 2017;60:157–61.CrossRef Telfer S, Woodburn J, Collier A, Cavanagh PR. Virtually optimized insoles for offloading the diabetic foot: a randomized crossover study. J Biomech. 2017;60:157–61.CrossRef
26.
Zurück zum Zitat Tang L, Wang L, Bao W, Zhu S, Li D, Zhao N, et al. Functional gradient structural design of customized diabetic insoles. J Mech Behav Biomed Mater. 2019;94:279–87.CrossRef Tang L, Wang L, Bao W, Zhu S, Li D, Zhao N, et al. Functional gradient structural design of customized diabetic insoles. J Mech Behav Biomed Mater. 2019;94:279–87.CrossRef
27.
Zurück zum Zitat Ma Z, Lin J, Xu X, Ma Z, Tang L, Sun C, et al. Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles. Int J Lightweight Mater Manuf. 2019;2:57–63. Ma Z, Lin J, Xu X, Ma Z, Tang L, Sun C, et al. Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles. Int J Lightweight Mater Manuf. 2019;2:57–63.
28.
Zurück zum Zitat Tan KC, Lee PVS, Tam KF, Lye SL. Automation of prosthetic socket design and fabrication using computer aided design/computer aided engineering and rapid prototyping techniques. Proceedings of the 1st National Symposium of Prosthetics and Orthotics, Singapore. 1998. p. 19–22. Tan KC, Lee PVS, Tam KF, Lye SL. Automation of prosthetic socket design and fabrication using computer aided design/computer aided engineering and rapid prototyping techniques. Proceedings of the 1st National Symposium of Prosthetics and Orthotics, Singapore. 1998. p. 19–22.
29.
Zurück zum Zitat Kim SJ, Kim SJ, Cha YH, Lee KH, Kwon J-Y. Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: a preliminary, randomized, controlled, open-label study. Prosthet Orthot Int. 2018;42:636–43.CrossRef Kim SJ, Kim SJ, Cha YH, Lee KH, Kwon J-Y. Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: a preliminary, randomized, controlled, open-label study. Prosthet Orthot Int. 2018;42:636–43.CrossRef
30.
Zurück zum Zitat Zeng T, Gao D-W, Wu Y-F, Chen L, Zhang H-T. Small splint external fixation combined with 3D printing brace for the treatment of Colles fractures. Zhongguo gu shang= China journal of orthopaedics and traumatology. 2019;32:513–8.PubMed Zeng T, Gao D-W, Wu Y-F, Chen L, Zhang H-T. Small splint external fixation combined with 3D printing brace for the treatment of Colles fractures. Zhongguo gu shang= China journal of orthopaedics and traumatology. 2019;32:513–8.PubMed
31.
Zurück zum Zitat Portnoy S, Barmin N, Elimelech M, Assaly B, Oren S, Shanan R, et al. Automated 3D-printed finger orthosis versus manual orthosis preparation by occupational therapy students: preparation time, product weight, and user satisfaction. J Hand Ther. 2020;33:174–9.CrossRef Portnoy S, Barmin N, Elimelech M, Assaly B, Oren S, Shanan R, et al. Automated 3D-printed finger orthosis versus manual orthosis preparation by occupational therapy students: preparation time, product weight, and user satisfaction. J Hand Ther. 2020;33:174–9.CrossRef
32.
Zurück zum Zitat Zheng W, Chen C, Zhang C, Tao Z, Cai L. The feasibility of 3D printing technology on the treatment of Pilon fracture and its effect on doctor-patient communication. Biomed Res Int. 2018;2018:8054698.PubMedPubMedCentral Zheng W, Chen C, Zhang C, Tao Z, Cai L. The feasibility of 3D printing technology on the treatment of Pilon fracture and its effect on doctor-patient communication. Biomed Res Int. 2018;2018:8054698.PubMedPubMedCentral
33.
Zurück zum Zitat Montgomery SJ, Kooner SS, Ludwig TE, Schneider PS. Impact of 3D printed calcaneal models on fracture understanding and confidence in orthopedic surgery residents. J Surg Educ. 2020;77:472–8.CrossRef Montgomery SJ, Kooner SS, Ludwig TE, Schneider PS. Impact of 3D printed calcaneal models on fracture understanding and confidence in orthopedic surgery residents. J Surg Educ. 2020;77:472–8.CrossRef
34.
Zurück zum Zitat • Li Z, Li Z, Xu R, Li M, Li J, Liu Y, et al. Three-dimensional printing models improve understanding of spinal fracture–a randomized controlled study in China. Sci Rep. 2015;5:11570 Randomized study demonstrating the superiority of teaching students spinal fractures using 3D printed models.CrossRef • Li Z, Li Z, Xu R, Li M, Li J, Liu Y, et al. Three-dimensional printing models improve understanding of spinal fracture–a randomized controlled study in China. Sci Rep. 2015;5:11570 Randomized study demonstrating the superiority of teaching students spinal fractures using 3D printed models.CrossRef
35.
Zurück zum Zitat Cabarcas BC, Cvetanovich GL, Gowd AK, Liu JN, Manderle BJ, Verma NN. Accuracy of patient-specific instrumentation in shoulder arthroplasty: a systematic review and meta-analysis. JSES open access. Elsevier; 2019;3:117–29. Cabarcas BC, Cvetanovich GL, Gowd AK, Liu JN, Manderle BJ, Verma NN. Accuracy of patient-specific instrumentation in shoulder arthroplasty: a systematic review and meta-analysis. JSES open access. Elsevier; 2019;3:117–29.
36.
Zurück zum Zitat Henckel J, Holme TJ, Radford W, Skinner JA, Hart AJ. 3D-printed patient-specific guides for hip arthroplasty. J Am Acad Orthop Surg. 2018;26:e342–8. Henckel J, Holme TJ, Radford W, Skinner JA, Hart AJ. 3D-printed patient-specific guides for hip arthroplasty. J Am Acad Orthop Surg. 2018;26:e342–8.
37.
Zurück zum Zitat Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med. 2019;8:2091. Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med. 2019;8:2091.
38.
Zurück zum Zitat Chawla H, Gamradt S. Reverse total shoulder arthroplasty: technique, decision-making and exposure tips. Curr Rev Musculoskelet Med. 2020;13:180–5. Chawla H, Gamradt S. Reverse total shoulder arthroplasty: technique, decision-making and exposure tips. Curr Rev Musculoskelet Med. 2020;13:180–5.
39.
Zurück zum Zitat Hyun YS, Huri G, Garbis NG, McFarland EG. Uncommon indications for reverse total shoulder arthroplasty. Clin Orthop Surg. 2013;5:243. Hyun YS, Huri G, Garbis NG, McFarland EG. Uncommon indications for reverse total shoulder arthroplasty. Clin Orthop Surg. 2013;5:243.
40.
Zurück zum Zitat Kim K, Elbuluk A, Jia N, Osmani F, Levieddin J, Zuckerman J, et al. Revision shoulder arthroplasty: patient-reported outcomes vary according to the etiology of revision. J Orthop. 2018;15:922–6. Kim K, Elbuluk A, Jia N, Osmani F, Levieddin J, Zuckerman J, et al. Revision shoulder arthroplasty: patient-reported outcomes vary according to the etiology of revision. J Orthop. 2018;15:922–6.
41.
Zurück zum Zitat •• Kieser DC, Ailabouni R, Kieser SCJ, Wyatt MC, Armour PC, Coates MH, et al. The use of an Ossis custom 3D-printed tri-flanged acetabular implant for major bone loss: minimum 2-year follow-up. Hip Int. 2018;28:668–74 Case series of patients submitted to revision total hip arthroplasty using a custom 3D-printed acetabular implant.CrossRef •• Kieser DC, Ailabouni R, Kieser SCJ, Wyatt MC, Armour PC, Coates MH, et al. The use of an Ossis custom 3D-printed tri-flanged acetabular implant for major bone loss: minimum 2-year follow-up. Hip Int. 2018;28:668–74 Case series of patients submitted to revision total hip arthroplasty using a custom 3D-printed acetabular implant.CrossRef
Metadaten
Titel
Three-Dimensional Printing in Orthopedics: from the Basics to Surgical Applications
Publikationsdatum
07.01.2021
Erschienen in
Current Reviews in Musculoskeletal Medicine / Ausgabe 1/2021
Elektronische ISSN: 1935-9748
DOI
https://doi.org/10.1007/s12178-020-09691-3

Weitere Artikel der Ausgabe 1/2021

Current Reviews in Musculoskeletal Medicine 1/2021 Zur Ausgabe

Outcomes Research in Orthopedics (O Ayeni, Section Editor)

Graft Options in Hip Labral Reconstruction

Non-Operative Management of Anterior Knee Pain (M Fredericson and T Besier, Section Editors)

Acute Patellofemoral Dislocation: Controversial Decision-Making

Emerging Trends in Design for Musculoskeletal Medicine (S Goldchmit and M Queiroz, Section Editors)

Patient Education in Orthopedics: the Role of Information Design and User Experience

Non-Operative Management of Anterior Knee Pain (M Fredericson and T Besier, Section Editors)

Non-operative Management of Anterior Knee Pain: Patient Education

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.