Skip to main content
Erschienen in: Clinical Neuroradiology 4/2017

28.03.2017 | Original Article

Time-resolved 3D Rotational Angiography (4D DSA) of the Lenticulostriate Arteries: Display of Normal Anatomic Variants and Collaterals in Cases with Chronic Obstruction of the MCA

verfasst von: S. Kammerer, M. Mueller-Eschner, J. Berkefeld, S. Tritt

Erschienen in: Clinical Neuroradiology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The lenticulostriate arteries (LSA) and other perforators may play a role for collateral supply in cases with ischemia due to stenosis or occlusions of the middle cerebral artery (MCA). Purpose of this case series was to evaluate the potential of time-resolved 3D rotational angiography data sets (4D DSA) for detailed visualization of anatomic variants of LSA feeders and for display of local collaterals involving the LSA in cases with chronic MCA obstruction.

Methods

Multiplanar and volume rendering reconstructions of 4D DSA data were computed in addition to standard postprocessing in 24 patients who had indications for 3D rotational angiography (3DRA) of the internal carotid artery (ICA) without pathologies of the ICA, middle cerebral artery (MCA) and anterior cerebral artery (ACA) main stems (n = 18) or with stenosis or chronic occlusion of the MCA (n = 6). For acquisition of 3DRA, we used a modified digital subtraction angiography (DSA) image acquisition protocol with an extended rotation angle of 260° and a prolonged scan time of 12 s on a Siemens Axiom Artis Zee biplane neuroangiography equipment. The 4D reconstructions of existing 3DRA data were computed on a dedicated workstation. Origin and course of LSA and other perforators were analyzed according to coronal multiplanar reconstructions (MPRs) with slice thicknesses between 6 and 28 mm.

Results

In all cases 4D reconstructions of the LSA were technically feasible and evaluable. As expected, origin and course of LSA showed a wide range of variations: The most common pattern was a common trunk dividing into multiple ascending branches originating from the proximal M1 (n = 5) or the proximal A1 segment (n = 4). Alternatively, 8 patients showed several individual branches that directly originated from the proximal M1 segment of the MCA and occasionally from the A1 segment of the ACA. In patients with M1 stenosis or occlusion, 4 out of 6 cases had local collaterals with involvement of proximal LSA trunks and a network parallel to the obstructed vessel segment. The 4D reconstructions were found to be equivalent (n = 16) or superior to 3D reconstructions (n = 8).

Conclusion

The 4D DSA reconstructions provide a reliable display of normal LSA variants and connections to local collateral networks in cases with chronic MCA obstruction. The possibility to select a correct angiographic phase is advantageous compared to 3D DSA.
Literatur
1.
Zurück zum Zitat Bouvy WH, Biessels GJ, Kuijf HJ, Kappelle LJ, Luijten PR, Zwanenburg JJ. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest Radiol. 2014;49:307–13.CrossRefPubMed Bouvy WH, Biessels GJ, Kuijf HJ, Kappelle LJ, Luijten PR, Zwanenburg JJ. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest Radiol. 2014;49:307–13.CrossRefPubMed
2.
Zurück zum Zitat Cho ZH, Kang CK, Han JY, Kim SH, Kim KN, Hong SM, Park CW, Kim YB. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography. Stroke. 2008;39:1604–6.CrossRefPubMed Cho ZH, Kang CK, Han JY, Kim SH, Kim KN, Hong SM, Park CW, Kim YB. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography. Stroke. 2008;39:1604–6.CrossRefPubMed
3.
Zurück zum Zitat Conijn MM, Hendrikse J, Zwanenburg JJ, Takahara T, Geerlings MI, Mali WP, Luijten PR. Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study. Eur Radiol. 2009;19:2986–92.CrossRefPubMedPubMedCentral Conijn MM, Hendrikse J, Zwanenburg JJ, Takahara T, Geerlings MI, Mali WP, Luijten PR. Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study. Eur Radiol. 2009;19:2986–92.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR Am J Neuroradiol. 2013;34:1914–21.CrossRefPubMed Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR Am J Neuroradiol. 2013;34:1914–21.CrossRefPubMed
5.
Zurück zum Zitat Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride Jr GL, Lynch JR, Zaidat OO, Rumboldt Z, Cloft HJ; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383:333–41.CrossRefPubMed Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride Jr GL, Lynch JR, Zaidat OO, Rumboldt Z, Cloft HJ; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383:333–41.CrossRefPubMed
6.
Zurück zum Zitat Umansky F, Gomes FB, Dujovny M, Diaz FG, Ausman JI, Mirchandani HG, Berman SK. The perforating branches of the middle cerebral artery. J Neurosurg. 1985;62:261–8.CrossRefPubMed Umansky F, Gomes FB, Dujovny M, Diaz FG, Ausman JI, Mirchandani HG, Berman SK. The perforating branches of the middle cerebral artery. J Neurosurg. 1985;62:261–8.CrossRefPubMed
7.
Zurück zum Zitat Funaki T, Fushimi Y, Takahashi JC, Takagi Y, Araki Y, Yoshida K, Kikuchi T, Miyamoto S. Visualization of periventricular collaterals in moyamoya disease with flow-sensitive black-blood magnetic resonance angiography: preliminary experience. Neurol Med Chir (Tokyo). 2015;55:204–9.CrossRef Funaki T, Fushimi Y, Takahashi JC, Takagi Y, Araki Y, Yoshida K, Kikuchi T, Miyamoto S. Visualization of periventricular collaterals in moyamoya disease with flow-sensitive black-blood magnetic resonance angiography: preliminary experience. Neurol Med Chir (Tokyo). 2015;55:204–9.CrossRef
8.
Zurück zum Zitat Funaki T, Takahashi JC, Yoshida K, Takagi Y, Fushimi Y, Kikuchi T, Mineharu Y, Okada T, Morimoto T, Miyamoto S. Periventricular anastomosis in moyamoya disease: detecting fragile collateral vessels with MR angiography. J Neurosurg. 2016;124:1766–72.CrossRefPubMed Funaki T, Takahashi JC, Yoshida K, Takagi Y, Fushimi Y, Kikuchi T, Mineharu Y, Okada T, Morimoto T, Miyamoto S. Periventricular anastomosis in moyamoya disease: detecting fragile collateral vessels with MR angiography. J Neurosurg. 2016;124:1766–72.CrossRefPubMed
9.
Zurück zum Zitat Gotoh K, Okada T, Satogami N, Yakami M, Takahashi JC, Yoshida K, Ishii A, Tanaka S, Miyamoto S, Togashi K. Evaluation of CT angiography for visualisation of the lenticulostriate artery: difference between normotensive and hypertensive patients. Br J Radiol. 2012;85:e1004–e1008.CrossRefPubMedPubMedCentral Gotoh K, Okada T, Satogami N, Yakami M, Takahashi JC, Yoshida K, Ishii A, Tanaka S, Miyamoto S, Togashi K. Evaluation of CT angiography for visualisation of the lenticulostriate artery: difference between normotensive and hypertensive patients. Br J Radiol. 2012;85:e1004–e1008.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Harteveld AA, De Cocker LJ, Dieleman N, van der Kolk AG, Zwanenburg JJ, Robe PA, Luijten PR, Hendrikse J. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla. PLOS ONE. 2015;10:e0121051.CrossRefPubMedPubMedCentral Harteveld AA, De Cocker LJ, Dieleman N, van der Kolk AG, Zwanenburg JJ, Robe PA, Luijten PR, Hendrikse J. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla. PLOS ONE. 2015;10:e0121051.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol. 2007;17:2767–79.CrossRefPubMed Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol. 2007;17:2767–79.CrossRefPubMed
13.
Zurück zum Zitat Kang CK, Park CW, Han JY, Kim SH, Park CA, Kim KN, Hong SM, Kim YB, Lee KH, Cho ZH. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med. 2009;61:136–44.CrossRefPubMed Kang CK, Park CW, Han JY, Kim SH, Park CA, Kim KN, Hong SM, Kim YB, Lee KH, Cho ZH. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med. 2009;61:136–44.CrossRefPubMed
14.
Zurück zum Zitat Kyriakou Y, Struffert T, Dörfler A, Kalender WA. Basic principles of flat detector computed tomography (FD-CT). Radiologe. 2009;49:811–9.CrossRefPubMed Kyriakou Y, Struffert T, Dörfler A, Kalender WA. Basic principles of flat detector computed tomography (FD-CT). Radiologe. 2009;49:811–9.CrossRefPubMed
15.
Zurück zum Zitat Lescher S, Gehrisch S, Klein S, Berkefeld J. Time-resolved 3D rotational angiography: display of detailed neurovascular anatomy in patients with intracranial vascular malformations. J Neurointerv Surg. 2016 Aug 4. [Epub ahead of print] Lescher S, Gehrisch S, Klein S, Berkefeld J. Time-resolved 3D rotational angiography: display of detailed neurovascular anatomy in patients with intracranial vascular malformations. J Neurointerv Surg. 2016 Aug 4. [Epub ahead of print]
16.
Zurück zum Zitat Lescher S, Zimmermann M, Konczalla J, Deller T, Porto L, Seifert V, Berkefeld J. Evaluation of the perforators of the anterior communicating artery (AComA) using routine cerebral 3D rotational angiography. J Neurointerv Surg. 2016;8:1061–6.CrossRefPubMed Lescher S, Zimmermann M, Konczalla J, Deller T, Porto L, Seifert V, Berkefeld J. Evaluation of the perforators of the anterior communicating artery (AComA) using routine cerebral 3D rotational angiography. J Neurointerv Surg. 2016;8:1061–6.CrossRefPubMed
17.
Zurück zum Zitat Okuchi S, Okada T, Ihara M, Gotoh K, Kido A, Fujimoto K, Yamamoto A, Kanagaki M, Tanaka S, Takahashi R, Togashi K. Visualization of lenticulostriate arteries by flow-sensitive black-blood MR angiography on a 1.5 T MRI system: a comparative study between subjects with and without stroke. AJNR Am J Neuroradiol. 2013;34:780–4.CrossRefPubMed Okuchi S, Okada T, Ihara M, Gotoh K, Kido A, Fujimoto K, Yamamoto A, Kanagaki M, Tanaka S, Takahashi R, Togashi K. Visualization of lenticulostriate arteries by flow-sensitive black-blood MR angiography on a 1.5 T MRI system: a comparative study between subjects with and without stroke. AJNR Am J Neuroradiol. 2013;34:780–4.CrossRefPubMed
18.
Zurück zum Zitat Parry PV, Ducruet AF. Four-dimensional digital subtraction angiography: implementation and demonstration of feasibility. World Neurosurg. 2014;81:454–5.CrossRefPubMed Parry PV, Ducruet AF. Four-dimensional digital subtraction angiography: implementation and demonstration of feasibility. World Neurosurg. 2014;81:454–5.CrossRefPubMed
19.
Zurück zum Zitat Sandoval-Garcia C, Royalty K, Aagaard-Kienitz B, Schafer S, Yang P, Strother C. A comparison of 4D DSA with 2D and 3D DSA in the analysis of normal vascular structures in a canine model. AJNR Am J Neuroradiol. 2015;36:1959–63.CrossRefPubMed Sandoval-Garcia C, Royalty K, Aagaard-Kienitz B, Schafer S, Yang P, Strother C. A comparison of 4D DSA with 2D and 3D DSA in the analysis of normal vascular structures in a canine model. AJNR Am J Neuroradiol. 2015;36:1959–63.CrossRefPubMed
20.
Zurück zum Zitat Sandoval-Garcia C, Royalty K, Yang P, Niemann D, Ahmed A, Aagaard-Kienitz B, Başkaya MK, Schafer S, Strother C. 4D DSA a new technique for arteriovenous malformation evaluation: a feasibility study. J Neurointerv Surg. 2016;8:300–4.CrossRefPubMed Sandoval-Garcia C, Royalty K, Yang P, Niemann D, Ahmed A, Aagaard-Kienitz B, Başkaya MK, Schafer S, Strother C. 4D DSA a new technique for arteriovenous malformation evaluation: a feasibility study. J Neurointerv Surg. 2016;8:300–4.CrossRefPubMed
21.
Zurück zum Zitat Seo SW, Kang CK, Kim SH, Yoon DS, Liao W, Wörz S, Rohr K, Kim YB, Na DL, Cho ZH. Measurements of lenticulostriate arteries using 7 T MRI: new imaging markers for subcortical vascular dementia. J Neurol Sci. 2012;322:200–5.CrossRefPubMed Seo SW, Kang CK, Kim SH, Yoon DS, Liao W, Wörz S, Rohr K, Kim YB, Na DL, Cho ZH. Measurements of lenticulostriate arteries using 7 T MRI: new imaging markers for subcortical vascular dementia. J Neurol Sci. 2012;322:200–5.CrossRefPubMed
22.
Zurück zum Zitat Srinivasan VM, Chintalapani G, Duckworth EA, Kan P. Application of 4‑dimensional digital subtraction angiography for dural arteriovenous fistulas. World Neurosurg. 2016;96:24–30.CrossRefPubMed Srinivasan VM, Chintalapani G, Duckworth EA, Kan P. Application of 4‑dimensional digital subtraction angiography for dural arteriovenous fistulas. World Neurosurg. 2016;96:24–30.CrossRefPubMed
23.
Zurück zum Zitat Strobel N, Meissner O, Boese J, Brunner T, Heigl B, Hoheisel M, Lauritsch G, Nagel M, Pfister M, Rührnschopf EP, Scholz B, Schreiber B, Spahn M, Zellerhoff M, Klingenbeck-Regn K. 3D imaging with flat-detector C‑arm systems. In: Reiser MF, Becker CR, Nikolaou K, Glazer G, editors. Multislice CT. Berlin: Springer; 2009. pp. 33–51.CrossRef Strobel N, Meissner O, Boese J, Brunner T, Heigl B, Hoheisel M, Lauritsch G, Nagel M, Pfister M, Rührnschopf EP, Scholz B, Schreiber B, Spahn M, Zellerhoff M, Klingenbeck-Regn K. 3D imaging with flat-detector C‑arm systems. In: Reiser MF, Becker CR, Nikolaou K, Glazer G, editors. Multislice CT. Berlin: Springer; 2009. pp. 33–51.CrossRef
24.
Zurück zum Zitat Struffert T, Lang S, Scholz R, Hauer M, Dörfler A. Strahlendosis bei zerebraler Angiographie und Flachdetektor-CT-Applikationen in der Neuroradiologie. Radiologe. 2015;55:654–62.CrossRefPubMed Struffert T, Lang S, Scholz R, Hauer M, Dörfler A. Strahlendosis bei zerebraler Angiographie und Flachdetektor-CT-Applikationen in der Neuroradiologie. Radiologe. 2015;55:654–62.CrossRefPubMed
Metadaten
Titel
Time-resolved 3D Rotational Angiography (4D DSA) of the Lenticulostriate Arteries: Display of Normal Anatomic Variants and Collaterals in Cases with Chronic Obstruction of the MCA
verfasst von
S. Kammerer
M. Mueller-Eschner
J. Berkefeld
S. Tritt
Publikationsdatum
28.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Neuroradiology / Ausgabe 4/2017
Print ISSN: 1869-1439
Elektronische ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-017-0578-8

Weitere Artikel der Ausgabe 4/2017

Clinical Neuroradiology 4/2017 Zur Ausgabe

Information

Information

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.