Background
Regular and appropriate exercise is associated with the prevention of chronic health problems such as heart disease and Type 2 diabetes [
1‐
3] and with an increase in physical and mental functional abilities [
4,
5]. To attain these protective and beneficial health effects, exercising daily for at least 30 min (mins) at a moderate intensity is recommended [
3]. However, despite concerted efforts campaigning for the inclusion of daily exercise approximately 50% of adults fail to achieve these prescribed guidelines for exercise [
3]. Also of concern is that 60% of individuals who commit to starting an exercise program drop-out within the first 6 months. Therefore, the challenge for those promoting physical activity extends beyond the encouragement of individuals to exercise through to ensuring that these committed individuals stay self-motivated when incorporating daily exercise as part of their habitual routine. Identifying foods or dietary supplements that specifically support the desire to exercise daily will enable an individual to adhere to an exercise program and maintain an active and healthy lifestyle.
A significant determinant on whether an individual will regularly participate in an exercise activity is their motivation to the exercise, i.e. their emotions and mood, which will include both positive and negative aspects. Muscle fatigue (defined as a reduction in maximal force generating ability [
6]) experienced during exercise can be a major influence on an individual’s self-motivation to continue with the exercise and is dependent upon external influences such as the type of exercise, intensity and duration, environmental conditions (e.g. temperature) as well as the physical fitness and health status of the individual. Fatigue can by caused by both central and peripheral components, and whilst peripheral fatigue is a result of changes at or distal to the neuromuscular junction, central fatigue is due to a decrease in maximal voluntary activation [
6]. The interplay and impact of both peripheral and central fatigue on motivation at different exercise intensities [
7,
8] has led to the ‘dual-mode theory’ proposed by Ekkakakis et al. [
9]. In this model, they postulate that changes in affective responses while exercising at low and moderate intensities are predominantly influenced by central factors. Whereas, the decline in affective responses during high intensity exercise is likely due to peripheral fatigue brought about by the physiological (i.e. neuromuscular) demand of the exercise rather than central fatigue. Furthermore, the mechanisms underpinning central responses to exercise are presently unclear, but appear to involve modulation of intrinsic brain factors. Alterations in brain neurochemistry has been proposed to have a significant role in mediating intrinsic motivation during prolonged exercise [
10‐
13]. The monoamines serotonin, dopamine and noradrenaline have garnered the most attention with regards to exercise fatigue and motivation due to animal studies demonstrating the exercise-induced modulation of these neurotransmitters and their metabolites in localised areas of the brain [
11,
12].
Dietary supplementation rich in polyphenolic compounds have been shown to support cognitive performance and mood via the modulation of monoamine nerve pathways in healthy adults and in those suffering with a cognitive disorder [
14,
15]. In recent human nutrition intervention studies conducted by our group [
16,
17], consumption of a New Zealand blackcurrant juice attenuated the decline in cognitive performance and reduced affective fatigue in healthy volunteers following a battery of cognitive tasks [
16]. The preservation in cognitive performance was speculated to be mediated by the ability of blackcurrant-derived polyphenolic compounds to modulate monoamine neurotransmitters via the inhibition of monoamine oxidase-B (MAO-B) [
17].
In this current study, we extend upon this current knowledge to explore the efficacy of timed consumption of a polyphenolic-rich juice made from New Zealand blackcurrants (delivering 4.8 mg total polyphenols/kg bodyweight) on the affective response in healthy sedentary individuals while they perform a self-motivated low impact walk on a treadmill designed not to induce peripheral fatigue or pain. The findings from this study contribute to the hypothesis that consumption of New Zealand blackcurrant polyphenolics facilitate positive affective responses to support exercise motivation and maintenance of a healthy active lifestyle.
Discussion
In this preliminary study, timed consumption of a polyphenolic-rich juice made from New Zealand blackcurrants 1 h prior to exercise supports positive central affective responses during a self-motivated low impact walking exercise. Motivation and commitment to exercise is largely driven by an individual’s affective response. This is a complicated process involving a number of factors, including an individual’s psychological disposition, physical fitness, and importantly the exercise type, intensity, duration and environmental settings [
32]. Previous studies by us [
16,
17] revealed a time-dependent inhibition of MAO-B activity after the consumption of a polyphenolic-rich BJ and subsequent modulation of affective-regulating monoamine neurotransmitters. These findings suggest that acute bioavailability and bioactivity of blackcurrant polyphenolics may also support positive affective responses, like motivation, during exercise. Here we employ a parallel study design (minimize any exercise learning effect) to explore the capability of the BJ to assist positive affective responses (such as vigilance, mood, and motivation) in the context of adhering to a treadmill walking exercise for 2 h, personalized for participants fitness so as not to evoke peripheral fatigue.
To maximize the potential efficacy of the BJ, recruited individuals had similar physical characteristics and, by using a combination of questionnaires and a pre-trial exercise assessment, comparable physical fitness and mood profiles. Previous studies show that exercising at a high intensity above the lactate and ventilatory thresholds rapidly leads to neuromuscular (i.e. peripheral) fatigue and concomitant decline in exercising motivation. Here the exercise involved individuals walking on a treadmill at an intensity (calculated using the submaximal exercise intensity formula reported by Ebbeling et al [
19]) predicted to minimise peripheral fatigue. Peripheral fatigue, however, was not measured in this study, and since there is a strong link between central and peripheral fatigue [
6], we cannot exclude the possibility that changes in peripheral fatigue might contribute participant’s perceived exertion and drop-out rates, especially after 60 mins. Nevertheless, all participants found walking at the ~ 5.5 km/h pace easy to do and displayed similar exercise-induced steady-state heart rates with marginal, non-significant, changes in post-exercise blood lactate and an oxidative stress biomarker (MDA), irrespective of how long they walked for. Furthermore, support for this approach when exploring affective responses to exercise is shown by others [
8,
33] who found that positive affective responses were observed in healthy, but untrained, individuals who performed an exercise below their VO
2max independent of peripheral influences such as muscle fatigue and pain experienced in high impact exercise. In addition, both the BJ and PLA drink consumed by the participants in this study contained the same amount of sugar, which also may influence affective responses. Here we found no fluctuations in blood glucose after the consumption or either PLA or BJ, or during the walk on the treadmill. However, consumption of the BJ, without exercise, did cause a small increase in participants’ blood lactate levels, which was transient, although were lower than baseline levels by the end of the walking exercise. The mechanisms underlying these changes in the blood lactate profile are unclear as the participants relaxed prior to exercise and kept to the walking pace instructed by the trial coordinator during the treadmill exercise. Since lactate affect cognitive energy utilization [
34], we cannot exclude the possibility that transient changes in blood lactate observed in the BJ group, prior to and during exercise, may be the result of blackcurrant-derived polyphenols potential influence on energy glycolytic metabolism and central affective responses.
Applying a low impact treadmill walking pace in this study that was predicted to minimise peripheral fatigue and exercise-induced oxidative stress enabled us to explore the efficacy of the BJ (rich in polyphenols) in supporting a positive affective response, and motivation to exercise. Participant affective responses varied over the length of the walk and were linked to participant walk time and drop-out rate. Participant’s perception of fatigue in the PLA group was consistently higher than those who consumed the BJ drink over the first 60 mins walking period. This was despite participants’ peripheral responses (HR, blood lactate and MDA) to the exercise being similar as well as displaying similar pre-exercise fitness scores. Affective mood responses decreased with walk time in both intervention groups, however after 20 mins differences between the PLA and BJ groups were observed. This, however, coincided with the beginning of participant’s drop-out and therefore, due to the small number of individuals taking part in this preliminary study, cannot exclude the possibility that the participants still walking after 60 mins may have exhibited an innate self-motivation to exercise irrespective of the nutrition group they were assigned to, although calculation of Cohen’s
d index revealed a medium effect size indicating that an increase in participant numbers (>
n = 50) may show significant treatment effect (
p = 0.05) between PLA and BJ groups. Furthermore, to minimize (although not exclude) the influence of participant drop-out a ‘last number carried forward’ analysis, which is the recommended statistical approach used in long-term clinical intervention studies to account for patient drop-out [
29] was applied. Affective responses by participants in the PLA group revealed a clear inverse linear relationship between perceived exertion and mood. This was not as apparent in the BJ group, suggesting that blackcurrant-derived polyphenolic compounds maybe having an impact on central affective responses resulting in the skewed inverse relationship observed between the perceived EF and FS during exercise. The cause for this, although unknown, may involve blackcurrant polyphenols modulating neural pathways primarily involved in perceived fatigue, and supports this observation reported by us [
16] and others [
35,
36].
In addition to individual physical fitness variations, motivation studies show that environmental settings whilst exercising are also important for exercise adherence. Listening to music [
37‐
39] or being coached [
40,
41] while exercising improves compliance and has a positive effect on mood. Here, participants conducted the treadmill walking exercise at the same time of day (i.e. ~ 8 am), in a room that was set-up to eliminate external factors (windows were obstructed, any time indicators or visuals cues on walls or furniture within participant’s sight were masked or removed and no one was allowed into the room except the trial coordinator to collect subjective data). Participants were, therefore, reliant upon self-motivation to complete the treadmill exercise, and also interaction between participant and trial coordinator taking the subjective measures were keep to a minimum, we cannot exclude that it may have had an impact as the walk time increase and participants began to get bored and the temptation to quit greater. Feedback voluntarily disclosed by participants (irrespective of nutrition intervention) at the conclusion of their exercise revealed that they were bored and most would have walked longer if they had been allowed to listen to music or had been coached. Participants within the PLA group, in particular, reported a higher degree of boredom and had a higher drop-out rate within the first 30 mins. This observation lends support to the hedonic principle of adhering to exercise (over-viewed by Williams [
32]), whereby allowing individuals to have self-control over exercising conditions (i.e. intensity, pace and environmental settings) produces a sustainable positive affective response. Since individuals do not typically exercise in environments devoid of these external factors, further studies are required to determine whether the efficacy of BJ on central affective responses would be supported and/or enhanced by additional self-motivating factors (i.e. music) when adhering to regular exercise regimes.
Polyphenols (especially anthocyanins) are the predominant flavonoids present in berryfruit and the acute functional benefits attained from consuming berryfruit is dependent on their bioavailability and bioactivity. Human feeding studies [
16,
26,
42‐
45] show a time-dependent increase in polyphenolic compounds and/or metabolites within the plasma 1 h after consumption of berryfruit, including blackcurrant [
16,
26]. This is shown to coincide with acute biochemical and physiological changes including increased peripheral blood flow [
46] and endothelial function [
47] in healthy adults. In addition, regular consumption of berries has been associated with long-term cognitive health [
48,
49] that may involve polyphenolic and/or metabolite liver transformation, tissue accumulation and/or colon microflora [
43,
50,
51]. Here in this current study, we applied previous knowledge of the acute blackcurrant polyphenolic compounds bioavailability reported by us [
17,
26] and others [
42,
46] together with the temporal MAO inhibition profile after the consumption of a polyphenolic-rich BJ reported by Watson et al. [
16,
17] to select a suitable BJ dose and pre-exercise consumption time to maximize the potential influence on positive affective responses during a low impact exercise. Indeed, we found that plasma collected 1 h after BJ (4.8 mg/kg bodyweight) consumption showed a dramatic acute decline (> 90%) in platelet MAO-B activity, which was still detectable in participant’s plasma once they had stopped exercise, even those who walked for 2 h. Furthermore, although the plasma polyphenolic bioavailability profile and identification of the polyphenol bioactive(s) was not the focus of this study, the observed post-consumption bioefficacy of BJ on MAO-B activity supports Watson’s et al. [
16,
17] observations of an acute decline in MAO-B activity after the consumption of BJ. Since the decline in MAO-B activity correlates with the preservation of monoamine neurotransmission [
52] and reduced perception of fatigue while conducting a set battery of cognitive tasks [
16], it is possible that, in this current study, the inhibitory action of pre-exercise consumption of BJ on MAO-B activity detected in participants for the length of their exercise may have influenced and/or contributed to the overall positive affective response observed in this group.
MAO-A and MAO-B are both involved in the degradation of various monoamine neurotransmitters including dopamine, serotonin and norepinephrine. Although both isoenzymes are active in the central nervous system, only MAO-B is found in human blood platelets. The pharmacological inhibition of brain MAO-B activity has been used to treat those diagnosed with neurological diseases and depression [
53], potentially through their neuroprotective properties in reducing the metabolism of monoamines. There is a good correlation between platelet and central nervous system MAO-B activity and changes in platelet MAO-B activity are shown to be a suitable biomarker for fluctuations in monoamine neurotransmitters and therefore the affective response [
16,
17]. Moreover, there is some evidence that exercise influences monoamine activity. Platelet MAO-B activity was found to progressively increase following short successive cycling bouts at increasing intensities then declined once the exercise intensity reached 40% of an individual’s maximal tolerance in healthy male volunteers [
54]. Further, MAO-B activity was found to be inversely correlated to subjective ratings of perceived exertion following a bout of maximal exercise [
55]. These findings suggest the involvement of MAO-B in the metabolism of key neurotransmitters during exercise, thereby influencing affect and motivation, which may be more prominent during low and moderate exercise intensities when exercise-induced MAO-B activity is optimal. Here comparison between platelet MAO activity and the time walked by participants in the BJ group revealed a tentative (r
2 = 0.17,
p = 0.12) inverse relationship that was not evident in the PLA group. Whilst it can be speculated that the inhibitory action of blackcurrant polyphenols on MAO-B activity modulates central affective responses and motivation to exercise, the lower drop-out rate observed in the BJ group in this preliminary study was not significant.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.