Skip to main content
Erschienen in: Brain Structure and Function 8/2016

20.05.2016 | Original Article

Three-dimensional probability maps of the rhinal and the collateral sulci in the human brain

verfasst von: Sonja C. Huntgeburth, Michael Petrides

Erschienen in: Brain Structure and Function | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

The sulcal segments of the collateral sulcal complex on the medial part of the temporal lobe delineate the parahippocampal gyrus involved in memory processing from the laterally adjacent fusiform gyrus. The rhinal sulcus delineates the entorhinal cortex on the anterior portion of the parahippocampal gyrus. Posterior to the rhinal sulcus lies the collateral sulcus proper which delineates the parahippocampal cortex that occupies the posterior part of the parahippocampal gyrus. A small sulcus, the parahippocampal extension of the collateral sulcus, runs transversely within the parahippocampal gyrus. The rhinal sulcus, the collateral sulcus proper, and the parahippocampal extension of the collateral sulcus were identified on magnetic resonance images of 40 healthy human brains and probability maps were created to provide quantification of the location variability within standard stereotaxic space. These probability maps can act as a reference frame for the accurate identification of key components of the parahippocampal region and assist in the interpretation of structural and functional changes obtained in neuroimaging studies.
Literatur
Zurück zum Zitat Ad-Dab’bagh Y, Lyttelton O, Muehlboeck J-S, Lepage C, Einarson D, Mok K, Ivanov O, Vincent RD, Lerch J, Fombonne E, Evans AC (2006) The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In: Corbetta M (ed) Proceedings of the 12th annual meeting of the organization for human brain mapping, Florence, Italy Ad-Dab’bagh Y, Lyttelton O, Muehlboeck J-S, Lepage C, Einarson D, Mok K, Ivanov O, Vincent RD, Lerch J, Fombonne E, Evans AC (2006) The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In: Corbetta M (ed) Proceedings of the 12th annual meeting of the organization for human brain mapping, Florence, Italy
Zurück zum Zitat Aguirre GK, D’Esposito M (1997) Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 17:2512–2518PubMed Aguirre GK, D’Esposito M (1997) Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 17:2512–2518PubMed
Zurück zum Zitat Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J Comp Neurology 264:326–355CrossRef Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J Comp Neurology 264:326–355CrossRef
Zurück zum Zitat Aminoff E, Gronau N, Bar M (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 17:1493–1503CrossRefPubMed Aminoff E, Gronau N, Bar M (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 17:1493–1503CrossRefPubMed
Zurück zum Zitat Amunts K et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol 210:343–352CrossRefPubMed Amunts K et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol 210:343–352CrossRefPubMed
Zurück zum Zitat Andrews TJ, Clarke A, Pell P, Hartley T (2010) Selectivity for low-level features of objects in the human ventral stream. NeuroImage 49:703–711CrossRefPubMed Andrews TJ, Clarke A, Pell P, Hartley T (2010) Selectivity for low-level features of objects in the human ventral stream. NeuroImage 49:703–711CrossRefPubMed
Zurück zum Zitat Augustinack JC, van der Kouwe AJ, Fischl B (2013) Medial temporal cortices in ex vivo magnetic resonance imaging. J Comp Neurol 521:4177–4188CrossRefPubMed Augustinack JC, van der Kouwe AJ, Fischl B (2013) Medial temporal cortices in ex vivo magnetic resonance imaging. J Comp Neurol 521:4177–4188CrossRefPubMed
Zurück zum Zitat Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18:64–80CrossRefPubMed Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18:64–80CrossRefPubMed
Zurück zum Zitat Bar M, Aminoff E (2003) Cortical analysis of visual context Neuron 38:347–358PubMed Bar M, Aminoff E (2003) Cortical analysis of visual context Neuron 38:347–358PubMed
Zurück zum Zitat Bohbot VD, Corkin S (2007) Posterior parahippocampal place learning in H.M. Hippocampus 17:863–872CrossRefPubMed Bohbot VD, Corkin S (2007) Posterior parahippocampal place learning in H.M. Hippocampus 17:863–872CrossRefPubMed
Zurück zum Zitat Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig
Zurück zum Zitat Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:1–18CrossRef Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:1–18CrossRef
Zurück zum Zitat Chiavaras MM, LeGoualher G, Evans A, Petrides M (2001) Three-dimensional probabilistic atlas of the human orbitofrontal sulci in standardized stereotaxic space. NeuroImage 13:479–496CrossRefPubMed Chiavaras MM, LeGoualher G, Evans A, Petrides M (2001) Three-dimensional probabilistic atlas of the human orbitofrontal sulci in standardized stereotaxic space. NeuroImage 13:479–496CrossRefPubMed
Zurück zum Zitat Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205CrossRefPubMed Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205CrossRefPubMed
Zurück zum Zitat Duvernoy H (1999) The human brain: surface, three-dimensional sectional anatomy and MRI, 2nd edn. Springer, WienCrossRef Duvernoy H (1999) The human brain: surface, three-dimensional sectional anatomy and MRI, 2nd edn. Springer, WienCrossRef
Zurück zum Zitat Economo C, Koskinas GN (1925) Die Cytoarchitektur der Hirnrinde des erwachsenen Menschen. Springer, Wien Economo C, Koskinas GN (1925) Die Cytoarchitektur der Hirnrinde des erwachsenen Menschen. Springer, Wien
Zurück zum Zitat Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335CrossRefPubMed Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335CrossRefPubMed
Zurück zum Zitat Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage 32:570–582CrossRefPubMed Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage 32:570–582CrossRefPubMed
Zurück zum Zitat Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36:511–521CrossRefPubMed Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36:511–521CrossRefPubMed
Zurück zum Zitat Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment Nature 392:598–601PubMed Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment Nature 392:598–601PubMed
Zurück zum Zitat Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125CrossRefPubMed Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125CrossRefPubMed
Zurück zum Zitat Epstein R, Graham KS, Downing PE (2003) Viewpoint-specific scene representations in human parahippocampal cortex. Neuron 37:865–876CrossRefPubMed Epstein R, Graham KS, Downing PE (2003) Viewpoint-specific scene representations in human parahippocampal cortex. Neuron 37:865–876CrossRefPubMed
Zurück zum Zitat Fischl B, Stevens AA, Rajendran N, Yeo BT, Greve DN, Van Leemput K, Polimeni JR, Kakunoori S, Buckner RL, Pacheco J, Salat DH, Melcher J, Frosch MP, Hyman BT, Grant PE, Rosen BR, van der Kouwe AJ, Wiggins GC, Wald LL, Augustinack JC (2009) Predicting the location of entorhinal cortex from MRI. NeuroImage 47:8–17CrossRefPubMedPubMedCentral Fischl B, Stevens AA, Rajendran N, Yeo BT, Greve DN, Van Leemput K, Polimeni JR, Kakunoori S, Buckner RL, Pacheco J, Salat DH, Melcher J, Frosch MP, Hyman BT, Grant PE, Rosen BR, van der Kouwe AJ, Wiggins GC, Wald LL, Augustinack JC (2009) Predicting the location of entorhinal cortex from MRI. NeuroImage 47:8–17CrossRefPubMedPubMedCentral
Zurück zum Zitat Germann J, Robbins S, Halsband U, Petrides M (2005) Precentral sulcal complex of the human brain: morphology and statistical probability maps. J Comp Neurol 493:334–356CrossRefPubMed Germann J, Robbins S, Halsband U, Petrides M (2005) Precentral sulcal complex of the human brain: morphology and statistical probability maps. J Comp Neurol 493:334–356CrossRefPubMed
Zurück zum Zitat Gloor P (1997) The temporal lobe and limbic system. Oxford University Press, New York Gloor P (1997) The temporal lobe and limbic system. Oxford University Press, New York
Zurück zum Zitat Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL (2006) Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv 9:58–66PubMed Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL (2006) Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv 9:58–66PubMed
Zurück zum Zitat Hanke J (1997) Sulcal pattern of the anterior parahippocampal gyrus in the human adult. Ann Anat 179:335–339CrossRefPubMed Hanke J (1997) Sulcal pattern of the anterior parahippocampal gyrus in the human adult. Ann Anat 179:335–339CrossRefPubMed
Zurück zum Zitat Henderson JM, Larson CL, Zhu DC (2008) Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study. Brain Cogn 66:40–49CrossRefPubMed Henderson JM, Larson CL, Zhu DC (2008) Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study. Brain Cogn 66:40–49CrossRefPubMed
Zurück zum Zitat Huntgeburth SC, Petrides M (2012) Morphological patterns of the collateral sulcus in the human brain. Eur J Neurosci 35:1295–1311CrossRefPubMed Huntgeburth SC, Petrides M (2012) Morphological patterns of the collateral sulcus in the human brain. Eur J Neurosci 35:1295–1311CrossRefPubMed
Zurück zum Zitat Iaria G, Petrides M (2007) Occipital sulci of the human brain: variability and probability maps. J Comp Neurol 501:243–259CrossRefPubMed Iaria G, Petrides M (2007) Occipital sulci of the human brain: variability and probability maps. J Comp Neurol 501:243–259CrossRefPubMed
Zurück zum Zitat Iaria G, Robbins S, Petrides M (2008) Three-dimensional probabilistic maps of the occipital sulci of the human brain in standardized stereotaxic space. Neuroscience 151:174–185CrossRefPubMed Iaria G, Robbins S, Petrides M (2008) Three-dimensional probabilistic maps of the occipital sulci of the human brain in standardized stereotaxic space. Neuroscience 151:174–185CrossRefPubMed
Zurück zum Zitat Insausti R (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3(S1):19–26PubMed Insausti R (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3(S1):19–26PubMed
Zurück zum Zitat Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego, pp 871–913CrossRef Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego, pp 871–913CrossRef
Zurück zum Zitat Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395CrossRefPubMed Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395CrossRefPubMed
Zurück zum Zitat Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355:171–198CrossRefPubMed Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355:171–198CrossRefPubMed
Zurück zum Zitat Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkänen A (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol 19:659–671PubMed Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkänen A (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol 19:659–671PubMed
Zurück zum Zitat Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7:673–677CrossRefPubMed Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7:673–677CrossRefPubMed
Zurück zum Zitat Kim H, Bernasconi N, Bernhardt B, Colliot O, Bernasconi A (2008) Basal temporal sulcal morphology in healthy controls and patients with temporal lobe epilepsy. Neurology 70:2159–2165CrossRefPubMed Kim H, Bernasconi N, Bernhardt B, Colliot O, Bernasconi A (2008) Basal temporal sulcal morphology in healthy controls and patients with temporal lobe epilepsy. Neurology 70:2159–2165CrossRefPubMed
Zurück zum Zitat Köhler S, Crane J, Milner B (2002) Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12:718–723CrossRefPubMed Köhler S, Crane J, Milner B (2002) Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12:718–723CrossRefPubMed
Zurück zum Zitat Krimer LS, Hyde TM, Herman MM, Saunders RC (1997) The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. Cereb Cortex 7:722–731CrossRefPubMed Krimer LS, Hyde TM, Herman MM, Saunders RC (1997) The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. Cereb Cortex 7:722–731CrossRefPubMed
Zurück zum Zitat Malkova L, Mishkin M (2003) One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J Neurosci 23:1956–1965PubMed Malkova L, Mishkin M (2003) One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J Neurosci 23:1956–1965PubMed
Zurück zum Zitat Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995a) A probabilistic atlas of the human brain: theory and rationale for its development the international consortium for brain mapping (ICBM). NeuroImage 2:89–101CrossRefPubMed Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995a) A probabilistic atlas of the human brain: theory and rationale for its development the international consortium for brain mapping (ICBM). NeuroImage 2:89–101CrossRefPubMed
Zurück zum Zitat Mazziotta JC, Toga AW, Evans AC, Fox PT, Lancaster JL (1995b) Digital brain atlases Trends in Neurosciences 18:210–211CrossRefPubMed Mazziotta JC, Toga AW, Evans AC, Fox PT, Lancaster JL (1995b) Digital brain atlases Trends in Neurosciences 18:210–211CrossRefPubMed
Zurück zum Zitat Mazziotta J et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond, Ser B 356:1293–1322CrossRef Mazziotta J et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond, Ser B 356:1293–1322CrossRef
Zurück zum Zitat Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13:5418–5432PubMed Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13:5418–5432PubMed
Zurück zum Zitat Milner B (1968) Disorders of memory after brain lesion in man: preface: material-specific and generalized memory loss. Neuropsychologia 6:175–179CrossRef Milner B (1968) Disorders of memory after brain lesion in man: preface: material-specific and generalized memory loss. Neuropsychologia 6:175–179CrossRef
Zurück zum Zitat Milner B, Johnsrude I, Crane J (1997) Right medial temporal-lobe contribution to object-location memory. Philos Trans R Soc Lond Ser B Biol Sci 352:1469–1474CrossRef Milner B, Johnsrude I, Crane J (1997) Right medial temporal-lobe contribution to object-location memory. Philos Trans R Soc Lond Ser B Biol Sci 352:1469–1474CrossRef
Zurück zum Zitat Mishkin M, Suzuki WA, Gadian DG, Vargha-Khadem F (1997) Hierarchical organization of cognitive memory. Philos Trans R Soc Lond Ser B Biol Sci 352:1461–1467CrossRef Mishkin M, Suzuki WA, Gadian DG, Vargha-Khadem F (1997) Hierarchical organization of cognitive memory. Philos Trans R Soc Lond Ser B Biol Sci 352:1461–1467CrossRef
Zurück zum Zitat Novak K, Czech T, Prayer D, Dietrich W, Serles W, Lehr S, Baumgartner C (2002) Individual variations in the sulcal anatomy of the basal temporal lobe and its relevance for epilepsy surgery: an anatomical study performed using magnetic resonance imaging. J Neurosurg 96:464–473CrossRefPubMed Novak K, Czech T, Prayer D, Dietrich W, Serles W, Lehr S, Baumgartner C (2002) Individual variations in the sulcal anatomy of the basal temporal lobe and its relevance for epilepsy surgery: an anatomical study performed using magnetic resonance imaging. J Neurosurg 96:464–473CrossRefPubMed
Zurück zum Zitat Ono M, Kubik S, Abernathey CD (1990) Atlas of the Cerebral Sulci. Thieme, Stuttgart Ono M, Kubik S, Abernathey CD (1990) Atlas of the Cerebral Sulci. Thieme, Stuttgart
Zurück zum Zitat Paquette V, Levesque J, Mensour B, Leroux JM, Beaudoin G, Bourgouin P, Beauregard M (2003) “Change the mind and you change the brain”: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. NeuroImage 18:401–409CrossRefPubMed Paquette V, Levesque J, Mensour B, Leroux JM, Beaudoin G, Bourgouin P, Beauregard M (2003) “Change the mind and you change the brain”: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. NeuroImage 18:401–409CrossRefPubMed
Zurück zum Zitat Paus T et al (1996) In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol 376:664–673CrossRefPubMed Paus T et al (1996) In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol 376:664–673CrossRefPubMed
Zurück zum Zitat Petrides M (2012) The human cerebral cortex: an MRI atlas of the sulci and gyri in MNI stereotaxic space. Academic Press, New York Petrides M (2012) The human cerebral cortex: an MRI atlas of the sulci and gyri in MNI stereotaxic space. Academic Press, New York
Zurück zum Zitat Pihlajamaki M, Tanila H, Kononen M, Hanninen T, Hamalainen A, Soininen H, Aronen HJ (2004) Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19:1939–1949CrossRefPubMed Pihlajamaki M, Tanila H, Kononen M, Hanninen T, Hamalainen A, Soininen H, Aronen HJ (2004) Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19:1939–1949CrossRefPubMed
Zurück zum Zitat Reber PJ, Wong EC, Buxton RB (2002) Encoding activity in the medial temporal lobe examined with anatomically constrained fMRI analysis. Hippocampus 12:363–376CrossRefPubMed Reber PJ, Wong EC, Buxton RB (2002) Encoding activity in the medial temporal lobe examined with anatomically constrained fMRI analysis. Hippocampus 12:363–376CrossRefPubMed
Zurück zum Zitat Retzius G (1896) Das Menschenhirn: Studien der makroskopischen. Morphologie Norstedt and Soener, Stockholm Retzius G (1896) Das Menschenhirn: Studien der makroskopischen. Morphologie Norstedt and Soener, Stockholm
Zurück zum Zitat Sato N, Nakamura K (2003) Visual response properties of neurons in the parahippocampal cortex of monkeys. J Neurophysiol 90:876–886CrossRefPubMed Sato N, Nakamura K (2003) Visual response properties of neurons in the parahippocampal cortex of monkeys. J Neurophysiol 90:876–886CrossRefPubMed
Zurück zum Zitat Segal E, Petrides M (2012) The morphology and variability of the caudal rami of the superior temporal sulcus. Eur J Neurosci 36:2035–2053CrossRefPubMed Segal E, Petrides M (2012) The morphology and variability of the caudal rami of the superior temporal sulcus. Eur J Neurosci 36:2035–2053CrossRefPubMed
Zurück zum Zitat Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed
Zurück zum Zitat Smith EG (1904) Studies in the morphology of the human brain. Records of the Egyption Government School of Medicine Egyptians - No.1. Occipital Reg 2:124–173 Smith EG (1904) Studies in the morphology of the human brain. Records of the Egyption Government School of Medicine Egyptians - No.1. Occipital Reg 2:124–173
Zurück zum Zitat Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11:170–175CrossRefPubMed Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11:170–175CrossRefPubMed
Zurück zum Zitat Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386CrossRefPubMed Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386CrossRefPubMed
Zurück zum Zitat Staresina BP, Duncan KD, Davachi L (2011) Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. J Neurosci 31:8739–8747CrossRefPubMedPubMedCentral Staresina BP, Duncan KD, Davachi L (2011) Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. J Neurosci 31:8739–8747CrossRefPubMedPubMedCentral
Zurück zum Zitat Sulpizio V, Committeri G, Lambrey S, Berthoz A, Galati G (2013) Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behav Brain Res 242:62–75CrossRefPubMed Sulpizio V, Committeri G, Lambrey S, Berthoz A, Galati G (2013) Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behav Brain Res 242:62–75CrossRefPubMed
Zurück zum Zitat Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533CrossRefPubMed Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533CrossRefPubMed
Zurück zum Zitat Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG (1993) Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci 13:2430–2451PubMed Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG (1993) Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci 13:2430–2451PubMed
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York
Zurück zum Zitat Tomaiuolo F, MacDonald JD, Caramanos Z, Posner G, Chiavaras M, Evans AC, Petrides M (1999) Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur J Neurosci 11:3033–3046CrossRefPubMed Tomaiuolo F, MacDonald JD, Caramanos Z, Posner G, Chiavaras M, Evans AC, Petrides M (1999) Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur J Neurosci 11:3033–3046CrossRefPubMed
Zurück zum Zitat Van Hoesen GW (1982) The parahippocampal gyrus: new observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350CrossRef Van Hoesen GW (1982) The parahippocampal gyrus: new observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350CrossRef
Zurück zum Zitat Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24CrossRefPubMed Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24CrossRefPubMed
Zurück zum Zitat Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the Rhesus monkey. Science 175:1471–1473CrossRefPubMed Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the Rhesus monkey. Science 175:1471–1473CrossRefPubMed
Zurück zum Zitat Vogt BA, Vogt LJ, Perl DP, Hof PR (2001) Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438:353–376CrossRefPubMed Vogt BA, Vogt LJ, Perl DP, Hof PR (2001) Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438:353–376CrossRefPubMed
Zurück zum Zitat Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370PubMed Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370PubMed
Zurück zum Zitat Zola-Morgan S, Squire LR, Ramus SJ (1994) Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system. Hippocampus 4:483–495CrossRefPubMed Zola-Morgan S, Squire LR, Ramus SJ (1994) Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system. Hippocampus 4:483–495CrossRefPubMed
Metadaten
Titel
Three-dimensional probability maps of the rhinal and the collateral sulci in the human brain
verfasst von
Sonja C. Huntgeburth
Michael Petrides
Publikationsdatum
20.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1189-x

Weitere Artikel der Ausgabe 8/2016

Brain Structure and Function 8/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.