Skip to main content
Erschienen in: HNO 6/2019

08.04.2019 | Tinnitus | Leitthema

Differenzierung cochleärer Synaptopathien in verschiedene Hörstörungen

verfasst von: Prof. Dr. M. Knipper, B. Hofmeier, W. Singer, S. Wolpert, U. Klose, L. Rüttiger

Erschienen in: HNO | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Zusammenfassung

Demografischer Wandel und verändertes Freizeitverhalten lassen in den nächsten 20–30 Jahren eine rapide Zunahme von Hörstörungen erwarten. Damit steigt das Risiko, an altersbedingtem Sprachdiskriminationsverlust, Tinnitus, Hyperakusis oder, wie neueste Studien postulieren, an Demenz zu erkranken. Es verdichten sich Hinweise darauf, dass bei Mensch und Tier der Verlust spezifischer Hörfasern an verschiedenen Hörstörungen beteiligt ist. Dieser Hörfaserverlust kann durch cochleäre Synaptopathie oder Deafferenzierung verursacht werden und führt nicht zwangsläufig zu klinisch messbaren Hörschwellenabweichungen. Tierexperimentell wurde belegt, dass eine verminderte Hörnervaktivität nach akustischem Trauma oder durch Alter zentral über eine disproportional erhöhte und schnellere akustisch evozierte Stammhirnantwort kompensiert werden kann. Die Analyse der überschwelligen Amplituden von auditorisch evozierten Hirnstammpotenzialen und deren Latenz in Kombination mit nichtinvasiven bildgebenden Techniken wie die Magnetresonanztomographie können helfen die zentrale Kompensationsfähigkeit von Probanden zu identifizieren und definierten Hördefiziten zuzuordnen.
Literatur
1.
Zurück zum Zitat Aazh H, Moore BCJ (2018) Effectiveness of audiologist-delivered cognitive behavioral therapy for tinnitus and hyperacusis rehabilitation: outcomes for patients treated in routine practice. Am J Audiol 27:547–558CrossRef Aazh H, Moore BCJ (2018) Effectiveness of audiologist-delivered cognitive behavioral therapy for tinnitus and hyperacusis rehabilitation: outcomes for patients treated in routine practice. Am J Audiol 27:547–558CrossRef
2.
Zurück zum Zitat Adjamian P, Sereda M, Hall DA (2009) The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res 253:15–31CrossRef Adjamian P, Sereda M, Hall DA (2009) The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res 253:15–31CrossRef
3.
Zurück zum Zitat Ardila A, Bernal B, Rosselli M (2016) The language area of the brain: a functional reassessment. Rev Neurol 62:97–106PubMed Ardila A, Bernal B, Rosselli M (2016) The language area of the brain: a functional reassessment. Rev Neurol 62:97–106PubMed
4.
Zurück zum Zitat Auerbach BD, Rodrigues PV, Salvi RJ (2014) Central gain control in tinnitus and hyperacusis. Front Neurol 5:206CrossRef Auerbach BD, Rodrigues PV, Salvi RJ (2014) Central gain control in tinnitus and hyperacusis. Front Neurol 5:206CrossRef
5.
Zurück zum Zitat Bharadwaj HM, Verhulst S, Shaheen L et al (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8:26CrossRef Bharadwaj HM, Verhulst S, Shaheen L et al (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8:26CrossRef
6.
Zurück zum Zitat Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRef Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRef
7.
Zurück zum Zitat Chen YC, Xia W, Chen H et al (2017) Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Hum Brain Mapp 38:2384–2397CrossRef Chen YC, Xia W, Chen H et al (2017) Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Hum Brain Mapp 38:2384–2397CrossRef
8.
Zurück zum Zitat Chumak T, Ruttiger L, Lee SC et al (2016) BDNF in lower brain parts modifies auditory fiber activity to gain fidelity but increases the risk for generation of central noise after injury. Mol Neurobiol 53:5607–5627CrossRef Chumak T, Ruttiger L, Lee SC et al (2016) BDNF in lower brain parts modifies auditory fiber activity to gain fidelity but increases the risk for generation of central noise after injury. Mol Neurobiol 53:5607–5627CrossRef
9.
Zurück zum Zitat Cieslik EC, Mueller VI, Eickhoff CR et al (2015) Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 48:22–34CrossRef Cieslik EC, Mueller VI, Eickhoff CR et al (2015) Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 48:22–34CrossRef
10.
Zurück zum Zitat Eggermont JJ (2013) Hearing loss, hyperacusis, or tinnitus: what is modeled in animal research? Hear Res 295:140–149CrossRef Eggermont JJ (2013) Hearing loss, hyperacusis, or tinnitus: what is modeled in animal research? Hear Res 295:140–149CrossRef
11.
Zurück zum Zitat Engelien A, Schulz M, Ross B et al (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148:153–160CrossRef Engelien A, Schulz M, Ross B et al (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148:153–160CrossRef
12.
Zurück zum Zitat Epp B, Hots J, Verhey JL et al (2012) Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram. J Acoust Soc Am 132:EL196–EL201CrossRef Epp B, Hots J, Verhey JL et al (2012) Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram. J Acoust Soc Am 132:EL196–EL201CrossRef
13.
Zurück zum Zitat Flor H, Hoffmann D, Struve M et al (2004) Auditory discrimination training for the treatment of tinnitus. Appl Psychophysiol Biofeedback 29:113–120CrossRef Flor H, Hoffmann D, Struve M et al (2004) Auditory discrimination training for the treatment of tinnitus. Appl Psychophysiol Biofeedback 29:113–120CrossRef
14.
Zurück zum Zitat Fournier P, Hebert S (2013) Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res 295:16–23CrossRef Fournier P, Hebert S (2013) Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res 295:16–23CrossRef
15.
Zurück zum Zitat Frisina RD (2009) Age-related hearing loss: ear and brain mechanisms. Ann N Y Acad Sci 1170:708–717CrossRef Frisina RD (2009) Age-related hearing loss: ear and brain mechanisms. Ann N Y Acad Sci 1170:708–717CrossRef
16.
Zurück zum Zitat Frisina RD, Frisina DR (2013) Physiological and neurobiological bases of age-related hearing loss: biotherapeutic implications. Am J Audiol 22:299–302CrossRef Frisina RD, Frisina DR (2013) Physiological and neurobiological bases of age-related hearing loss: biotherapeutic implications. Am J Audiol 22:299–302CrossRef
17.
Zurück zum Zitat Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110:577–586CrossRef Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110:577–586CrossRef
18.
Zurück zum Zitat Garcia-Rosales F, Martin LM, Beetz MJ et al (2018) Low-frequency spike-field coherence is a fingerprint of periodicity coding in the auditory cortex. iScience 9:47–62CrossRef Garcia-Rosales F, Martin LM, Beetz MJ et al (2018) Low-frequency spike-field coherence is a fingerprint of periodicity coding in the auditory cortex. iScience 9:47–62CrossRef
19.
Zurück zum Zitat Geven LI, De Kleine E, Free RH et al (2011) Contralateral suppression of otoacoustic emissions in tinnitus patients. Otol Neurotol 32:315–321CrossRef Geven LI, De Kleine E, Free RH et al (2011) Contralateral suppression of otoacoustic emissions in tinnitus patients. Otol Neurotol 32:315–321CrossRef
20.
Zurück zum Zitat Gordon-Salant S (2005) Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev 42:9–24CrossRef Gordon-Salant S (2005) Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev 42:9–24CrossRef
22.
Zurück zum Zitat Gu JW, Halpin CF, Nam EC et al (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104:3361–3370CrossRef Gu JW, Halpin CF, Nam EC et al (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104:3361–3370CrossRef
23.
Zurück zum Zitat Heil P, Neubauer H, Brown M et al (2008) Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers. Hear Res 238:25–38CrossRef Heil P, Neubauer H, Brown M et al (2008) Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers. Hear Res 238:25–38CrossRef
24.
Zurück zum Zitat Herman GE, Warren LR, Wagener JW (1977) Auditory lateralization: age differences in sensitivity to dichotic time and amplitude cues. J Gerontol 32:187–191CrossRef Herman GE, Warren LR, Wagener JW (1977) Auditory lateralization: age differences in sensitivity to dichotic time and amplitude cues. J Gerontol 32:187–191CrossRef
25.
Zurück zum Zitat Herraiz C, Diges I, Cobo P (2007) Auditory discrimination therapy (ADT) for tinnitus management. Prog Brain Res 166:467–471CrossRef Herraiz C, Diges I, Cobo P (2007) Auditory discrimination therapy (ADT) for tinnitus management. Prog Brain Res 166:467–471CrossRef
26.
Zurück zum Zitat Herraiz C, Diges I, Cobo P et al (2010) Auditory discrimination training for tinnitus treatment: the effect of different paradigms. Eur Arch Otorhinolaryngol 267:1067–1074CrossRef Herraiz C, Diges I, Cobo P et al (2010) Auditory discrimination training for tinnitus treatment: the effect of different paradigms. Eur Arch Otorhinolaryngol 267:1067–1074CrossRef
27.
Zurück zum Zitat Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564CrossRef Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564CrossRef
28.
Zurück zum Zitat Hofmeier B, Wolpert S, Aldamer ES et al (2018) Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus. Neuroimage Clin 20:637–649CrossRef Hofmeier B, Wolpert S, Aldamer ES et al (2018) Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus. Neuroimage Clin 20:637–649CrossRef
29.
Zurück zum Zitat Husain FT (2016) Neural networks of tinnitus in humans: Elucidating severity and habituation. Hear Res 334:37–48CrossRef Husain FT (2016) Neural networks of tinnitus in humans: Elucidating severity and habituation. Hear Res 334:37–48CrossRef
30.
Zurück zum Zitat Konkle DF, Beasley DS, Bess FH (1977) Intelligibility of time-altered speech in relation to chronological aging. J Speech Hear Res 20:108–115CrossRef Konkle DF, Beasley DS, Bess FH (1977) Intelligibility of time-altered speech in relation to chronological aging. J Speech Hear Res 20:108–115CrossRef
31.
Zurück zum Zitat Kraus N, White-Schwoch T (2015) Unraveling the biology of auditory learning: a cognitive-sensorimotor-reward framework. Trends Cogn Sci (Regul Ed) 19:642–654CrossRef Kraus N, White-Schwoch T (2015) Unraveling the biology of auditory learning: a cognitive-sensorimotor-reward framework. Trends Cogn Sci (Regul Ed) 19:642–654CrossRef
32.
Zurück zum Zitat Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085CrossRef Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085CrossRef
33.
Zurück zum Zitat Leaver AM, Seydell-Greenwald A, Rauschecker JP (2016) Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res 334:49–57CrossRef Leaver AM, Seydell-Greenwald A, Rauschecker JP (2016) Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res 334:49–57CrossRef
34.
Zurück zum Zitat Leaver AM, Turesky TK, Seydell-Greenwald A et al (2016) Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapp 37:2717–2735CrossRef Leaver AM, Turesky TK, Seydell-Greenwald A et al (2016) Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapp 37:2717–2735CrossRef
35.
Zurück zum Zitat Lin FR, Ferrucci L, An Y et al (2014) Association of hearing impairment with brain volume changes in older adults. Neuroimage 90:84–92CrossRef Lin FR, Ferrucci L, An Y et al (2014) Association of hearing impairment with brain volume changes in older adults. Neuroimage 90:84–92CrossRef
36.
Zurück zum Zitat Livingston G, Sommerlad A, Orgeta V et al (2017) Dementia prevention, intervention, and care. Lancet 390:2673–2734CrossRef Livingston G, Sommerlad A, Orgeta V et al (2017) Dementia prevention, intervention, and care. Lancet 390:2673–2734CrossRef
37.
Zurück zum Zitat Matt L, Eckert P, Panford-Walsh R et al (2018) Visualizing BDNF transcript usage during sound-induced memory linked plasticity. Front Mol Neurosci 11:260CrossRef Matt L, Eckert P, Panford-Walsh R et al (2018) Visualizing BDNF transcript usage during sound-induced memory linked plasticity. Front Mol Neurosci 11:260CrossRef
38.
Zurück zum Zitat Mazurek B, Szczepek AJ, Hebert S (2015) Stress and tinnitus. HNO 63:258–265CrossRef Mazurek B, Szczepek AJ, Hebert S (2015) Stress and tinnitus. HNO 63:258–265CrossRef
39.
Zurück zum Zitat Meddis R (2006) Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. J Acoust Soc Am 119:406–417CrossRef Meddis R (2006) Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. J Acoust Soc Am 119:406–417CrossRef
40.
Zurück zum Zitat Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations. Hear Res 93:52–71CrossRef Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations. Hear Res 93:52–71CrossRef
41.
Zurück zum Zitat Melcher JR, Levine RA, Bergevin C et al (2009) The auditory midbrain of people with tinnitus: abnormal sound-evoked activity revisited. Hear Res 257:63–74CrossRef Melcher JR, Levine RA, Bergevin C et al (2009) The auditory midbrain of people with tinnitus: abnormal sound-evoked activity revisited. Hear Res 257:63–74CrossRef
42.
Zurück zum Zitat Micheyl C, Mcdermott JH, Oxenham AJ (2009) Sensory noise explains auditory frequency discrimination learning induced by training with identical stimuli. Atten Percept Psychophys 71:5–7CrossRef Micheyl C, Mcdermott JH, Oxenham AJ (2009) Sensory noise explains auditory frequency discrimination learning induced by training with identical stimuli. Atten Percept Psychophys 71:5–7CrossRef
43.
Zurück zum Zitat Milloy V, Fournier P, Benoit D et al (2017) Auditory brainstem responses in tinnitus: a review of who, how, and what? Front Aging Neurosci 9:237CrossRef Milloy V, Fournier P, Benoit D et al (2017) Auditory brainstem responses in tinnitus: a review of who, how, and what? Front Aging Neurosci 9:237CrossRef
45.
Zurück zum Zitat Möhrle D, Ni K, Varakina K et al (2016) Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 44:173–184CrossRef Möhrle D, Ni K, Varakina K et al (2016) Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 44:173–184CrossRef
46.
Zurück zum Zitat Møller A, Jannetta P (1985) Neural generators of the auditory brainstem response. In: Jacobson JT (Hrsg) The auditory brainstem response. College Hill, San Diego Møller A, Jannetta P (1985) Neural generators of the auditory brainstem response. In: Jacobson JT (Hrsg) The auditory brainstem response. College Hill, San Diego
47.
Zurück zum Zitat Montgomery N, Wehr M (2010) Auditory cortical neurons convey maximal stimulus-specific information at their best frequency. J Neurosci 30:13362–13366CrossRef Montgomery N, Wehr M (2010) Auditory cortical neurons convey maximal stimulus-specific information at their best frequency. J Neurosci 30:13362–13366CrossRef
48.
Zurück zum Zitat Moser T, Starr A (2016) Auditory neuropathy—neural and synaptic mechanisms. Nat Rev Neurol 12:135–149CrossRef Moser T, Starr A (2016) Auditory neuropathy—neural and synaptic mechanisms. Nat Rev Neurol 12:135–149CrossRef
49.
Zurück zum Zitat Müller M, Klinke R, Arnold W et al (2003) Auditory nerve fibre responses to salicylate revisited. Hear Res 183:37–43CrossRef Müller M, Klinke R, Arnold W et al (2003) Auditory nerve fibre responses to salicylate revisited. Hear Res 183:37–43CrossRef
50.
Zurück zum Zitat Ouda L, Profant O, Syka J (2015) Age-related changes in the central auditory system. Cell Tissue Res 361:337–358CrossRef Ouda L, Profant O, Syka J (2015) Age-related changes in the central auditory system. Cell Tissue Res 361:337–358CrossRef
51.
Zurück zum Zitat Paul BT, Bruce IC, Roberts LE (2018) Envelope following responses, noise exposure, and evidence of cochlear synaptopathy in humans: correction and comment. J Acoust Soc Am 143:EL487CrossRef Paul BT, Bruce IC, Roberts LE (2018) Envelope following responses, noise exposure, and evidence of cochlear synaptopathy in humans: correction and comment. J Acoust Soc Am 143:EL487CrossRef
52.
Zurück zum Zitat Ponton CW, Moore JK, Eggermont JJ (1996) Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission. Ear Hear 17:402–410CrossRef Ponton CW, Moore JK, Eggermont JJ (1996) Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission. Ear Hear 17:402–410CrossRef
53.
Zurück zum Zitat Roberts LE, Eggermont JJ, Caspary DM et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979CrossRef Roberts LE, Eggermont JJ, Caspary DM et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979CrossRef
54.
Zurück zum Zitat Rüttiger L, Singer W, Panford-Walsh R et al (2013) The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS ONE 8:e57247CrossRef Rüttiger L, Singer W, Panford-Walsh R et al (2013) The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS ONE 8:e57247CrossRef
55.
Zurück zum Zitat Sadaghiani S, Hesselmann G, Kleinschmidt A (2009) Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci 29:13410–13417CrossRef Sadaghiani S, Hesselmann G, Kleinschmidt A (2009) Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci 29:13410–13417CrossRef
56.
Zurück zum Zitat Schaette R, Kempter R (2012) Computational models of neurophysiological correlates of tinnitus. Front Syst Neurosci 6:34CrossRef Schaette R, Kempter R (2012) Computational models of neurophysiological correlates of tinnitus. Front Syst Neurosci 6:34CrossRef
57.
Zurück zum Zitat Schaette R, Mcalpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457CrossRef Schaette R, Mcalpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457CrossRef
58.
Zurück zum Zitat Schreiner CE, Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823–1840CrossRef Schreiner CE, Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823–1840CrossRef
59.
Zurück zum Zitat Sedley W, Friston KJ, Gander PE et al (2016) An integrative Tinnitus model based on sensory precision. Trends Neurosci 39:799–812CrossRef Sedley W, Friston KJ, Gander PE et al (2016) An integrative Tinnitus model based on sensory precision. Trends Neurosci 39:799–812CrossRef
60.
Zurück zum Zitat Sergeyenko Y, Lall K, Liberman MC et al (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694CrossRef Sergeyenko Y, Lall K, Liberman MC et al (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694CrossRef
61.
Zurück zum Zitat Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus—triggers, mechanisms and treatment. Nat Rev Neurol 12:150–160CrossRef Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus—triggers, mechanisms and treatment. Nat Rev Neurol 12:150–160CrossRef
63.
Zurück zum Zitat Singer W, Zuccotti A, Jaumann M et al (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47:261–279CrossRef Singer W, Zuccotti A, Jaumann M et al (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47:261–279CrossRef
64.
Zurück zum Zitat Song JJ, De Ridder D, Weisz N et al (2014) Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex. Brain Struct Funct 219:1113–1128CrossRef Song JJ, De Ridder D, Weisz N et al (2014) Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex. Brain Struct Funct 219:1113–1128CrossRef
65.
Zurück zum Zitat Turner JG, Brozoski TJ, Bauer CA et al (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195CrossRef Turner JG, Brozoski TJ, Bauer CA et al (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195CrossRef
66.
Zurück zum Zitat Weinberger NM (2015) New perspectives on the auditory cortex: learning and memory. Handb Clin Neurol 129:117–147CrossRef Weinberger NM (2015) New perspectives on the auditory cortex: learning and memory. Handb Clin Neurol 129:117–147CrossRef
67.
Zurück zum Zitat WHO (2012) Global estimates on prevalence of hearing loss WHO (2012) Global estimates on prevalence of hearing loss
68.
Zurück zum Zitat World Health Organisation (2004) www.euro.int.de. The global burden of disease. 2004 update. Geneva. Zugegriffen: 12. Dezember 2018 World Health Organisation (2004) www.​euro.​int.​de. The global burden of disease. 2004 update. Geneva. Zugegriffen: 12. Dezember 2018
69.
Zurück zum Zitat Yang G, Lobarinas E, Zhang L et al (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226:244–253CrossRef Yang G, Lobarinas E, Zhang L et al (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226:244–253CrossRef
70.
Zurück zum Zitat Zeng FG (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179CrossRef Zeng FG (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179CrossRef
71.
Zurück zum Zitat Zenner HP, Delb W, Kroner-Herwig B et al (2017) A multidisciplinary systematic review of the treatment for chronic idiopathic tinnitus. Eur Arch Otorhinolaryngol 274:2079–2091CrossRef Zenner HP, Delb W, Kroner-Herwig B et al (2017) A multidisciplinary systematic review of the treatment for chronic idiopathic tinnitus. Eur Arch Otorhinolaryngol 274:2079–2091CrossRef
72.
Zurück zum Zitat Zenner HP, Vonthein R, Zenner B et al (2013) Standardized tinnitus-specific individual cognitive-behavioral therapy: a controlled outcome study with 286 tinnitus patients. Hear Res 298:117–125CrossRef Zenner HP, Vonthein R, Zenner B et al (2013) Standardized tinnitus-specific individual cognitive-behavioral therapy: a controlled outcome study with 286 tinnitus patients. Hear Res 298:117–125CrossRef
Metadaten
Titel
Differenzierung cochleärer Synaptopathien in verschiedene Hörstörungen
verfasst von
Prof. Dr. M. Knipper
B. Hofmeier
W. Singer
S. Wolpert
U. Klose
L. Rüttiger
Publikationsdatum
08.04.2019
Verlag
Springer Medizin
Erschienen in
HNO / Ausgabe 6/2019
Print ISSN: 0017-6192
Elektronische ISSN: 1433-0458
DOI
https://doi.org/10.1007/s00106-019-0660-4

Weitere Artikel der Ausgabe 6/2019

HNO 6/2019 Zur Ausgabe

Update HNO

Allergologie

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.