Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 4/2017

21.01.2017 | Original Article

Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI

verfasst von: Xiaopan Xu, Xi Zhang, Qiang Tian, Guopeng Zhang, Yang Liu, Guangbin Cui, Jiang Meng, Yuxia Wu, Tianshuai Liu, Zengyue Yang, Hongbing Lu

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This study aims to determine the three-dimensional (3D) texture features extracted from intensity and high-order derivative maps that could reflect textural differences between bladder tumors and wall tissues, and propose a noninvasive, image-based strategy for bladder tumor differentiation preoperatively.

Methods

A total of 62 cancerous and 62 wall volumes of interest (VOI) were extracted from T2-weighted MRI datasets of 62 patients with pathologically confirmed bladder cancer. To better reflect heterogeneous distribution of tumor tissues, 3D high-order derivative maps (the gradient and curvature maps) were calculated from each VOI. Then 3D Haralick features based on intensity and high-order derivative maps and Tamura features based on intensity maps were extracted from each VOI. Statistical analysis and recursive feature elimination-based support vector machine classifier (RFE-SVM) was proposed to first select the features with significant differences and then obtain a more predictive and compact feature subset to verify its differentiation performance.

Results

From each VOI, a total of 58 texture features were derived. Among them, 37 features showed significant inter-class differences (\(P\le 0.01\)). With 29 optimal features selected by RFE-SVM, the classification results namely the sensitivity, specificity, accuracy and area under the curve (AUC) of the receiver operating characteristics were 0.9032, 0.8548, 0.8790 and 0.9045, respectively. By using synthetic minority oversampling technique to augment the sample number of each group to 200, the sensitivity, specificity, accuracy an AUC value of the feature selection-based classification were improved to 0.8967, 0.8780, 0.8874 and 0.9416, respectively.

Conclusions

Our results suggest that 3D texture features derived from intensity and high-order derivative maps can better reflect heterogeneous distribution of cancerous tissues. Texture features optimally selected together with sample augmentation could improve the performance on differentiating bladder carcinomas from wall tissues, suggesting a potential way for tumor noninvasive staging of bladder cancer preoperatively.
Literatur
1.
Zurück zum Zitat American Cancer Society (2015) Cancer facts and figures 2015. American Cancer Society, Atlanta, pp 8–16 American Cancer Society (2015) Cancer facts and figures 2015. American Cancer Society, Atlanta, pp 8–16
2.
Zurück zum Zitat Torre L, Bray F, Siegel R, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics 2012. CA Cancer J Clin 65(2):87–108CrossRefPubMed Torre L, Bray F, Siegel R, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics 2012. CA Cancer J Clin 65(2):87–108CrossRefPubMed
3.
Zurück zum Zitat National Comprehensive Cancer Network (2015) NCCN clinical practice guidelines in oncology, pp 30–33 National Comprehensive Cancer Network (2015) NCCN clinical practice guidelines in oncology, pp 30–33
4.
Zurück zum Zitat Stein J, Lieskovsky G, Cote R, Groshen S, Feng A, Boyd S, Skinner E, Bochner B, Thangathurai D, Mikhail M, Raghavan D, Skinner D (2001) Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 19(3):666–675CrossRefPubMed Stein J, Lieskovsky G, Cote R, Groshen S, Feng A, Boyd S, Skinner E, Bochner B, Thangathurai D, Mikhail M, Raghavan D, Skinner D (2001) Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 19(3):666–675CrossRefPubMed
5.
Zurück zum Zitat Makram M, Michaël P, Marc Z, Djillali S, Bernard D (2003) The value of a second transurethral resection in evaluating patients with bladder tumours. Eur Urol 43(3):241–245CrossRef Makram M, Michaël P, Marc Z, Djillali S, Bernard D (2003) The value of a second transurethral resection in evaluating patients with bladder tumours. Eur Urol 43(3):241–245CrossRef
6.
Zurück zum Zitat Jakse G, Algaba F, Malmstrom P, Oosterlinck W (2004) A second-look TUR in T1 transitional cell carcinoma: why? Eur Urol 45(5):539–546CrossRefPubMed Jakse G, Algaba F, Malmstrom P, Oosterlinck W (2004) A second-look TUR in T1 transitional cell carcinoma: why? Eur Urol 45(5):539–546CrossRefPubMed
7.
Zurück zum Zitat Kim B, Semelka R, Ascher S, Chalpin D, Carroll P, Hricak H (1994) Bladder tumor staging: comparison of contrast-enhanced CT, Ti- and T2-weighted MR Imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology 193:239–245CrossRefPubMed Kim B, Semelka R, Ascher S, Chalpin D, Carroll P, Hricak H (1994) Bladder tumor staging: comparison of contrast-enhanced CT, Ti- and T2-weighted MR Imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology 193:239–245CrossRefPubMed
8.
Zurück zum Zitat Xiao D, Zhang G, Liu Y, Yang Z, Zhang X, Li L, Jiao C, Lu H (2016) 3D detection and extraction of bladder tumors via MR virtual cystoscopy. Int J Comput Assist Radiol Surg 11(1):89–97CrossRefPubMed Xiao D, Zhang G, Liu Y, Yang Z, Zhang X, Li L, Jiao C, Lu H (2016) 3D detection and extraction of bladder tumors via MR virtual cystoscopy. Int J Comput Assist Radiol Surg 11(1):89–97CrossRefPubMed
9.
Zurück zum Zitat Rais-Bahrami S, Pietryga J, Nix J (2015) Contemporary role of advanced imaging for bladder cancer staging. Urol Oncol 18(2):168–177 Rais-Bahrami S, Pietryga J, Nix J (2015) Contemporary role of advanced imaging for bladder cancer staging. Urol Oncol 18(2):168–177
10.
Zurück zum Zitat Shi Z, Yang Z, Zhang G, Cui G, Xiong X, Liang Z, Lu H (2013) Characterization of texture features of bladder carcinoma and the bladder wall on MRI: initial experience. Acad Radiol 20(8):930–938CrossRefPubMedPubMedCentral Shi Z, Yang Z, Zhang G, Cui G, Xiong X, Liang Z, Lu H (2013) Characterization of texture features of bladder carcinoma and the bladder wall on MRI: initial experience. Acad Radiol 20(8):930–938CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Zhang X, Liu Y, Yang Z, Tian Q, Zhang G, Xiao D, Cui G, Lu H (2015) Quantitative analysis of bladder wall thickness for magnetic resonance cystoscopy. IEEE Trans Biomed Eng 62(10):2402–2409CrossRefPubMed Zhang X, Liu Y, Yang Z, Tian Q, Zhang G, Xiao D, Cui G, Lu H (2015) Quantitative analysis of bladder wall thickness for magnetic resonance cystoscopy. IEEE Trans Biomed Eng 62(10):2402–2409CrossRefPubMed
12.
Zurück zum Zitat Zhao Y, Liang Z, Zhu H, Han H, Duan C, Yan Z, Lu H, Gu X (2013) Bladder wall thickness mapping for magnetic resonance cystography. Phys Med Biol 58(15):5173–5192CrossRefPubMedPubMedCentral Zhao Y, Liang Z, Zhu H, Han H, Duan C, Yan Z, Lu H, Gu X (2013) Bladder wall thickness mapping for magnetic resonance cystography. Phys Med Biol 58(15):5173–5192CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ganeshan B, Miles K, Young R, Chatwin C (2009) Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol 70:101–110CrossRefPubMed Ganeshan B, Miles K, Young R, Chatwin C (2009) Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol 70:101–110CrossRefPubMed
14.
Zurück zum Zitat Ng F, Ganeshan B, Kozarski R, Miles K, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266(1):177–184CrossRefPubMed Ng F, Ganeshan B, Kozarski R, Miles K, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266(1):177–184CrossRefPubMed
15.
Zurück zum Zitat Sheshadri H, Kandaswamy A (2007) Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. Comput Med Imag Graph 31:46–58CrossRef Sheshadri H, Kandaswamy A (2007) Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. Comput Med Imag Graph 31:46–58CrossRef
16.
Zurück zum Zitat Fu J, Yu Y, Lin H, Chai J, Chen CC (2014) Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging. Comput Med Imag Graph 38(4):267–275CrossRef Fu J, Yu Y, Lin H, Chai J, Chen CC (2014) Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging. Comput Med Imag Graph 38(4):267–275CrossRef
17.
Zurück zum Zitat Bayanati H, Thornhill E, Souza C, Virmani V, Gupta A, Maziak D, Amjadi K, Dennie C (2015) Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer? Eur Radiol 25(2):480–487CrossRefPubMed Bayanati H, Thornhill E, Souza C, Virmani V, Gupta A, Maziak D, Amjadi K, Dennie C (2015) Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer? Eur Radiol 25(2):480–487CrossRefPubMed
18.
Zurück zum Zitat Song B, Zhang G, Lu H, Wang H, Zhu W, Pickhardt P, Liang Z (2014) Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography. Int J Comput Assist Radiol Surg 9(6):1021–1031CrossRefPubMedPubMedCentral Song B, Zhang G, Lu H, Wang H, Zhu W, Pickhardt P, Liang Z (2014) Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography. Int J Comput Assist Radiol Surg 9(6):1021–1031CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hu Y, Liang Z, Song B, Han H, Pickhardt P, Zhu W, Duan C, Zhang H, Barish M, Lascarides C (2016) Texture feature extraction and analysis for polyp differentiation via computed tomography colonography. IEEE Trans Med Imag 35(6):1522–1531CrossRef Hu Y, Liang Z, Song B, Han H, Pickhardt P, Zhu W, Duan C, Zhang H, Barish M, Lascarides C (2016) Texture feature extraction and analysis for polyp differentiation via computed tomography colonography. IEEE Trans Med Imag 35(6):1522–1531CrossRef
20.
Zurück zum Zitat Fetit A, Novak J, Peet A, Arvanitits T (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184CrossRefPubMed Fetit A, Novak J, Peet A, Arvanitits T (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184CrossRefPubMed
21.
Zurück zum Zitat Nailon W, Redpath A, McLaren D (2008) Characterisation of radiotherapy planning volumes using textural analysis. Acta Oncol 47(7):1303–1308CrossRefPubMed Nailon W, Redpath A, McLaren D (2008) Characterisation of radiotherapy planning volumes using textural analysis. Acta Oncol 47(7):1303–1308CrossRefPubMed
22.
Zurück zum Zitat Xu X, Zhang X, Tian Q, Q Tian Q, Zhang G, Lu H (2016) Differentiating bladder carcinoma from bladder wall using 3D textural features: an initial study. SPIE Med Image Process 2016:1–11 Xu X, Zhang X, Tian Q, Q Tian Q, Zhang G, Lu H (2016) Differentiating bladder carcinoma from bladder wall using 3D textural features: an initial study. SPIE Med Image Process 2016:1–11
23.
Zurück zum Zitat Simoes R, Walsum A, Slump C (2014) Classification and localization of early-stage Alzheimer’s disease in magnetic resonance images using a patch-based classifier ensemble. Neuroradiology 56(9):1–12 Simoes R, Walsum A, Slump C (2014) Classification and localization of early-stage Alzheimer’s disease in magnetic resonance images using a patch-based classifier ensemble. Neuroradiology 56(9):1–12
24.
Zurück zum Zitat Zhang G, Song B, Zhu H, Liang Z (2012) Computer-aided diagnosis in CT colonography based on bi-labeled classifier. Int J CARS 7(Suppl):S274 Zhang G, Song B, Zhu H, Liang Z (2012) Computer-aided diagnosis in CT colonography based on bi-labeled classifier. Int J CARS 7(Suppl):S274
25.
Zurück zum Zitat Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z (2015) Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imag 28(1):99–115CrossRef Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z (2015) Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imag 28(1):99–115CrossRef
26.
Zurück zum Zitat Haralick R, Shanmugan K, Dinstein I (1973) Texture features for image classification. Trans Syst Man Cybern SMC–3(6):610–621CrossRef Haralick R, Shanmugan K, Dinstein I (1973) Texture features for image classification. Trans Syst Man Cybern SMC–3(6):610–621CrossRef
27.
Zurück zum Zitat Majtner T, Svoboda D (2012) Extension of tamura texture features for 3D fluorescence microscopy. Second international conference on 3D Imaging, pp 301–307 Majtner T, Svoboda D (2012) Extension of tamura texture features for 3D fluorescence microscopy. Second international conference on 3D Imaging, pp 301–307
28.
Zurück zum Zitat Tamura H, Mori S, Yamawaki T (1978) Texture features corresponding to visual perception. IEEE Trans Syst Man Cybern SMC–8(6):460–473CrossRef Tamura H, Mori S, Yamawaki T (1978) Texture features corresponding to visual perception. IEEE Trans Syst Man Cybern SMC–8(6):460–473CrossRef
29.
Zurück zum Zitat Zou J, Ji Q, Nagy G (2007) A comparative study of local matching approach for face recognition. IEEE Trans Image Process 16(10):2617–2628CrossRefPubMed Zou J, Ji Q, Nagy G (2007) A comparative study of local matching approach for face recognition. IEEE Trans Image Process 16(10):2617–2628CrossRefPubMed
30.
Zurück zum Zitat Zacharaki E, Wang S, Chawla S, Yoo D, Wolf R, Melhem E, Davatzikos C (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618CrossRefPubMedPubMedCentral Zacharaki E, Wang S, Chawla S, Yoo D, Wolf R, Melhem E, Davatzikos C (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zyout I, Czajkowska J, Grzegorzek M (2015) Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography. Comput Med Imag Graph 46:95–107CrossRef Zyout I, Czajkowska J, Grzegorzek M (2015) Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography. Comput Med Imag Graph 46:95–107CrossRef
32.
Zurück zum Zitat Laimighofer M, Krumsiek J, Buettner F, Theis F (2016) Unbiased prediction and feature selection in high-dimensional survival regression. J Comput Biol 23(4):279–290CrossRefPubMedPubMedCentral Laimighofer M, Krumsiek J, Buettner F, Theis F (2016) Unbiased prediction and feature selection in high-dimensional survival regression. J Comput Biol 23(4):279–290CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRef Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRef
34.
Zurück zum Zitat Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3:1357–1370 Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3:1357–1370
35.
Zurück zum Zitat Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas H, Sala E, Hricak H, Deasy J (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. PNAS 112(46):E6265–E6273CrossRefPubMedPubMedCentral Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas H, Sala E, Hricak H, Deasy J (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. PNAS 112(46):E6265–E6273CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Chang C, Lin C (2001) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27 Chang C, Lin C (2001) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27
37.
Zurück zum Zitat Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(2002):321–357 Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(2002):321–357
38.
Zurück zum Zitat Lerski R, Straughan K, Schad L, Boyce D, Blüml S, Zuna I (1993) MR image texture analysis—an approach to tissue characterization. Magn Reson Imag 11(6):873–887CrossRef Lerski R, Straughan K, Schad L, Boyce D, Blüml S, Zuna I (1993) MR image texture analysis—an approach to tissue characterization. Magn Reson Imag 11(6):873–887CrossRef
39.
Zurück zum Zitat Isabelle G, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182 Isabelle G, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
40.
Zurück zum Zitat Anaissi A, Goyal M, Catchpoole D, Braytee A, Kennedy P (2016) Ensemble feature learning of genomic data using support vector machine. PLoS ONE 11(6):e0157330CrossRefPubMedPubMedCentral Anaissi A, Goyal M, Catchpoole D, Braytee A, Kennedy P (2016) Ensemble feature learning of genomic data using support vector machine. PLoS ONE 11(6):e0157330CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Fang Y, Wang Y, Zhu Q, Wang J, Li G (2016) In silico identification of enhancers on the basis of a combination of transcription factor binding motif occurrences. Sci Rep 6:32476CrossRefPubMedPubMedCentral Fang Y, Wang Y, Zhu Q, Wang J, Li G (2016) In silico identification of enhancers on the basis of a combination of transcription factor binding motif occurrences. Sci Rep 6:32476CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Zarogianni E, Storkey A, Johnstone E, Owen D, Lawrie S (2016) Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res S0920–9964(16):30377–303772. doi:10.1016/j.schres.2016.08.027 Zarogianni E, Storkey A, Johnstone E, Owen D, Lawrie S (2016) Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res S0920–9964(16):30377–303772. doi:10.​1016/​j.​schres.​2016.​08.​027
Metadaten
Titel
Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI
verfasst von
Xiaopan Xu
Xi Zhang
Qiang Tian
Guopeng Zhang
Yang Liu
Guangbin Cui
Jiang Meng
Yuxia Wu
Tianshuai Liu
Zengyue Yang
Hongbing Lu
Publikationsdatum
21.01.2017
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 4/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1522-8

Weitere Artikel der Ausgabe 4/2017

International Journal of Computer Assisted Radiology and Surgery 4/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.