Skip to main content
Erschienen in: BMC Ear, Nose and Throat Disorders 1/2016

Open Access 01.01.2016 | Research article

Tinnitus- related distress: evidence from fMRI of an emotional stroop task

verfasst von: Dennis Golm, Carsten Schmidt-Samoa, Peter Dechent, Birgit Kröner-Herwig

Erschienen in: BMC Ear, Nose and Throat Disorders | Ausgabe 1/2016

Abstract

Background

Chronic tinnitus affects 5 % of the population, 17 % suffer under the condition. This distress seems mainly to be dependent on negative cognitive-emotional evaluation of the tinnitus and selective attention to the tinnitus. A well-established paradigm to examine selective attention and emotional processing is the Emotional Stroop Task (EST). Recent models of tinnitus distress propose limbic, frontal and parietal regions to be more active in highly distressed tinnitus patients. Only a few studies have compared high and low distressed tinnitus patients. Thus, this study aimed to explore neural correlates of tinnitus-related distress.

Methods

Highly distressed tinnitus patients (HDT, n = 16), low distressed tinnitus patients (LDT, n = 16) and healthy controls (HC, n = 16) underwent functional magnetic resonance imaging (fMRI) during an EST, that used tinnitus-related words and neutral words as stimuli. A random effects analysis of the fMRI data was conducted on the basis of the general linear model. Furthermore correlational analyses between the blood oxygen level dependent response and tinnitus distress, loudness, depression, anxiety, vocabulary and hypersensitivity to sound were performed.

Results

Contradictory to the hypothesis, highly distressed patients showed no Stroop effect in their reaction times. As hypothesized HDT and LDT differed in the activation of the right insula and the orbitofrontal cortex. There were no hypothesized differences between HDT and HC. Activation of the orbitofrontal cortex and the right insula were found to correlate with tinnitus distress.

Conclusions

The results are partially supported by earlier resting-state studies and corroborate the role of the insula and the orbitofrontal cortex in tinnitus distress.

Background

Tinnitus refers to the perception of sounds with no external origin [1]. Chronic tinnitus affects approximately 5 % of the population [2, 3]. While most individuals habituate to this phantom noise, 17 % of the individuals with chronic tinnitus are however severely distressed by the condition [4]. This distress is not predicted by psychoacoustic qualities of the tinnitus [5, 6], but is rather due to a negative initial cognitive- emotional evaluation of the tinnitus sound [7].
Dysfunctional beliefs about tinnitus, attention focus on the tinnitus, dysfunctional coping and avoidance behavior are considered to instigate and maintain tinnitus- related distress [8, 9]. Indeed, it has been shown that subjects with unilateral tinnitus pay more attention to the tinnitus ear [10]. Furthermore, this attention focus on tinnitus seems to increase tinnitus- related distress [11]. Concluding from those studies, people with tinnitus focus their attention on the phantom noise and this in turn elevates the tinnitus- related distress. On the other hand, it has been shown that attention to tinnitus is influenced by the amount of tinnitus annoyance [12]. Thus, attentional bias to tinnitus seems to be influenced by the amount of tinnitus- related distress. Additionally, Andersson and Westin [13] suggested attention to tinnitus as a mediator for tinnitus- related distress, provided that tinnitus is appraised negatively. This view has been corroborated by a study of Cima and colleagues [14], who found an association between catastrophizing and increased attention towards tinnitus in a sample of 61 tinnitus patients and by Andersson and collaborators [15] who could show that attention to tinnitus increased the amount of tinnitus- related thoughts compared to thought- suppression. Thus, there seems to be an association between attention focus to tinnitus and tinnitus- related negative information. Support for this view comes from a study that found a facilitation effect towards tinnitus- related words in comparison to neutral words measured by the Emotional Stroop Task (EST) in a group of tinnitus patients, but not in a control group [16].
The EST is a well- established paradigm to examine emotional processing [1719] and attentional bias [20]. It has been frequently used in the field of emotional disorders [20] and also in chronic pain [21] which shares common features with tinnitus [2224]. Emotionally salient words should draw attention from the task (color- naming of the words), thus resulting in longer reaction times [25]. Generally, studies on the EST find an interference- effect for concern- related words. Andersson and colleagues [16] on the other hand found a facilitation effect for tinnitus- related words within a group of tinnitus patients (n = 104), but not within a healthy control group (n = 21). However, this study had some methodological issues, since the groups were not compared with each other and varied greatly in sample size. Another study on tinnitus patients that used the EST did not find any interference or facilitation effect for tinnitus- related words [26]. Thus, there seems to be no clear evidence of an Emotional Stroop effect in tinnitus patients. However, none of these studies controlled for the level of tinnitus- related distress as a potential moderator of effects. Therefore, we expect an Emotional Stroop effect to only occur in highly distressed tinnitus patients. No study known to the authors has ever examined an Emotional Stroop effect in highly compared to low distressed tinnitus patients.
Additionally, the emotional processing of tinnitus-related words should heighten the tinnitus annoyance, resulting in the activation of distress-related brain regions. However, little is known about the neural correlates of tinnitus related distress. According to the Global Brain Model [27], damage to the hearing system reduces the sensory input, decreases inhibitory mechanisms in the central auditory system and finally leads to an enhanced excitability of the auditory cortices. This activity in the auditory cortices is supposed to be modulated by a network consisting of frontal, parietal and cingulate regions. The model proposes that this fronto- parietal- cingulate network is more active in highly distressed tinnitus patients. The dorsolateral prefrontal cortex (DLPFC), the orbitofrontal cortex (OFC), anterior cingulate (ACC) and the precuneus/posterior cingulate (PCC) are considered as key structures in that network. A resting- state electroencephalography (EEG) study [28] identified a component, that differed between high and low distressed tinnitus patients (14–18 Hz, 22–26 Hz) that consisted of the medial frontal gyrus, middle frontal gyrus, inferior frontal gyrus, rectal gyrus, ACC, parahippocampal gyrus and the insula. Another resting- state EEG study that compared high and low distressed tinnitus patients [29] identified four regions that contributed significantly to tinnitus annoyance; the subcallosal ACC, the parahippocampal area, the PCC and the DLPFC. Further support for this model comes from resting- state fMRI- studies. In a mixed sample of bothered and non- bothered tinnitus patients according to the Tinnitus Questionnaire (TQ) [30], tinnitus patients showed higher functional connectivity within an auditory resting-state network in comparison to healthy controls bilaterally in the parahippocampal gyrus, the inferior frontal gyrus, right prefrontal cortex, right inferior parietal lobe and postcentral gyrus [31]. A resting- state fMRI- analysis on bothered tinnitus patients showed greater functional connectivity as compared to HC between the right anterior insula and left inferior frontal gyrus which correlated positively with activity in the auditory cortex [32]. No differences in functional connectivity could be found in a comparison of non- bothered tinnitus patients and healthy controls [33]. Thus, these studies confirmed the role of frontal and limbic structures in tinnitus distress and to some extent in parietal areas. A resting state Magnetoencephalography study found a correlation between the strength of inflow to the temporal cortices and tinnitus annoyance. The temporal cortices received that input from the prefrontal cortex (PFC), cuneus, precuneus and PCC [34]. Hence, corroborating a role of the precuneus in tinnitus annoyance.
Recently, it has been suggested that several overlapping brain networks contribute to the perception of tinnitus; the somatosensory cortex, the auditory cortex, a perception network, a salience network, a distress network and memory areas [35]. Networks of interest for the study of selective attention and distress are the perception network, salience network, distress network and memory areas. Subgenual ACC, dorsal ACC, PCC, parietal cortex, the precuneus and the frontal cortex form the perception network. Activity within these areas is required to perceive a phantom percept consciously. The salience network, consisting of the dorsal PCC and anterior insula reflects the behavioral significance of the percept. The distress network should include the ACC, anterior insula and amygdala. According to the model memory areas; the parahippocampal area, hippocampus and amygdala, should be associated with awareness to the salient perception and play a role in the reinforcement of annoyance [35, 36].
Based on the available empirical evidence regarding tinnitus distress and taking into account the suggestions of the Global Brain Model and the Working Model of Phantom Percepts we hypothesize highly distressed tinnitus patients (HDT) to react slower (interference- effect) to tinnitus-related words as compared to neutral words in an EST and in comparison to low distressed tinnitus patients (LDT) and healthy controls (HC). Additionally, we expect HDT to rate tinnitus- related words as being more negative and arousing in comparison to neutral words and in comparison to LDT and HC. On a neural level we expect HDT to show a higher activity, as measured by blood oxygen level dependent (BOLD) fMRI, in the precuneus, limbic areas and frontal areas in comparison to LDT and HC, especially the parahippocampus, dorsal and subgenual ACC (including anterior and posterior midcingulate cortex), PCC, insula, DLPFC (Brodman Area (BA) 9, 46) and OFC (including inferior frontal gyrus, BA 10, 11, 47).

Methods

Sample

Participants were recruited for participation in the study via regional newspapers, the homepage of the German Tinnitus League, flyers and word of mouth. Inclusion criteria were a chronic tinnitus, defined as a constant noise in the ear(s) or the head for at least one year and German as the first language. Exclusion criteria were age above 70, a current major depressive syndrom, hyperacusis, current treatment with psychotropic drugs, days without tinnitus perception, tinnitus perception only in total silence, residual inhibition > one minute, any counter indications to MR- methodology (e.g. pacemaker) and an actual hearing loss. According to the Guidelines on Non- Physician Care and Medical Aids (Heil- und Hilfsmittelrichtlinien) hearing loss was defined as a loss ≥ 30 dB HL at 2 kHz or in two other frequencies between 0.5 kHz and 3 kHz on the better hearing ear [37]. Participants were allocated to the HDT- group if they achieved a score above 30 (moderate annoyance) in the German version of the TQ [30, 38]. The final sample consisted of 48 participants; 16 HDT, 16 LDT and 16 HC. The groups were matched by age and sex. As expected, HDT had a higher level of tinnitus distress. HDT had higher anxiety and depression scores as measured by the German version of the Hospital Anxiety and Depression Scale (HADS) [39, 40] and higher hypersensitivity to sound scores as measured by a Questionnaire on Hypersensitivity to sound (GÜF) [41] than LDT and HC. In comparison to LDT, HDT had a lower vocabulary test score in a subtest of the Hamburg Wechsler Intelligence Test [42]. The three groups did not differ with regard to age, sex, tinnitus loudness and hearing loss (see Table 1 and Fig. 1 for details) (Please see the assessment section for details about the instruments).
Table 1
Description of the groups and characterizing variables
 
HDT
LDT
HC
HDT vs. LDT
HDT vs. HC
LDT vs. HC
 
(n=16; 13♂)
(n=16; 13♂)
(n=16; 13♂)
df=30
df=30
df= 30
 
Mean
SD
Mean
SD
Mean
SD
t (p)
t (p)
t (p)
Age
53.38
12.33
52.88
12.14
52.38
9.42
0.12 (0.9088)
0.26 (0.7984)
0.13 (0.8973)
HADS A
8.31
3.42
4.06
3.07
2.75
2.29
3.70 (0.0009)
5.40 (0.0000)
1.37 (0.1805)
HADS D
6.75
3.44
3.38
3.72
2.56
2.58
2.67 (0.0123)
3.90 (0.0005)
0.72 (0.4786)
VT
20.0
5.37
24.38
4.11
21.94
4.20
- 2.59 (0.0147)
- 1.14 (0.2646)
1.66 (0.1077)
GÜF
13.19
8.16
6.06
5.63
2.56
2.22
2.88 (0.0074)
5.03 (0.0000)
2.31 (0.0277)
Hearing Loss
22.23
6.77
23.28
10.41
19.31
9.09
- 0.34 (0.7365)
1.03 (0.3120)
−0.34 (0.7365)
TQa
40.0
6.69
15.0
6.28
  
10.89 (0.0000)
  
Loudness
39.75
20.99
49.94
20.77
  
- 1.38 (0.1778)
  
♂ male, df degrees of freedom, GÜF Geräuschüberempfindlichkeitsfragebogen (Questionnaire on Hypersensitivity to Sound), HADS Hospital Anxiety (A) and Depression (D) Scale, HC healthy controls, HDT highly distressed tinnitus patients, LDT low distressed tinnitus patients, Loudness maximum (in case of bilateral tinnitus) loudness of the tinnitus in dB HL as measured via matching of the tinnitus to a similar sound, t t- value, TQ Tinnitus Questionnaire, VT vocabulary test
All t-tests were two-sided
aDue to missing data on the day of the MRI- scan, the missing TQ- score of 4 participants (1 HDT, 3 LDT) was replaced with the TQ- score from the TQ, that had been filled in after the telephone screening

Experimental Design

The Emotional Stroop Task comprised of two conditions; tinnitus- related words (TW) and neutral words (NW). The stimuli were presented in a block- design with six blocks per stimulus category. Within one block, each word was presented for 1750 ms in one of four colors (red, blue, green, yellow), followed by a fixation cross (250 ms). The words were presented in a randomized order and each word was presented twice per block. Thus, the length of each block was 24 s. Neutral blocks alternated with blocks of TW. Before and after each block a fixation cross was presented for 24 s. Participants were instructed to identify the color of each word by pressing a button on a four- button- response- pad by using the index- and middle- finger of each hand. Inside the MRI- scanner the stimuli were presented on a set of MRI- suited LCD- goggles (resolution 800 × 600; Resonance Technology, Northridge, CA, USA). If needed, the goggles were combined with corrective lenses to ensure corrected to normal vision. All participants wore headphones for communication with the experimenter and noise protection. Additionally, the participants underwent a masking and an emotional sentence task [43] in the scanner, which is not presented in this article. The total scan time was approximately 60 min. Thus, the study had a 2×3 quasi- experimental design with the within subject factor word category (TW, NW) and the between subject factor group (HDT, LDT, HC).
All stimuli had been selected previously in two pilot studies (unpublished data). In a first pilot study the valence of 69 words potentially relevant to tinnitus distress and 69 neutral words (matched for frequency of occurrence in German language, number of letters and syllables) was rated by 122 participants. Those participants were distributed evenly between three groups: high distressed tinnitus patients (TQ III and IV), low distressed tinnitus patients (TQ I and II) and healthy controls. The words were derived from the TQ, previous research, patient reports and interviews with medical and psychological tinnitus experts. From this study 28, emotionally relevant tinnitus words and 28 matched neutral words were selected. Emotional relevance was defined as a higher negative valence of the tinnitus- related words within the highly distressed group (maximized difference between the tinnitus and the neutral word) and also in comparison to the other two groups. In a second pilot study, 53 participants underwent an Emotional Stroop Task, 16 highly distressed tinnitus patients, 18 patients with low tinnitus distress and 19 healthy controls. Based on the results of the Stroop task, the six words with the biggest interference effect (response time to TW – response time to matched NW > 40 ms) within the HDT- group and with no interference effect in the LDT- and HC-group were selected for this study (see Table 2; Meinhardt-Renner and Kröner-Herwig unpublished).
Table 2
Stimuli: tinnitus and neutral words matched for word length and frequency of occurrence in the German language
Tinnitus Words
Neutral Words
Brummen
Kirsche
to hum
cherry
Nachdenken
Schubladen
to think about sth.
drawers
Nacht
Preis
night
price
Rauschen
Pflanzen
static noise
to plant
Schrill
Schrank
shrill
cupboard
Testbild
Weltmeer
test pattern a
ocean
aThe test pattern on German television screens was accompanied by a high pitched tone

Assessment of psychosocial variables and audiological information

The TQ [38] is a self- report questionnaire consisting of 52 items. A total score of 0 to 30 corresponds to mild distress, a score between 31 and 46 matches moderate distress, a score of 47 to 59 corresponds to severe distress and a score of 60 and above is considered as very severe tinnitus distress [38]. The test- retest reliability of rtt = 0.94 [44] can be considered as very good.

Determination of exclusion criteria

The German version of the Patient Health Questionnaire [45, 46] assesses diagnostic information about psychopathology and was used to exclude a major depressive syndrome and concurrent psychotropic medication. The Structured Tinnitus Interview (Strukturiertes Tinnitus Interview) [47] assesses detailed information about tinnitus and associated symptoms, such as hyperacusis, hearing loss and vertigo. It was used to exclude hyperacusis, hearing loss, acute tinnitus, non- continuous tinnitus and perception of tinnitus only in total silence.
An audiological evaluation was conducted to further exclude hearing loss and residual inhibition > one minute. Hearing level, minimal masking level, loudness discomfort level, residual inhibition, tinnitus pitch and loudness were assessed. With the exception of the hearing level and tinnitus loudness those features are not of any interest for the current study. The assessment was conducted in the clinical Department of Otorhinolaryngology of the University of Göttingen.

Sample characterization

Anxiety and depression scores were assessed with the German version of the HADS [39. 40]. Both subscales consist of seven items with a satisfactory internal consistency (anxiety subscale: α = 0.80, depression subscale: α = 0.81) and convergent validity (anxiety subscale: r = 0.65, depression subscale: r = 0.70). The scale has originally been developed for patients suffering from chronic medical conditions [39].
Hypersensitivity to sounds was assessed with the GÜF [41]. The questionnaire consists of 15 items and has a maximum score of 45; a score of 0–9 corresponds to mild hypersensitivity to sounds, 10 to 15 is considered as moderate, a score between 16 and 23 severe and 24 and above represents very severe hypersensitivity to sounds. Internal consistency for the subscales ranges between .77 and .82.

Behavioral data

To measure valence and arousal of the stimuli, the tinnitus and neutral words were rated on a computerized version of the Self- Assessment Manikin [48, 49]. The lower the values on the 9- point valence scale, the more negative a word is evaluated (1= very negative, 9= very positive). The higher the ratings on the 9- point arousal scale, the higher the arousal (1=not arousing, 9= very arousing). In order to test for an Emotional Stroop effect, response times of the color naming of the words were recorded during the MRI- scan.

Control variables

The vocabulary subtest (VT) of the Hamburg Wechsler Intelligence Test [47] was performed to control for differences in vocabulary, since novelty of words might act as a confounding variable [50].

Image acquisition

MR imaging took place on a 3 T MRI- scanner (Siemens Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany). An 8- channel standard phased- array head coil was used (for one participant a 12- channel head coil was used due to head size). Firstly, an anatomical 3D T1- weighted dataset was attained (Turbo fast low angle shot (Turbo FLASH), echo time (TE): 3.26 ms, repetition time (TR): 2250 ms, inversion time: 900 ms, flip angle 12°) that covered the whole head at 1 × 1 × 1 mm3 isotropic resolution. T2*- weighted gradient- echo echo- planar imaging was used to acquire the functional datasets (TE: 36 ms, TR: 2000 ms, flip angle 90°, 22 slices of 4 mm thickness at an in- plane resolution of 2 × 2 mm2). Within one functional run 302 whole brain volumes were recorded.

Procedure

Participants, who wanted to take part in the study, underwent a telephone- screening, which included questions regarding exclusion and inclusion criteria and the structured interview about tinnitus. Then, the participants were sent the following questionnaires: TQ, HADS- D, PHQ- D, GÜF and a specifically designed questionnaire to further assess MRI- specific exclusion criteria. In a next step the participants underwent the audiological examination (see above), which took part within one week before the MRI- examination. Before entering the MRI the participants underwent a pre- training to get familiar with the procedure. The Emotional Stroop pre- training consisted of four neutral words naming punctuation marks (Punkt (dot), Komma (comma), Fragezeichen (question mark), Klammer (bracket)) that appeared randomly in one of four different colors (red, blue, green, yellow). The participants were instructed to identify the colors via button press on a keyboard. The participants heard a feedback sound in case of a wrong or missing answer. After each block (16 trials, each word in each color) the instruction appeared again. The training program continued until the participant completed one run without mistakes to ensure all participants had successfully learned which buttons corresponded to which colors. After the pre- training the participants completed the EST inside the MRI- scanner without feedback. After the scanning procedure all participants evaluated the stimuli with the computerized version of the self- assessment Mannequin for arousal and valence and filled in the TQ for a second time. Additionally, the participants completed a vocabulary test, which was conducted via telephone on a later date, since they could be exhausted after the MRI- procedure.

Statistical procedure

Behavioral data

The software STATISTICA (Version 10, Stat Soft. Inc., Tulsa, USA) was used to analyze the behavioral data. Regarding the reaction times in the Stroop Task and the ratings of valence and arousal three 3 x 2 repeated measures ANOVAs were performed with the between factor group (HDT, LDT, HC) and the within factor word category (TW, NW). If the sphericity assumption was violated, Greenhouse- Geisser corrections were performed. LSD- post- hoc- tests were performed and p was set at .05. As measure of dispersion the standard deviation of the mean was used throughout.

Functional imaging data

The fMRI data was analyzed with Brain Voyager QX Software version 2.0.8 (Brain Innovation, Maastricht, The Netherlands). Standard preprocessing was performed (3D motion correction, slice scan- time correction, temporal filtering (linear trend removal and high pass filtering) and spatial smoothing with a Gaussian kernel (full width at half maximum 8 × 8 × 8 mm3). On the basis of the general linear model, a random effects group analysis was performed. Only words to which participants responded correctly were used as predictors. Word stimuli with wrong or missing responses were included as confounding variables in the model. The effects of the 1750 ms presentation of the words were convolved with the canonical hemodynamic response function and analyses of planned contrasts were performed. Cluster level threshold estimation was used to correct for multiple comparisons [51, 52]. The uncorrected cluster threshold was set at p = .001 for within- group comparisons and correlational analyses (see below) and p = .005 for between- group comparisons. Monte Carlo simulations (1000 iterations) were performed on the basis of the estimated smoothness of the map and the number of activated voxels to determine the minimum cluster size which was required to yield a maximum error rate at the cluster level of p < .05. The Talairach Demon [53, 54] was used to identify activations by nearest coordinates. In accordance with the Four- Region Neurobiological Model [5557] activations located in the cingulate gyrus were allocated to its subdivisions. Furthermore, the predictors for the contrast TW > NW were extracted and correlated with the individual TQ scores, HADS- depression and HADS- anxiety scores, the vocabulary test scores and the loudness of the tinnitus as assessed via tinnitus loudness matching (in dB HL). In the case of bilateral tinnitus, the louder tinnitus was included. Since there were differences between the groups in terms of vocabulary, anxiety and depression, those scores were included in a correlational analysis to check for potentially confounding effects. Tinnitus loudness was included to check for effects of salience. Recently, it has been suggested that the pain- matrix is not specific for nociceptive stimuli but reflects a salience detection system [5860]. Therefore, in order to determine whether our effects are specific to the distress network we included a correlation with tinnitus loudness to explore activations within the salience network.

Results

Behavioral data

Reaction times, valence and arousal

It was expected that HDT would show slower reaction times to TW in comparison to NW. This difference should be greater for HDT in comparison to LDT and HC. A repeated measure ANOVA showed no main effect for group or word category, but a group x word category interaction; however LSD- post- hoc- tests revealed no differences within the HDT and LDT, but within the HC (see Fig. 2 and Table 3 for details).
Table 3
Behavioral data
       
ANOVA
 
HDT
LDT
HC
Group
Word Cat.
G×W
 
Mean
SD
Mean
SD
Mean
SD
F (2, 44)
F (1, 44)
F (2, 44)
Val TW
4.64
1.13
4.77
0.83
5.09
0.76
0.72
60.30
0.28
Val NW
5.83
1.29
5.93
0.49
6.05
0.95
p= 0.4941
p= 0.0000
p= 0.7555
Arou TW
3.35
1.70
2.88
1.33
3.16
1.73
0.30
12.44
0.28
Arou NW
2.72
1.67
2.38
1.42
2.78
1.85
p= 0.7399
p= 0.00099
p= 0.7544
RT TW
759.96
73.86
754.05
112.60
721.96
128.47
0.26
2.50
4.65
RT NW
760.40
64.60
748.97
99.79
746.82
122.71
p= 0.7688
p= 0.1212
p= 0.0146
Arou arousal, F F- value, HC healthy controls, G group, HDT= highly distressed tinnitus patients, LDT low distressed tinnitus patients, NW neutral words, RT reaction time, SD standard deviation, TW tinnitus words, Val valence, Word Cat word category
Two repeated measures ANOVAs were conducted to assess differences with regard to valence and arousal ratings of the stimuli. According to valence and arousal we found a main effect for word category but no effect for group or a group x word category interaction. Thus, TW were rated more negative and arousing in comparison to NW (see Table 3 and Fig. 3 for details).

FMRI data

Within group analysis

Within each group the BOLD- response to TW was compared with the brain activity in reaction to NW. Within the HDT group we expected a higher BOLD- response in the precuneus, limbic and frontal areas, such as the cingulate gyrus, the parahippocampus, the insula, DLPFC and OFC. With regard to our hypothesis a higher BOLD- response to TW as compared to NW within the HDT group could be found in the right insula, right DLPFC and the right precuneus. The HC group showed higher activations to TW in right middle frontal regions, and higher activations to NW in the the left dorsal PCC and right subgenual ACC. LDT only showed higher activations to NW in the right perigenual ACC and left dorsal PCC (see Table 4 and Fig. 4 for details).
Table 4
Peak- voxels of the within- group results of the contrast TW - NW
Group
Region
BA
Peak Voxel
t
Cluster (mm3)
   
x
y
z
  
HDT
R Inferior Frontal Gyrus
09
45
8
22
4.20
1 (1755)
 
R Insula
13
36
- 1
16
4.45
 
 
R Precentral Gyrus
06
30
- 10
52
3.86
2 (516)
 
R Cuneus/Precuneus
07
6
- 73
34
3.64
3 (1665)
 
L Cuneus
19
0
- 82
31
4.10
 
 
L Cuneus
18
- 3
- 94
11
3.87
 
 
L Thalamus
 
- 9
- 7
1
3.98
4 (279)
 
L Thalamus
 
- 15
- 16
13
4.50
5 (985)
 
L Superior Frontal Gyrus
08
- 15
24
46
- 4.24
6 (250)
 
L Declive
 
- 18
- 64
- 17
3.83
7 (264)
 
L Middle Frontal Gyrus
06
- 39
- 4
46
4.45
8 (1835)
 
L Fusiform Gyrus
 
- 45
- 52
- 17
3.95
9 (268)
LDT
R pACC
32
3
41
4
- 3.86
1 (265)
 
L dPCC
31
- 12
- 37
31
- 4.25
2 (368)
HC
R Middle Frontal Gyrus
09
51
11
34
4.09
1 (1245)
 
R Middle Frontal Gyrus
06
39
2
46
4.10
 
 
R sACC
25
3
17
- 8
- 4.26
2 (254)
 
L dPCC
31
- 3
- 40
31
- 3.97
3 (376)
BA Brodman area, dPCC dorsal posterior cingulate cortex, HC healthy controls, HDT highly distressed tinnitus patients, L left, LDT low distressed tinnitus patients, pACC perigenual anterior cingulate cortex, R right, sACC Subgenual anterior cingulate cortex, t t- value

Between group analysis

It was expected to find higher BOLD- responses in the hypothesized areas to TW in comparison to NW in HDT as compared to LDT and HC. We failed to find any differences in those regions when comparing HDT and HC, however we found a higher activation in the right insula and the OFC in the HDT group as compared to the LDT group (see Table 5 and Fig. 5 for details). Fig. 6 shows the percent signal change of the right insula and the orbitofrontal cortex.
Table 5
Peak- voxels of the between- group results
TW - NW
Region
BA
Peak Voxel
t
Cluster (mm3)
   
x
y
z
  
HDT vs. LDT
R Insula
13
33
- 1
13
3.81
1 (215)
 
R Inferior Frontal Gyrus
47
24
17
- 8
3.40
2 (439)
 
R Cuneus
18
3
- 79
25
3.64
3 (1186)
 
L Hypothalamus
 
- 9
- 4
- 2
4.80
4 (2598)
 
L Lentiform Nucleus
 
- 24
- 10
- 5
3.72
 
 
L Caudate
 
- 15
17
13
3.93
5 (385)
 
L Postcentral Gyrus
03
- 24
- 30
61
3.90
6 (117)
 
L Middle Frontal Gyrus
10
- 39
50
7
3.16
7 (199)
HDT vs. HC
R Hypothalamus
 
9
- 7
- 8
3.41
1 (877)
 
L Hypothalamus
 
- 6
- 7
- 5
4.16
 
 
R Cuneus
18
12
- 76
25
3.27
2 (208)
BA Brodman area, HC healthy controls, HDT highly distressed tinnitus patients, L left, LDT low distressed tinnitus patients, R right, t t- value

Correlational analysis

We further correlated the beta weights for the contrast TW > NW with tinnitus distress within the tinnitus group (HDT and LDT). Furthermore, correlations were computed with tinnitus loudness and all variables that differed between HDT and LDT. Correlations with tinnitus distress were found for the right insula and the right inferior frontal gyrus as part of the OFC. Depression correlated positively with activity in the right insula and the left dorsal PCC (see Table 6 and Fig. 7 for details). No other correlations were found.
Table 6
Peak- voxels of the correlations between the contrast TW - NW and TQ- scores, depression scores, anxiety scores, vocabulary test scores, GÜF-scores and maximum tinnitus loudness (in dB)
TW - NW
Region
BA
Peak Voxel
r (p= .001)
Cluster (mm3)
   
x
y
z
  
TQ
R Transverse Temporal Gyrus
41
45
- 22
13
0.60
1 (117)
 
R Insula
13
33
- 1
13
0.62
2 (217)
 
R Inferior Frontal Gyrus
47
24
17
- 11
0.62
3 (269)
 
L Caudate
 
- 6
2
4
0.62
4 (248)
HADS- D
R Insula
13
42
- 22
22
0.61
1 (110)
 
R Postcentral Gyrus
03
24
- 28
49
0.60
2 (123)
 
L Thalamus
 
- 12
- 22
13
0.62
3 (129)
 
L dPCC
31
- 18
- 34
37
0.60
4 (1503)
 
L Postcentral Gyrus
03
- 24
- 31
52
0.70
4
HADS- A
No correlation
      
VT
No correlation
      
GÜF
No correlation
      
Loudness
No correlation
      
BA Brodman area, dPCC dorsal posterior cingulate cortex, GÜF Geräuschüberempfindlichkeitsfragebogen (Questionnaire on Hypersensitivity to sound), HADS Hospital Anxiety (A) and Depression (D) Scale, L left, NW neutral words, r correlation coefficient, R right, TQ Tinnitus Questionnaire, TW tinnitus-related words, VT vocabulary test
The figure shows the correlation between the contrast TW - NW and the TQ- scores (top), and the correlation between TW - NW and the HADS depression scores (bottom) (only tinnitus patients were included). The number next to each cluster corresponds to the cluster number in table 6.

Discussion

The aim of the study was to examine possible effects of selective attention and the emotional processing of tinnitus- related words and their relation to tinnitus distress. Therefore an EST was conducted and the neural activity elicited by TW was compared to the neural response to NW within the HDT group and in comparison to LDT and HC. Furthermore the BOLD- response to TW was correlated with tinnitus distress, tinnitus loudness, vocabulary, depression, anxiety and hypersensitivity to sound. It was expected to find longer reaction times between TW and NW within HDT and in comparison to LDT and HC. Furthermore HDT should evaluate TW as more arousing and negative than NW and compared to the other two groups. However, we did not find any hypothesized effects of response times, nor did we find differences between HDT and the other two groups with regard to valence and arousal. All groups rated TW as more negative and arousing as compared to NW. On a neural level though, the HDT group showed a higher activation in the right insula and bilaterally in the OFC as compared to LDT. Furthermore, tinnitus distress correlated positively with the BOLD- response in the right insula and the right inferior frontal gyrus as part of the OFC. Activity in the right insula and the left dorsal PCC correlated positively with depression. Contradictory to our predictions we did not find differences between HDT and HC in any of the hypothesized regions. Thus, on a neural level our hypotheses have been partially supported.

The lack of an emotional stroop effect in HDT

Possible explanations for the lack of an Emotional Stroop effect are the response modality, type of stimuli and the infeasibility of the visual modality to examine effects of selective attention in tinnitus patients. It has been shown that a response via button-press, as in the current study, leads to smaller interference effects as compared to a vocal response in the original Stroop task [61]. However, since tinnitus is a heterogeneous symptom with great variations in variables such as tinnitus location and tinnitus pitch [62] standardized stimuli might not be the best choice. Idiosyncratic word stimuli which are more relevant to the individual emotional concerns (e.g. worries about the tinnitus) of each tinnitus patient could lead to better results. Studies using idiosyncratic word stimuli found Stroop effects in various areas such as posttraumatic stress disorder [63], obsessive- compulsive disorder [64] and healthy subjects [65]. However, no Emotional Stroop effect could be found in chronic pain patients [66], who share common features with tinnitus patients [23, 24, 67], though idiographic stimuli had been used.
Thus, paradigms that examine auditory selective attention might be more suitable to find differences not only on a neural, but also on a behavioral level. For example, in a dichotic listening task it has been shown that alcohol- dependent inpatients show more shadowing errors in comparison to social drinkers when concern- related words were presented in the irrelevant channel as compared to neutral words [68]. In an associative learning procedure [69], 42 different click- like tones were conditioned with positive, negative or neutral sounds from the International Affective Digitized Sounds system [70]. Magnetoencephalography showed an intensified processing of tones associated with emotional sounds (negative or positive) as compared to neutral sounds in frontal, parietal and auditory sensory areas. Thus, dichotic listening tasks that use tinnitus- related words or affective conditioning paradigms might be another possibility to examine effects of selective attention in tinnitus patients. However, a third possibility, which we cannot rule out in this study, might be a lack of power, since the only study, which found a facilitation effect in tinnitus- patients for tinnitus- related words consisted of 104 participants.
Though the current study did not find an interference effect, the fMRI- results can still be interpreted as neural correlates of tinnitus-related distress. An example from EEG-experiments even shows that neural responses could be more sensitive than reaction times [71, 72]. The N400 differentiated well between two conditions (semantically related vs. unrelated) in a letter-search priming paradigm in the absence of a reaction time effect, indicating a semantic context effect [72]. Thus, the authors believe that the results indicate the emotional processing of tinnitus- related words; however the emotional salience of those words obviously was not strong enough to interfere with the task. Thus future studies should use individual tinnitus words to ensure a high personal relevance of the stimuli as discussed above.

Differences between the groups

The amount of personal relevance of the stimuli could also explain the lack of hypothesized differences between HDT and HC, since the TW could not only be interpreted as tinnitus associated stimuli, but also by HC as generally negative characteristics (e.g. a shrill voice). This view is supported by earlier results, in which HDT showed among others a higher activation in the right insula to tinnitus- related sentences as compared to neutral sentences within their group and in comparison to HC [43]. The sentences provided a clear tinnitus context (e.g. I will never get rid of the tinnitus). Furthermore, the personal relevance of the sentences was rated and HDT evaluated tinnitus- related sentences as being more personally relevant in comparison to generally negative sentences, additionally they rated tinnitus sentences higher as compared to HC. HC however evaluated neutral sentences as more personally relevant than tinnitus- related and generally negative sentences. Thus, it might indeed be beneficial for future studies to include tinnitus- related words which are personally relevant to tinnitus patients but not for HC.
However, a number of resting- state studies, as mentioned above, found those differences. Thus, this finding might also be due to the methodology of a task- driven approach. LDT might have actively avoided the tinnitus words. This view is supported by the percent signal change in the OFC. While HDT tend to show higher activations to TW as compared to NW, this pattern seems to be reversed in low distressed patients. It has been shown before that reappraisal, as a strategy of emotional regulation, could lower the activation within the orbitofrontal cortex [73] and the insula [74]. Thus, an additional down- regulation of negative emotions in the low distressed group could explain the differences between HDT and LDT.

Tinnitus distress and depression

Activity in the right insula correlated with both; tinnitus distress and depression. Recently, using partial correlations, it has been found that tinnitus distress correlated exclusively with current density distribution in alpha 2, beta 1 and beta 2 activity of the right OFC and frontopolar cortex and beta 2 activation of the ACC. Depression scores however correlated with alpha 2 activity in the left OFC and frontopolar cortex [75]. This lateralization effect could however not be confirmed in this study. A recently conducted meta- analysis [76] showed that depressed individuals show a higher activation to negative stimuli in the amygdala, insula and dorsal ACC and a lower activation in the dorsal striatum and DLPFC as compared to healthy controls. Our results suggest the insula to play a major role in the distress network; however this activation seems not to be specific for distress, but also for depression. It has been shown before that tinnitus distress and depression are associated with each other in a 2- year longitudinal study on 6215 people from the Swedish working population [77]. Furthermore, the HDT and the LDT group differed not only with regard to tinnitus distress, but also in depression, anxiety, vocabulary and hypersensitivity to sounds. However, aside from depression, none of these variables correlated with the BOLD- response. Thus, it may be that tinnitus distress and depression activate overlapping brain networks; an idea which has been proposed earlier [78] and which is conform with the assumption of an unspecific distress network [79].

Multiple overlapping networks

Since we tested HDT and LDT, the distress network, which according to De Ridder et al. [28] includes the anterior insula, amygdala and ACC, should be more active in HDT. Indeed we found the right insula to be more active within HDT and in comparison to LDT. However, the anterior insula is supposed to be part of the distress and the salience network [35]. According to a meta-analysis about the functional differentiation of the insula [80] the dorsal part of the anterior insula is a highly integrative region of multiple processes, such as emotional-cognitive processing and interoception. The activation of the insula in the current study seems to be located in the central part of the insula, which is associated with interoception [80]. Interoception on the other hand is closely linked to the perception of emotions [8183]. Thus, in an experiment in which the heartrate-feedback was manipulated participants evaluated neutral faces as being more emotional, if they received a false feedback of an accelerated heartbeat. Higher activity within the right anterior insula was associated with higher emotionality ratings during false feedback [81].
In the field of pain research it has been suggested that the so- called pain- matrix does not reflect activations specific to nociceptive stimulation but rather the behavioral significance of a stimulus regardless of its modality [5860]. In the field of tinnitus research it might also be important to differentiate between the salience of tinnitus, which could be reflected by its loudness and tinnitus distress. We, however, found a correlation between the BOLD- response in the right insula and tinnitus distress, but not with tinnitus loudness. Thus, the activation of the right insula in our sample might indeed reflect tinnitus distress rather than its salience.

Limitations

There are some limitations to the current study. A problem which is directly related to tinnitus research might be the scanner noise [84, 85]. The scanner noise could mask the participant’s tinnitus [84] and even have differential effects on non- auditory brain areas subject to the cognitive demand of the task [86]. Since our study used verbal material it was not important whether the tinnitus was masked by the scanner noise. Furthermore we did not vary the cognitive demand of tasks between the groups, since both groups saw exactly the same stimuli and were given the same instructions. In addition, we controlled for hearing loss. Thus, differential effects of scanner noise are unlikely. Another issue could be the level of distress in the HDT group, since most of the participants in this group had only moderate levels of tinnitus distress. However, moderately distressed tinnitus patients often take part in studies on the effect of cognitive- behavioral therapies that aim to reduce tinnitus- related distress [8789]. This indicates that moderately distressed tinnitus patients differ from LDT in their help seeking behavior.

Implications for future studies

For future studies of the neural correlates of tinnitus distress, a combination of resting- state and task- driven fMRI approaches might be useful to make the results more comparable. The resting- state could be assessed via EEG and fMRI. Idiosyncratic word stimuli relevant to tinnitus- related concerns should be used as stimulus material in a sample of HDT who should be scanned twice; before and after a cognitive behavioral intervention. Cognitive- behavioral interventions would be the method of choice, since they have reliably shown to be effective in reducing tinnitus- related distress [90]. A repeated measures design pre and post therapy would have the advantage of investigating changes in the distress network and help to identify cortical hubs in tinnitus distress. Furthermore it would help to compare resting- state analysis with a task- driven approach.

Conclusion

Tinnitus-related words seem to activate the distress network in HDT. The roles of the insula and the OFC in the distress network have been confirmed by a task-driven fMRI-approach. Additionally, LDT seem to actively avoid tinnitus-related stimuli. The distress network and depression network seem to partially overlap in their activation of the right insula. Prospective studies are needed to further explore the distress network in chronic tinnitus.

Abbreviations

ACC, anterior cingulate cortex; Arou, arousal; BA, Brodman Area; BOLD, blood oxygen level dependent; dB, decibel; df, degrees of freedom; DLPFC, dorsolateral prefrontal cortex; dPCC, dorsal posterior cingulate cortex; EEG, electroencephalogram; EST, emotional stroop task; F, F- value; fMRI, functional magnetic resonance imaging; GÜF, geräuschüberempfindlichkeitsfragebogen (Questionnaire on hypersensitivity to sound); HADS A, hospital anxiety and depression inventory, anxiety subscale; HADS D, hospital anxiety and depression inventory, depression subscale; HADS, hospital anxiety and depression Inventory; HC, healthy controls; HDT, highly distressed tinnitus patients; HL, hearing level; L, left; LDT, low distressed tinnitus patients; ms, milliseconds; NW, neutral words; OFC, orbitofrontal cortex; pACC, perigenual anterior cingulate cortex; PCC, posterior cingulate cortex; PFC, prefrontal cortex; R, right; RT, reaction time; sACC, subgenual anterior cingulate cortex; SD, standard deviation; t, t- value; TE, echo time; TQ, tinnitus questionnaire; TR, repetition time; TW, tinnitus words; Val, valence; VT, vocabulary test; Word Cat., word category

Acknowledgements

We thank Professor Dr. Moser and his team for their great support and for conducting the audiological assessment, we especially thank Jenny Blum and Jeannine Lüer. Furthermore, we thank Ilona Pfahlert and Britta Perl for their help with the MRI- scans and Dr. Antonia Barke for her advice.

Funding

The study was funded by the Department of Clinical Psychology and Psychotherapy at the University of Göttingen.

Availability of data and materials

The data is currently not publicly available. However, please feel free to send a data request to the corresponding author. Please note that we will deal with individual requests on a case by case basis and that decisions for sharing or not-sharing of data may rely on time constraints. Requests for meta-analyses will be prioritized. Please send an individual request to the corresponding author (DG: D.Golm@soton.ac.uk).

Authors’ contributions

DG planned the study, collected and analyzed the data and wrote the paper. BK planned the study and thoroughly commented on each draft of the paper. CS programmed the Stroop task, gave advice on the fMRI methodology and analyses and commented on the paper. PD gave advice on the fMRI methodology and analyses and commented on the paper. All authors read and approved the final manuscript.

Authors’ information

DG completed his PhD on neural correlates of tinnitus-related distress at the Department of Clinical Psychology and Psychotherapy at the University of Göttingen. He now works as a post-doctoral research fellow at the Developmental Brain Behaviour Laboratory at the University of Southampton (Department of Psychology) in a collaborative neuroimaging study with King’s College London. PD is the head of the research group MR-Research in Neurology and Psychiatry within the Department of Cognitive Neurology (Faculty of Medicine) at the University of Goettingen. CS is a staff member at this research group and provides scientific support for a variety of neuroimaging studies within the department. BK is the head of the Department of Clinical Psychology and Psychotherapy at the University of Göttingen.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
A written informed consent from all participants was collected and the study was approved by the ethics committee of the medical department of the University of Göttingen.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Møller A. Introduction. In: Møller A, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 3–7.CrossRef Møller A. Introduction. In: Møller A, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 3–7.CrossRef
2.
Zurück zum Zitat Palmer KT, Griffin MJ, Syddall HE, Davis A, Pannett B, Coggon D. Occupational exposure to noise and the attributable burden of hearing difficulties in Great Britain. Occup Environ Med. 2002;59:634–9.CrossRefPubMedPubMedCentral Palmer KT, Griffin MJ, Syddall HE, Davis A, Pannett B, Coggon D. Occupational exposure to noise and the attributable burden of hearing difficulties in Great Britain. Occup Environ Med. 2002;59:634–9.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Fabijanska A, Rogowski M, Bartnik G, Skarzynski H. Epidemiology of tinnitus and hyperacusis in Poland. In: Hazell J, editor. Proceedings of the Sixth International Tinnitus Seminar. Cambridge: The Tinnitus and Hyperacusis Centre; 2007. p. 569–71. Fabijanska A, Rogowski M, Bartnik G, Skarzynski H. Epidemiology of tinnitus and hyperacusis in Poland. In: Hazell J, editor. Proceedings of the Sixth International Tinnitus Seminar. Cambridge: The Tinnitus and Hyperacusis Centre; 2007. p. 569–71.
4.
Zurück zum Zitat Axelsson A, Ringdahl A. Tinnitus- a study of its prevalence and characteristics. Br J Audiol. 1989;23:53–62.CrossRefPubMed Axelsson A, Ringdahl A. Tinnitus- a study of its prevalence and characteristics. Br J Audiol. 1989;23:53–62.CrossRefPubMed
5.
Zurück zum Zitat Henry JA, Meikle MB. Psychoacoustic measures of tinnitus. J Am Acad Audiol. 2000;11:138–55.PubMed Henry JA, Meikle MB. Psychoacoustic measures of tinnitus. J Am Acad Audiol. 2000;11:138–55.PubMed
6.
Zurück zum Zitat Hiller W, Goebel G. When tinnitus loudness and annoyance are discrepant, audiological characteristics and psychological profile. Audiol Neurootol. 2007;12:391–400.CrossRefPubMed Hiller W, Goebel G. When tinnitus loudness and annoyance are discrepant, audiological characteristics and psychological profile. Audiol Neurootol. 2007;12:391–400.CrossRefPubMed
7.
Zurück zum Zitat Jastreboff PJ, Gray WC, Gold SL. Neurophysiological approach to tinnitus patients. Am J Otol. 1996;17:236–40.PubMed Jastreboff PJ, Gray WC, Gold SL. Neurophysiological approach to tinnitus patients. Am J Otol. 1996;17:236–40.PubMed
8.
Zurück zum Zitat Hallam RS. Psychological approaches to the evaluation and management of tinnitus distress. In: Hazell JWP, editor. Tinnitus. Edinburgh: Churchille Livingstone; 1987. p. 156–75. Hallam RS. Psychological approaches to the evaluation and management of tinnitus distress. In: Hazell JWP, editor. Tinnitus. Edinburgh: Churchille Livingstone; 1987. p. 156–75.
9.
Zurück zum Zitat Mertin M, Kröner- Herwig B. Tinnitus aus psychologischer Sicht. In: Kröner- Herwig B, editor. Psychologische Behandlung des chronischen Tinnitus. Weinheim: Beltz; 1997. p. 15–21. Mertin M, Kröner- Herwig B. Tinnitus aus psychologischer Sicht. In: Kröner- Herwig B, editor. Psychologische Behandlung des chronischen Tinnitus. Weinheim: Beltz; 1997. p. 15–21.
10.
Zurück zum Zitat Cuny C, Norena A, Massioui F, Chéry- Croze S. Reduced attention shift in response to auditory changes in subjects with tinnitus. Audiol Neurootol. 2004;9:294–302.CrossRefPubMed Cuny C, Norena A, Massioui F, Chéry- Croze S. Reduced attention shift in response to auditory changes in subjects with tinnitus. Audiol Neurootol. 2004;9:294–302.CrossRefPubMed
11.
Zurück zum Zitat Rief W, Sander E, Günther M, Nanke A. Aufmerksamkeitslenkung bei Tinnitus: Eine experimentelle psychophysiologische Untersuchung. Z Klin Psychol Psychother. 2004;33:230–6.CrossRef Rief W, Sander E, Günther M, Nanke A. Aufmerksamkeitslenkung bei Tinnitus: Eine experimentelle psychophysiologische Untersuchung. Z Klin Psychol Psychother. 2004;33:230–6.CrossRef
12.
Zurück zum Zitat Delb W, Strauss DJ, Low YF, Seidler H, Rheinschmitt A, Wobrock T, D’Amelio R. Alterations in event related potentials, ERP associated with tinnitus distress and attention. Appl Psychophysiol Biofeedback. 2008;33:211–21.CrossRefPubMed Delb W, Strauss DJ, Low YF, Seidler H, Rheinschmitt A, Wobrock T, D’Amelio R. Alterations in event related potentials, ERP associated with tinnitus distress and attention. Appl Psychophysiol Biofeedback. 2008;33:211–21.CrossRefPubMed
13.
Zurück zum Zitat Andersson G, Westin V. Understanding tinnitus distress: Introducing the concepts of moderators and mediators. Int J Audiol. 2008;47:106–11.CrossRef Andersson G, Westin V. Understanding tinnitus distress: Introducing the concepts of moderators and mediators. Int J Audiol. 2008;47:106–11.CrossRef
14.
Zurück zum Zitat Cima RFF, Crombez G, Vlaeyen JWS. Catastrophizing and fear of tinnitus predict quality of life in patients with chronic tinnitus. Ear Hear. 2011;32:634–41.CrossRefPubMed Cima RFF, Crombez G, Vlaeyen JWS. Catastrophizing and fear of tinnitus predict quality of life in patients with chronic tinnitus. Ear Hear. 2011;32:634–41.CrossRefPubMed
15.
Zurück zum Zitat Andersson G, Jüris L, Classon E, Frederikson M, Furmark T. Consequences of suppressing thoughts about tinnitus and the effects of cognitive distraction on brain activity in tinnitus patients. Audiol Neurootol. 2006;11:301–9.CrossRefPubMed Andersson G, Jüris L, Classon E, Frederikson M, Furmark T. Consequences of suppressing thoughts about tinnitus and the effects of cognitive distraction on brain activity in tinnitus patients. Audiol Neurootol. 2006;11:301–9.CrossRefPubMed
16.
Zurück zum Zitat Andersson G, Raghad B, Johansson L, Kaldo V, Carlbring P. Stroop facilitation in tinnitus patients: An experiment conducted via the world wide web. Cyberpsychol Behav. 2005;8:32–8.CrossRefPubMed Andersson G, Raghad B, Johansson L, Kaldo V, Carlbring P. Stroop facilitation in tinnitus patients: An experiment conducted via the world wide web. Cyberpsychol Behav. 2005;8:32–8.CrossRefPubMed
17.
Zurück zum Zitat Malhi GS, Lagopoulos J, Sachdev PS, Ivanovski B, Shnier R. An emotional Stroop functional MRI study of euthymic bipolar disorder. Bipolar Disord. 2005;7:58–69.CrossRefPubMed Malhi GS, Lagopoulos J, Sachdev PS, Ivanovski B, Shnier R. An emotional Stroop functional MRI study of euthymic bipolar disorder. Bipolar Disord. 2005;7:58–69.CrossRefPubMed
18.
Zurück zum Zitat Posner J, Maia TV, Fair D, Peterson BS, Sonuga-Barke EJ, Nagel BJ. The attenuation of dysfunctional emotional processing with stimulant medication: an fMRI study of adolescents with ADHD. Psychiatry Res Neuroimaging. 2011;193:151–60.CrossRefPubMed Posner J, Maia TV, Fair D, Peterson BS, Sonuga-Barke EJ, Nagel BJ. The attenuation of dysfunctional emotional processing with stimulant medication: an fMRI study of adolescents with ADHD. Psychiatry Res Neuroimaging. 2011;193:151–60.CrossRefPubMed
19.
Zurück zum Zitat Mohanty A, Engels AS, Herrington JD, Heller W, Ringo Ho MH, Banich MT, et al. Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology. 2007;44:343–51.CrossRefPubMed Mohanty A, Engels AS, Herrington JD, Heller W, Ringo Ho MH, Banich MT, et al. Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology. 2007;44:343–51.CrossRefPubMed
20.
Zurück zum Zitat Williams JMG, Mathews A, Macleod C. The Emotional Stroop task and psychopathology. Psychol Bull. 1996;120:3–24.CrossRefPubMed Williams JMG, Mathews A, Macleod C. The Emotional Stroop task and psychopathology. Psychol Bull. 1996;120:3–24.CrossRefPubMed
21.
Zurück zum Zitat Roelofs J, Peters ML, Zeegers MPA, Vlaeyen JWS. The modified Stroop paradigm as a measure of selective attention towards pain- related stimuli among chronic pain patients: a meta- analysis. Eur J Pain. 2002;6:273–81.CrossRefPubMed Roelofs J, Peters ML, Zeegers MPA, Vlaeyen JWS. The modified Stroop paradigm as a measure of selective attention towards pain- related stimuli among chronic pain patients: a meta- analysis. Eur J Pain. 2002;6:273–81.CrossRefPubMed
22.
23.
Zurück zum Zitat Folmer RL, Griest SE, Martin WH. Chronic tinnitus as phantom auditory pain. Otolaryngol Head Neck Surg. 2001;124:394–400.CrossRefPubMed Folmer RL, Griest SE, Martin WH. Chronic tinnitus as phantom auditory pain. Otolaryngol Head Neck Surg. 2001;124:394–400.CrossRefPubMed
24.
Zurück zum Zitat Tonndorf J. The analogy between tinnitus and pain: A suggestion for a physiological basis of chronic tinnitus. Hear Res. 1987;28:271–5.CrossRefPubMed Tonndorf J. The analogy between tinnitus and pain: A suggestion for a physiological basis of chronic tinnitus. Hear Res. 1987;28:271–5.CrossRefPubMed
25.
Zurück zum Zitat Cisler JM, Wolitzky-Taylor KB, Adams TG, Babson KA, Badour CL, Willems JL. The emotional Stroop task and posttraumatic stress disorder: a meta-analysis. Clin Psychol Rev. 2011;31(5):817–28.CrossRefPubMedPubMedCentral Cisler JM, Wolitzky-Taylor KB, Adams TG, Babson KA, Badour CL, Willems JL. The emotional Stroop task and posttraumatic stress disorder: a meta-analysis. Clin Psychol Rev. 2011;31(5):817–28.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Andersson G, Eriksson J, Lundh LG. Tinnitus and cognitive interference: a Stroop paradigm study. JSLHR. 2000;43:1168–73.PubMed Andersson G, Eriksson J, Lundh LG. Tinnitus and cognitive interference: a Stroop paradigm study. JSLHR. 2000;43:1168–73.PubMed
27.
Zurück zum Zitat Schlee W, Lorenz I, Hartmann T, Müller N, Schulz H, Weisz N. A global brain model of tinnitus. In: Møller A, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 161–9.CrossRef Schlee W, Lorenz I, Hartmann T, Müller N, Schulz H, Weisz N. A global brain model of tinnitus. In: Møller A, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 161–9.CrossRef
28.
29.
Zurück zum Zitat Vanneste S, Plazier M, van der Loo E, van de Heyning P, Congedo M, De Ridder D. The neural correlates of tinnitus- related distress. Neuroimage. 2010;52:470–80.CrossRefPubMed Vanneste S, Plazier M, van der Loo E, van de Heyning P, Congedo M, De Ridder D. The neural correlates of tinnitus- related distress. Neuroimage. 2010;52:470–80.CrossRefPubMed
30.
Zurück zum Zitat Hallam RS. Manual of the Tinnitus Questionnaire, TQ. London: The Psychological Corporation; 1996. Hallam RS. Manual of the Tinnitus Questionnaire, TQ. London: The Psychological Corporation; 1996.
31.
Zurück zum Zitat Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, Soddu A. Auditory resting- state network connectivity in tinnitus: a functional MRI study. PLoS One. 2012;7:e36222.CrossRefPubMedPubMedCentral Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, Soddu A. Auditory resting- state network connectivity in tinnitus: a functional MRI study. PLoS One. 2012;7:e36222.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Burton H, Wineland A, Bhattacharya M, Nicklaus J, Garcia KS, Piccirillo JF. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neuroscience. 2012. doi:10.1186/1471-2202-13-3. Burton H, Wineland A, Bhattacharya M, Nicklaus J, Garcia KS, Piccirillo JF. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neuroscience. 2012. doi:10.​1186/​1471-2202-13-3.
33.
35.
Zurück zum Zitat De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: Tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A. 2011;108:8075–80.CrossRefPubMedPubMedCentral De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: Tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A. 2011;108:8075–80.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Vanneste S, De Ridder D. The auditory and non- auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 2012. doi:10.3389/fnsys.2012.00031. Vanneste S, De Ridder D. The auditory and non- auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 2012. doi:10.​3389/​fnsys.​2012.​00031.
37.
Zurück zum Zitat Schwerhörigkeit SH. Ursachen, Diagnostik, Therapie, Hörgeräteversorgung. Heidelberg: Kaden; 1996. Schwerhörigkeit SH. Ursachen, Diagnostik, Therapie, Hörgeräteversorgung. Heidelberg: Kaden; 1996.
38.
Zurück zum Zitat Goebel G, Hiller W. Tinnitus- Fragebogen, TF. Ein Instrument zur Erfassung von Belastung und Schweregrad bei Tinnitus. Handanweisung. Göttingen: Hogrefe; 1998. Goebel G, Hiller W. Tinnitus- Fragebogen, TF. Ein Instrument zur Erfassung von Belastung und Schweregrad bei Tinnitus. Handanweisung. Göttingen: Hogrefe; 1998.
39.
Zurück zum Zitat Herrmann C, Buss U, Snaith RP. HADS- D Hospital Anxiety and Depression Scale - Deutsche Version. Bern: Verlag Hans Huber; 1995. Herrmann C, Buss U, Snaith RP. HADS- D Hospital Anxiety and Depression Scale - Deutsche Version. Bern: Verlag Hans Huber; 1995.
40.
Zurück zum Zitat Snaith RP, Zigmond AS. HADS: Hospital Anxiety and Depression Scale. Windsor: NFER Nelson; 1994. Snaith RP, Zigmond AS. HADS: Hospital Anxiety and Depression Scale. Windsor: NFER Nelson; 1994.
41.
Zurück zum Zitat Nelting M, Finlayson NK. GÜF Geräuschüberempfindlichkeits- Fragebogen. Göttingen: Hogrefe; 2004. Nelting M, Finlayson NK. GÜF Geräuschüberempfindlichkeits- Fragebogen. Göttingen: Hogrefe; 2004.
42.
Zurück zum Zitat Tewes U. HAWIE- R Hamburg- Wechsler Intelligenztest für Erwachsene Revision. Bern: Hans Huber; 1991. Tewes U. HAWIE- R Hamburg- Wechsler Intelligenztest für Erwachsene Revision. Bern: Hans Huber; 1991.
43.
Zurück zum Zitat Golm D, Schmidt- Samoa C, Dechent P, Kröner- Herwig B. Neural correlates of tinnitus related distress: An fMRI study. Hear Res. 2013;295:87–99.CrossRefPubMed Golm D, Schmidt- Samoa C, Dechent P, Kröner- Herwig B. Neural correlates of tinnitus related distress: An fMRI study. Hear Res. 2013;295:87–99.CrossRefPubMed
44.
Zurück zum Zitat Hiller W, Goebel G, Rief W. Reliability of self- rated tinnitus distress and association with psychological symptom patterns. Br J Clin Psychol. 1994;33:231–9.CrossRefPubMed Hiller W, Goebel G, Rief W. Reliability of self- rated tinnitus distress and association with psychological symptom patterns. Br J Clin Psychol. 1994;33:231–9.CrossRefPubMed
45.
Zurück zum Zitat Gräfe K, Zipfel S, Herzog W, Löwe B. Screening psychischer Störungen mit dem “Gesundheitsfragebogen für Patienten, PHQ- D” Ergebnisse der deutschen Validierungsstudie. Diagnostica. 2004;50:171–81.CrossRef Gräfe K, Zipfel S, Herzog W, Löwe B. Screening psychischer Störungen mit dem “Gesundheitsfragebogen für Patienten, PHQ- D” Ergebnisse der deutschen Validierungsstudie. Diagnostica. 2004;50:171–81.CrossRef
46.
Zurück zum Zitat Spitzer RL, Kroenke K, Williams JBW. Validation and utility of a self- report version of PRIME- MD: The PHQ primary care study. JAMA. 1999;282:1737–44.CrossRefPubMed Spitzer RL, Kroenke K, Williams JBW. Validation and utility of a self- report version of PRIME- MD: The PHQ primary care study. JAMA. 1999;282:1737–44.CrossRefPubMed
47.
Zurück zum Zitat Goebel G, Hiller W. Verhaltensmedizinische Tinnitus- Diagnostik. Eine praktische Anleitung zur Erfassung medizinischer und psychologischer Merkmale mittels des Strukturierten Tinnitus Interviews, STI. Göttingen: Hogrefe; 2001. Goebel G, Hiller W. Verhaltensmedizinische Tinnitus- Diagnostik. Eine praktische Anleitung zur Erfassung medizinischer und psychologischer Merkmale mittels des Strukturierten Tinnitus Interviews, STI. Göttingen: Hogrefe; 2001.
48.
Zurück zum Zitat Bradley MM, Lang PJ. Measuring emotion– the self- assessment mannequin and the semantic differential. J Behav Ther Exp. 1994;Psychiatry 25:49–59.CrossRef Bradley MM, Lang PJ. Measuring emotion– the self- assessment mannequin and the semantic differential. J Behav Ther Exp. 1994;Psychiatry 25:49–59.CrossRef
49.
Zurück zum Zitat Barke A, Stahl J, Kröner- Herwig B. Identifying a subset of fear- evoking pictures from the IAPS on the basis of dimensional and categorical ratings for a German sample. J Behav Ther Exp Psychiatry. 2011;43:565–72.CrossRefPubMed Barke A, Stahl J, Kröner- Herwig B. Identifying a subset of fear- evoking pictures from the IAPS on the basis of dimensional and categorical ratings for a German sample. J Behav Ther Exp Psychiatry. 2011;43:565–72.CrossRefPubMed
50.
Zurück zum Zitat Saykin AJ, Johnson SC, Flashman LA, McAllister TW, Sparling M, Dracey TM, Moritz CH, Guerin DJ, Weaver J, Mamourian A. Functional differentiation of medial temporal and frontal regions involved in processing novel and familiar words: an fMRI study. Brain. 1999;122:1963–71.CrossRefPubMed Saykin AJ, Johnson SC, Flashman LA, McAllister TW, Sparling M, Dracey TM, Moritz CH, Guerin DJ, Weaver J, Mamourian A. Functional differentiation of medial temporal and frontal regions involved in processing novel and familiar words: an fMRI study. Brain. 1999;122:1963–71.CrossRefPubMed
51.
Zurück zum Zitat Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC. Improved assessment of significant activation in functional magnetic resonance imaging, fMRI: use of a cluster- size threshold. Magn Reson Med. 1995;33:636–47.CrossRefPubMed Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC. Improved assessment of significant activation in functional magnetic resonance imaging, fMRI: use of a cluster- size threshold. Magn Reson Med. 1995;33:636–47.CrossRefPubMed
52.
Zurück zum Zitat Goebel R, Esposito F, Formisano E. Analysis of functional image analysis contest, FIAC data with Brainvoyager QX: from single- subject to cortically aligned group general linear model analysis and self- organizing group independent component analysis. Hum Brain Mapp. 2006;27:392–401.CrossRefPubMed Goebel R, Esposito F, Formisano E. Analysis of functional image analysis contest, FIAC data with Brainvoyager QX: from single- subject to cortically aligned group general linear model analysis and self- organizing group independent component analysis. Hum Brain Mapp. 2006;27:392–401.CrossRefPubMed
53.
Zurück zum Zitat Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC. Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward transform method. Hum Brain Mapp. 1997;5:238–42.CrossRefPubMedPubMedCentral Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC. Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward transform method. Hum Brain Mapp. 1997;5:238–42.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10:120–31.CrossRefPubMed Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10:120–31.CrossRefPubMed
55.
56.
Zurück zum Zitat Vogt BA, Hof PR, Vogt LJ. Cingulate Gyrus. In: Paxinos G, Mai JK, editors. The human nervous system. San Diego: Elsevier; 2004. p. 915–49.CrossRef Vogt BA, Hof PR, Vogt LJ. Cingulate Gyrus. In: Paxinos G, Mai JK, editors. The human nervous system. San Diego: Elsevier; 2004. p. 915–49.CrossRef
58.
Zurück zum Zitat Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix, and back. Exp Brain Res. 2010;205:1–12.CrossRefPubMed Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix, and back. Exp Brain Res. 2010;205:1–12.CrossRefPubMed
59.
Zurück zum Zitat Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: A salience detection system for the body. Prog Neurobiol. 2011;93:111–24.CrossRefPubMed Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: A salience detection system for the body. Prog Neurobiol. 2011;93:111–24.CrossRefPubMed
60.
Zurück zum Zitat Mouraux A, Diukova A, Lee MC, Wise RG, Iannetti GD. A multisensory investigation of the functional significance of the “pain matrix”. Neuroimage. 2011;54:2237–49.CrossRefPubMed Mouraux A, Diukova A, Lee MC, Wise RG, Iannetti GD. A multisensory investigation of the functional significance of the “pain matrix”. Neuroimage. 2011;54:2237–49.CrossRefPubMed
61.
Zurück zum Zitat MacLeod CM. Half a century research on the Stroop effect: an integrative review. Psychol Bull. 1991;109:163–203.CrossRefPubMed MacLeod CM. Half a century research on the Stroop effect: an integrative review. Psychol Bull. 1991;109:163–203.CrossRefPubMed
62.
Zurück zum Zitat Møller AR. Different forms of tinnitus. In: Møller AR, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of tinnitus. Heidelberg: Springer; 2011. p. 9–12.CrossRef Møller AR. Different forms of tinnitus. In: Møller AR, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of tinnitus. Heidelberg: Springer; 2011. p. 9–12.CrossRef
63.
Zurück zum Zitat Kaspi SP, McNally RJ, Amir N. Cognitive processing of emotional information in posttraumatic stress disorder. Cognit Ther Res. 1995;19:433–44.CrossRef Kaspi SP, McNally RJ, Amir N. Cognitive processing of emotional information in posttraumatic stress disorder. Cognit Ther Res. 1995;19:433–44.CrossRef
64.
Zurück zum Zitat Amir N, Najmi S, Morrison AS. Attenuation of attention bias in obsessive- compulsive disorder. Behav Res Ther. 2009;47:153–7.CrossRefPubMed Amir N, Najmi S, Morrison AS. Attenuation of attention bias in obsessive- compulsive disorder. Behav Res Ther. 2009;47:153–7.CrossRefPubMed
65.
Zurück zum Zitat Riemann BC, McNally RJ. Cognitive processing of personally relevant information. Cognit Emot. 1995;9:325–40.CrossRef Riemann BC, McNally RJ. Cognitive processing of personally relevant information. Cognit Emot. 1995;9:325–40.CrossRef
66.
Zurück zum Zitat Roelofs J, Crombez G, Peters ML, Verschuere B, Vlaeyen JWS. An examination of word relevance in a modified stroop task in patients with chronic low back pain. Percept Mot Skills. 2005;100:955–63.PubMed Roelofs J, Crombez G, Peters ML, Verschuere B, Vlaeyen JWS. An examination of word relevance in a modified stroop task in patients with chronic low back pain. Percept Mot Skills. 2005;100:955–63.PubMed
68.
Zurück zum Zitat Stetter F, Ackermann K, Scherer E, Schmid H, Straube ER, Mann K. Distraction resulting from disease related words in alcohol- dependent inpatients: a controlled dichotic listening study. Eur Arch Psychiatry Neurol Sci. 1994;244:223–5.CrossRef Stetter F, Ackermann K, Scherer E, Schmid H, Straube ER, Mann K. Distraction resulting from disease related words in alcohol- dependent inpatients: a controlled dichotic listening study. Eur Arch Psychiatry Neurol Sci. 1994;244:223–5.CrossRef
69.
Zurück zum Zitat Bröckelmann AK, Steinberg C, Elling L, Zwangzger P, Pantev C, Junghöfer M. Emotion- associated tones attract enhanced attention at early auditory processing: magnetoencephalographic correlates. J Neurosci. 2011;31:7801–10.CrossRefPubMed Bröckelmann AK, Steinberg C, Elling L, Zwangzger P, Pantev C, Junghöfer M. Emotion- associated tones attract enhanced attention at early auditory processing: magnetoencephalographic correlates. J Neurosci. 2011;31:7801–10.CrossRefPubMed
70.
Zurück zum Zitat Bradley MM, Lang PJ. Affective reactions to acoustic stimuli. Psychophysiology. 2000;37:204–15.CrossRefPubMed Bradley MM, Lang PJ. Affective reactions to acoustic stimuli. Psychophysiology. 2000;37:204–15.CrossRefPubMed
71.
Zurück zum Zitat Heil M, Rolke B. Unattended distractor-induced priming in a visual selective attention task: N400 effects in the absence of RT effects. J Psychophysiol. 2004;18:164–9.CrossRef Heil M, Rolke B. Unattended distractor-induced priming in a visual selective attention task: N400 effects in the absence of RT effects. J Psychophysiol. 2004;18:164–9.CrossRef
72.
Zurück zum Zitat Heil M, Rolke B, Pecchinenda A. Automatic semantic activation is no myth: semantic context effects on the N400 in the letter-search task in the absence of response time effects. Psychol Sci. 2004;15:852–7.CrossRefPubMed Heil M, Rolke B, Pecchinenda A. Automatic semantic activation is no myth: semantic context effects on the N400 in the letter-search task in the absence of response time effects. Psychol Sci. 2004;15:852–7.CrossRefPubMed
73.
Zurück zum Zitat Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002;14:1215–29.CrossRefPubMed Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002;14:1215–29.CrossRefPubMed
74.
Zurück zum Zitat Goldin PR, McRae K, Ramel W, Gross JJ. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol Psychiatry. 2008;15:577–86.CrossRef Goldin PR, McRae K, Ramel W, Gross JJ. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol Psychiatry. 2008;15:577–86.CrossRef
76.
Zurück zum Zitat Hamilton JP, Etkin AE, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. Am J Psychiat. 2012;169:693–703.CrossRefPubMed Hamilton JP, Etkin AE, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. Am J Psychiat. 2012;169:693–703.CrossRefPubMed
77.
Zurück zum Zitat Hébert S, Canlon B, Hasson D, Magnusson Hanson LL, Westerlund H, Theorell T. Tinnitus severity is reduced with reduction of depressive mood – a prospective population study in Sweden. PLoS One. 2012;7:e37733.CrossRefPubMedPubMedCentral Hébert S, Canlon B, Hasson D, Magnusson Hanson LL, Westerlund H, Theorell T. Tinnitus severity is reduced with reduction of depressive mood – a prospective population study in Sweden. PLoS One. 2012;7:e37733.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Langguth B, Landgrebe M. In: Møller A, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 493–8.CrossRef Langguth B, Landgrebe M. In: Møller A, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 493–8.CrossRef
79.
Zurück zum Zitat De Ridder D. A Heuristic pathophysiological model of tinnitus. In: Møller A, Langguth B, DeRidder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 171–97.CrossRef De Ridder D. A Heuristic pathophysiological model of tinnitus. In: Møller A, Langguth B, DeRidder D, Kleinjung T, editors. Textbook of Tinnitus. Heidelberg: Springer; 2011. p. 171–97.CrossRef
80.
Zurück zum Zitat Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214:519–34.CrossRefPubMedPubMedCentral Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214:519–34.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Gray MA, Harrison NA, Wiens S, Crichley HD. Modulation of emotional appraisal by false physiological feedback during fMRI. PLoS One. 2007;2:e546.CrossRefPubMedPubMedCentral Gray MA, Harrison NA, Wiens S, Crichley HD. Modulation of emotional appraisal by false physiological feedback during fMRI. PLoS One. 2007;2:e546.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci. 2009;13:334–40.CrossRefPubMed Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci. 2009;13:334–40.CrossRefPubMed
83.
Zurück zum Zitat Critchley HD. Neural Mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493:154–66.CrossRefPubMed Critchley HD. Neural Mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493:154–66.CrossRefPubMed
84.
Zurück zum Zitat Danesh AA, Kinouchi Y, Wener DL, Pandya A. Functional imaging of tinnitus: seeing of the unseeable. In: Palade V, Howlett RJ, Jain LC, editors. Knowledge- based intelligent information and engeneering systems, lecture notes in computer science, vol. 2774. Berlin: Springer; 2003. p. 794–9.CrossRef Danesh AA, Kinouchi Y, Wener DL, Pandya A. Functional imaging of tinnitus: seeing of the unseeable. In: Palade V, Howlett RJ, Jain LC, editors. Knowledge- based intelligent information and engeneering systems, lecture notes in computer science, vol. 2774. Berlin: Springer; 2003. p. 794–9.CrossRef
85.
Zurück zum Zitat Lockwood AH, Burkhard RF, Salvi RJ. Imaging tinnitus. In: Snow JB, editor. Tinnitus: theory and management. Hamilton: BC Decker Inc; 2004. p. 253–64. Lockwood AH, Burkhard RF, Salvi RJ. Imaging tinnitus. In: Snow JB, editor. Tinnitus: theory and management. Hamilton: BC Decker Inc; 2004. p. 253–64.
86.
Zurück zum Zitat Tomasi D, Caparelli EC, Chang L, Ernst T. fMRI- acoustic noise alters brain activation during working memory tasks. Neuroimage. 2005;27:377–86.CrossRefPubMedPubMedCentral Tomasi D, Caparelli EC, Chang L, Ernst T. fMRI- acoustic noise alters brain activation during working memory tasks. Neuroimage. 2005;27:377–86.CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Kröner- Herwig B, Frenzel A, Fritsche G, Schilkowsky G, Esser G. The management of chronic tinnitus. Comparison of an outpatient cognitive behavioral group training to minimal contact interventions. J Psychosom Res. 2003;54:381–9.CrossRefPubMed Kröner- Herwig B, Frenzel A, Fritsche G, Schilkowsky G, Esser G. The management of chronic tinnitus. Comparison of an outpatient cognitive behavioral group training to minimal contact interventions. J Psychosom Res. 2003;54:381–9.CrossRefPubMed
88.
Zurück zum Zitat Zachriat C, Kröner- Herwig B. Treating chronic tinnitus: comparison of cognitive- behavioural and habituation- based treatments. Cogn Behav Ther. 2004;33:187–98.CrossRefPubMed Zachriat C, Kröner- Herwig B. Treating chronic tinnitus: comparison of cognitive- behavioural and habituation- based treatments. Cogn Behav Ther. 2004;33:187–98.CrossRefPubMed
89.
Zurück zum Zitat Rief W, Weise C, Kley N, Martin A. Psychophysiological treatment of chronic tinnitus: a randomized clinical trial. Psychosom Med. 2005;67:833–8.CrossRefPubMed Rief W, Weise C, Kley N, Martin A. Psychophysiological treatment of chronic tinnitus: a randomized clinical trial. Psychosom Med. 2005;67:833–8.CrossRefPubMed
90.
Zurück zum Zitat Hesser H, Weise C, Westin VZ, Andersson G. A systematic review and meta- analysis of randomized controlled trials of cognitive- behavioral therapy for tinnitus distress. Clin Psychol Rev. 2011;31:545–53.CrossRefPubMed Hesser H, Weise C, Westin VZ, Andersson G. A systematic review and meta- analysis of randomized controlled trials of cognitive- behavioral therapy for tinnitus distress. Clin Psychol Rev. 2011;31:545–53.CrossRefPubMed
Metadaten
Titel
Tinnitus- related distress: evidence from fMRI of an emotional stroop task
verfasst von
Dennis Golm
Carsten Schmidt-Samoa
Peter Dechent
Birgit Kröner-Herwig
Publikationsdatum
01.01.2016
Verlag
BioMed Central
Erschienen in
BMC Ear, Nose and Throat Disorders / Ausgabe 1/2016
Elektronische ISSN: 1472-6815
DOI
https://doi.org/10.1186/s12901-016-0029-1

Weitere Artikel der Ausgabe 1/2016

BMC Ear, Nose and Throat Disorders 1/2016 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.