Skip to main content
Erschienen in: Heart Failure Reviews 4/2016

26.04.2016

Tissue thyroid hormones and thyronamines

verfasst von: Alice Accorroni, Federica Saponaro, Riccardo Zucchi

Erschienen in: Heart Failure Reviews | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

It has been known for a long time that changes in cardiac function are a major component of the clinical presentation of thyroid disease. Increased heart rate and hyperdynamic circulation are hallmarks of hyperthyroidism, while bradycardia and decreased contractility characterize hypothyroidism. Recent findings have provided novel insights in the physiology and pathophysiology of heart regulation by thyroid hormones. In this review, we summarize the present knowledge on thyroxine (T4) transport and metabolism and on the biochemical pathways leading to genomic and non-genomic effects produced by 3,5,3′-triiodothyronine (T3) and by its active metabolites, particularly 3,5-diiodothyronine (T2) and 3-iodothyronamine (T1AM). On this basis, specific issues of special interest for cardiology are discussed, namely (1) relevance of the regulation of proteins involved in the control of calcium homeostasis and in pacemaker cell activity, due to non-genomic as well as to classical genomic effects; (2) stimulation of fatty acid oxidation by T2 and T1AM, the latter also causing a negative inotropic and chronotropic action at micromolar concentrations; (3) induction of D3 deiodinase in heart failure, potentially causing selective cardiac hypothyroidism, whose clinical implications are still controversial; and (4) cardioprotective effect of T1AM, possibly occurring at physiological concentrations, and relevance of T3 and of thyroid hormone receptor α1 in post-infarction repair.
Literatur
2.
Zurück zum Zitat Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22(4):451–476. doi:10.1210/edrv.22.4.0435 PubMedCrossRef Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22(4):451–476. doi:10.​1210/​edrv.​22.​4.​0435 PubMedCrossRef
4.
Zurück zum Zitat Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A et al (2010) Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology 151(10):5063–5073. doi:10.1210/en.2010-0491 PubMedCrossRef Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A et al (2010) Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology 151(10):5063–5073. doi:10.​1210/​en.​2010-0491 PubMedCrossRef
7.
Zurück zum Zitat Moreno M, Silvestri E, De Matteis R, de Lange P, Lombardi A, Glinni D et al (2011) 3,5-Diiodo-l-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J 25(10):3312–3324. doi:10.1096/fj.11-181982 PubMedCrossRef Moreno M, Silvestri E, De Matteis R, de Lange P, Lombardi A, Glinni D et al (2011) 3,5-Diiodo-l-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J 25(10):3312–3324. doi:10.​1096/​fj.​11-181982 PubMedCrossRef
11.
12.
Zurück zum Zitat Heuer H, Maier MK, Iden S, Mittag J, Friesema ECH, Visser TJ, Bauer K (2005) The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146(4):1701–1706. doi:10.1210/en.2004-1179 PubMedCrossRef Heuer H, Maier MK, Iden S, Mittag J, Friesema ECH, Visser TJ, Bauer K (2005) The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146(4):1701–1706. doi:10.​1210/​en.​2004-1179 PubMedCrossRef
17.
Zurück zum Zitat Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch Eur J Physiol 447(5):653–665. doi:10.1007/s00424-003-1168-y CrossRef Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch Eur J Physiol 447(5):653–665. doi:10.​1007/​s00424-003-1168-y CrossRef
19.
Zurück zum Zitat Friesema ECH, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278(41):40128–40135. doi:10.1074/jbc.M300909200 PubMedCrossRef Friesema ECH, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278(41):40128–40135. doi:10.​1074/​jbc.​M300909200 PubMedCrossRef
20.
Zurück zum Zitat Friesema ECH, Jansen J, Jachtenberg J-W, Visser WE, Kester MHA, Visser TJ (2008) Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol (Baltimore, Md.) 22(6):1357–1369. doi:10.1210/me.2007-0112 CrossRef Friesema ECH, Jansen J, Jachtenberg J-W, Visser WE, Kester MHA, Visser TJ (2008) Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol (Baltimore, Md.) 22(6):1357–1369. doi:10.​1210/​me.​2007-0112 CrossRef
21.
Zurück zum Zitat Anwer MS, Stieger B (2014) Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflügers Arch Eur J Physiol 466(1):77–89. doi:10.1007/s00424-013-1367-0 CrossRef Anwer MS, Stieger B (2014) Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflügers Arch Eur J Physiol 466(1):77–89. doi:10.​1007/​s00424-013-1367-0 CrossRef
22.
24.
25.
27.
Zurück zum Zitat Huber RD, Gao B, Sidler Pfändler M-A, Zhang-Fu W, Leuthold S, Hagenbuch B et al (2007) Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292(2):C795–C806. doi:10.1152/ajpcell.00597.2005 PubMedCrossRef Huber RD, Gao B, Sidler Pfändler M-A, Zhang-Fu W, Leuthold S, Hagenbuch B et al (2007) Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292(2):C795–C806. doi:10.​1152/​ajpcell.​00597.​2005 PubMedCrossRef
29.
30.
Zurück zum Zitat Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M et al (1998) Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 273(35):22395–22401. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9712861 Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M et al (1998) Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 273(35):22395–22401. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9712861
33.
Zurück zum Zitat Bonen A, Heynen M, Hatta H (2006) Distribution of monocarboxylate transporters MCT1–MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab = Physiologie appliquée, nutrition et métabolisme 31(1):31–39. doi:10.1139/h05-002 PubMedCrossRef Bonen A, Heynen M, Hatta H (2006) Distribution of monocarboxylate transporters MCT1–MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab = Physiologie appliquée, nutrition et métabolisme 31(1):31–39. doi:10.​1139/​h05-002 PubMedCrossRef
34.
Zurück zum Zitat Grube M, Köck K, Oswald S, Draber K, Meissner K, Eckel L et al (2006) Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther 80(6):607–620. doi:10.1016/j.clpt.2006.09.010 PubMedCrossRef Grube M, Köck K, Oswald S, Draber K, Meissner K, Eckel L et al (2006) Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther 80(6):607–620. doi:10.​1016/​j.​clpt.​2006.​09.​010 PubMedCrossRef
35.
Zurück zum Zitat Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M et al (2001) Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 142(5):2005–2012. doi:10.1210/endo.142.5.8115 PubMed Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M et al (2001) Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 142(5):2005–2012. doi:10.​1210/​endo.​142.​5.​8115 PubMed
36.
Zurück zum Zitat Oppenheimer JH, Schwartz HL, Mariash CN, Kinlaw WB, Wong NC, Freake HC (1987) Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev 8(3):288–308. doi:10.1210/edrv-8-3-288 PubMedCrossRef Oppenheimer JH, Schwartz HL, Mariash CN, Kinlaw WB, Wong NC, Freake HC (1987) Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev 8(3):288–308. doi:10.​1210/​edrv-8-3-288 PubMedCrossRef
37.
39.
Zurück zum Zitat Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC (2008) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci CMLS 65(4):570–590. doi:10.1007/s00018-007-7396-0 PubMedCrossRef Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC (2008) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci CMLS 65(4):570–590. doi:10.​1007/​s00018-007-7396-0 PubMedCrossRef
41.
Zurück zum Zitat Silva JE, Larsen PR (1978) Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear. J Clin Investig 61(5):1247–1259. doi:10.1172/JCI109041 PubMedPubMedCentralCrossRef Silva JE, Larsen PR (1978) Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear. J Clin Investig 61(5):1247–1259. doi:10.​1172/​JCI109041 PubMedPubMedCentralCrossRef
42.
45.
Zurück zum Zitat Yonemoto T, Nishikawa M, Matsubara H, Mori Y, Toyoda N, Gondou A et al (1999) Type 1 iodothyronine deiodinase in heart—effects of triiodothyronine and angiotensin II on its activity and mRNA in cultured rat myocytes. Endocrine J 46(5):621–628. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10670746 Yonemoto T, Nishikawa M, Matsubara H, Mori Y, Toyoda N, Gondou A et al (1999) Type 1 iodothyronine deiodinase in heart—effects of triiodothyronine and angiotensin II on its activity and mRNA in cultured rat myocytes. Endocrine J 46(5):621–628. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10670746
47.
48.
Zurück zum Zitat Croteau W, Davey JC, Galton VA, St Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Investig 98(2):405–417. doi:10.1172/JCI118806 PubMedPubMedCentralCrossRef Croteau W, Davey JC, Galton VA, St Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Investig 98(2):405–417. doi:10.​1172/​JCI118806 PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Pachucki J, Hopkins J, Peeters R, Tu H, Carvalho SD, Kaulbach H et al (2001) Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology 142(1):13–20. doi:10.1210/endo.142.1.7907 PubMed Pachucki J, Hopkins J, Peeters R, Tu H, Carvalho SD, Kaulbach H et al (2001) Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology 142(1):13–20. doi:10.​1210/​endo.​142.​1.​7907 PubMed
50.
Zurück zum Zitat Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol (Baltimore, Md.) 17(8):1508–1521. doi:10.1210/me.2002-0348 CrossRef Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol (Baltimore, Md.) 17(8):1508–1521. doi:10.​1210/​me.​2002-0348 CrossRef
53.
Zurück zum Zitat Santini F, Chopra IJ, Hurd RE, Solomon DH, Teco GN (1992) A study of the characteristics of the rat placental iodothyronine 5-monodeiodinase: evidence that it is distinct from the rat hepatic iodothyronine 5′-monodeiodinase. Endocrinology 130(4):2325–2332. doi:10.1210/endo.130.4.1547744 PubMed Santini F, Chopra IJ, Hurd RE, Solomon DH, Teco GN (1992) A study of the characteristics of the rat placental iodothyronine 5-monodeiodinase: evidence that it is distinct from the rat hepatic iodothyronine 5′-monodeiodinase. Endocrinology 130(4):2325–2332. doi:10.​1210/​endo.​130.​4.​1547744 PubMed
54.
Zurück zum Zitat Olivares EL, Marassi MP, Fortunato RS, da Silva ACM, Costa-e-Sousa RH, Araújo IG et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148(10):4786–4792. doi:10.1210/en.2007-0043 PubMedCrossRef Olivares EL, Marassi MP, Fortunato RS, da Silva ACM, Costa-e-Sousa RH, Araújo IG et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148(10):4786–4792. doi:10.​1210/​en.​2007-0043 PubMedCrossRef
55.
57.
Zurück zum Zitat Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strasburger CJ, Köhrle J, Wu Z (2014) Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24(9):1350–1360. doi:10.1089/thy.2013.0688 PubMedCrossRef Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strasburger CJ, Köhrle J, Wu Z (2014) Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24(9):1350–1360. doi:10.​1089/​thy.​2013.​0688 PubMedCrossRef
58.
Zurück zum Zitat Pinna G, Hiedra L, Meinhold H, Eravci M, Prengel H, Brödel O et al (1998) 3,3′-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress. J Clin Endocrinol Metab 83(9):3071–3077. doi:10.1210/jcem.83.9.5080 PubMed Pinna G, Hiedra L, Meinhold H, Eravci M, Prengel H, Brödel O et al (1998) 3,3′-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress. J Clin Endocrinol Metab 83(9):3071–3077. doi:10.​1210/​jcem.​83.​9.​5080 PubMed
60.
Zurück zum Zitat Jonklaas J, Sathasivam A, Wang H, Finigan D, Soldin OP, Burman KD, Soldin SJ (2014) 3,3′-diiodothyronine concentrations in hospitalized or thyroidectomized patients: results from a pilot study. Endocrine Pract 20(8):797–807. doi:10.4158/EP13453.OR CrossRef Jonklaas J, Sathasivam A, Wang H, Finigan D, Soldin OP, Burman KD, Soldin SJ (2014) 3,3′-diiodothyronine concentrations in hospitalized or thyroidectomized patients: results from a pilot study. Endocrine Pract 20(8):797–807. doi:10.​4158/​EP13453.​OR CrossRef
61.
Zurück zum Zitat Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10(6):638–642. doi:10.1038/nm1051 PubMedCrossRef Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10(6):638–642. doi:10.​1038/​nm1051 PubMedCrossRef
63.
Zurück zum Zitat Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U et al (2015) Biosynthesis of 3-iodothyronamine from l-thyroxine in murine intestinal tissue. Endocrinology. doi:10.1210/en.2014-1499 Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U et al (2015) Biosynthesis of 3-iodothyronamine from l-thyroxine in murine intestinal tissue. Endocrinology. doi:10.​1210/​en.​2014-1499
64.
Zurück zum Zitat Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A et al (2007) Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J 21(7):1597–1608. doi:10.1096/fj.06-7474com PubMedCrossRef Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A et al (2007) Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J 21(7):1597–1608. doi:10.​1096/​fj.​06-7474com PubMedCrossRef
65.
Zurück zum Zitat Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1985) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324(6098):641–646. doi:10.1038/324641a0 CrossRef Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1985) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324(6098):641–646. doi:10.​1038/​324641a0 CrossRef
66.
Zurück zum Zitat Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A et al (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324(6098):635–640. doi:10.1038/324635a0 PubMedCrossRef Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A et al (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324(6098):635–640. doi:10.​1038/​324635a0 PubMedCrossRef
67.
Zurück zum Zitat Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS et al (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58(4):705–711. doi:10.1124/pr.58.4.3 PubMedCrossRef Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS et al (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58(4):705–711. doi:10.​1124/​pr.​58.​4.​3 PubMedCrossRef
68.
Zurück zum Zitat Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE (2012) Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol 26(6):926–939. doi:10.1210/me.2011-1290 PubMedPubMedCentralCrossRef Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE (2012) Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol 26(6):926–939. doi:10.​1210/​me.​2011-1290 PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R et al (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142(2):544–550. doi:10.1210/endo.142.2.7935 PubMed Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R et al (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142(2):544–550. doi:10.​1210/​endo.​142.​2.​7935 PubMed
79.
Zurück zum Zitat Gustafson TA, Markham BE, Morkin E (1986) Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 59(2):194–201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3742743 Gustafson TA, Markham BE, Morkin E (1986) Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 59(2):194–201. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​3742743
83.
Zurück zum Zitat Averyhart-Fullard V, Fraker LD, Murphy AM, Solaro RJ (1994) Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart. J Mol Cell Cardiol 26(5):609–616. doi:10.1006/jmcc.1994.1073 PubMedCrossRef Averyhart-Fullard V, Fraker LD, Murphy AM, Solaro RJ (1994) Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart. J Mol Cell Cardiol 26(5):609–616. doi:10.​1006/​jmcc.​1994.​1073 PubMedCrossRef
84.
Zurück zum Zitat Huang X, Lee KJ, Riedel B, Zhang C, Lemanski LF, Walker JW (2000) Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. J Mol Cell Cardiol 32(12):2221–2228. doi:10.1006/jmcc.2000.1249 PubMedCrossRef Huang X, Lee KJ, Riedel B, Zhang C, Lemanski LF, Walker JW (2000) Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. J Mol Cell Cardiol 32(12):2221–2228. doi:10.​1006/​jmcc.​2000.​1249 PubMedCrossRef
86.
Zurück zum Zitat Hartong R, Wang N, Kurokawa R, Lazar MA, Glass CK, Apriletti JW, Dillmann WH (1994) Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ ATPase gene. Demonstration that retinoid X receptor binds 5′ to thyroid hormone receptor in response element 1. J Biol Chem 269(17):13021–13029. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8175722 Hartong R, Wang N, Kurokawa R, Lazar MA, Glass CK, Apriletti JW, Dillmann WH (1994) Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ ATPase gene. Demonstration that retinoid X receptor binds 5′ to thyroid hormone receptor in response element 1. J Biol Chem 269(17):13021–13029. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8175722
93.
Zurück zum Zitat Reed TD, Babu GJ, Ji Y, Zilberman A, Ver Heyen M, Wuytack F, Periasamy M (2000) The expression of SR calcium transport ATPase and the Na(+)/Ca(2+) exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol 32(3):453–464. doi:10.1006/jmcc.1999.1095 PubMedCrossRef Reed TD, Babu GJ, Ji Y, Zilberman A, Ver Heyen M, Wuytack F, Periasamy M (2000) The expression of SR calcium transport ATPase and the Na(+)/Ca(2+) exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol 32(3):453–464. doi:10.​1006/​jmcc.​1999.​1095 PubMedCrossRef
96.
Zurück zum Zitat Rutherford JD, Vatner SF, Braunwald E (1979) Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am J Physiol Heart Circ Physiol 237(5):H590–H596 Rutherford JD, Vatner SF, Braunwald E (1979) Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am J Physiol Heart Circ Physiol 237(5):H590–H596
100.
Zurück zum Zitat Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 42(10):718–724. doi:10.1055/s-0030-1255035 PubMedCrossRef Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 42(10):718–724. doi:10.​1055/​s-0030-1255035 PubMedCrossRef
101.
Zurück zum Zitat Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M et al (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190. doi:10.1007/s10456-007-9088-7 PubMedCrossRef Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M et al (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190. doi:10.​1007/​s10456-007-9088-7 PubMedCrossRef
102.
105.
106.
Zurück zum Zitat Lin H-Y, Sun M, Tang H-Y, Lin C, Luidens MK, Mousa SA et al (2009) l-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell physiol 296(5):C980–C991. doi:10.1152/ajpcell.00305.2008 PubMedCrossRef Lin H-Y, Sun M, Tang H-Y, Lin C, Luidens MK, Mousa SA et al (2009) l-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell physiol 296(5):C980–C991. doi:10.​1152/​ajpcell.​00305.​2008 PubMedCrossRef
107.
110.
Zurück zum Zitat Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207(1):220–231. doi:10.1002/jcp.20562 PubMedCrossRef Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207(1):220–231. doi:10.​1002/​jcp.​20562 PubMedCrossRef
114.
Zurück zum Zitat Horowitz B, Hensley CB, Quintero M, Azuma KK, Putnam D, McDonough AA (1990) Differential regulation of Na, K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem 265(0021-9258 SB - IM):14308–14314PubMed Horowitz B, Hensley CB, Quintero M, Azuma KK, Putnam D, McDonough AA (1990) Differential regulation of Na, K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem 265(0021-9258 SB - IM):14308–14314PubMed
116.
117.
Zurück zum Zitat Schmidt BMW, Martin N, Georgens AC, Tillmann H-C, Feuring M, Christ M, Wehling M (2002) Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab 87(4):1681–1686. doi:10.1210/jcem.87.4.8410 PubMedCrossRef Schmidt BMW, Martin N, Georgens AC, Tillmann H-C, Feuring M, Christ M, Wehling M (2002) Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab 87(4):1681–1686. doi:10.​1210/​jcem.​87.​4.​8410 PubMedCrossRef
118.
Zurück zum Zitat Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M et al (2005) 3,5-diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 19(11):1552–1554. doi:10.1096/fj.05-3977fje PubMed Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M et al (2005) 3,5-diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 19(11):1552–1554. doi:10.​1096/​fj.​05-3977fje PubMed
119.
Zurück zum Zitat Mollica MP, Lionetti L, Moreno M, Lombardi A, De Lange P, Antonelli A et al (2009) 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J Hepatol 51(2):363–370. doi:10.1016/j.jhep.2009.03.023 PubMedCrossRef Mollica MP, Lionetti L, Moreno M, Lombardi A, De Lange P, Antonelli A et al (2009) 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J Hepatol 51(2):363–370. doi:10.​1016/​j.​jhep.​2009.​03.​023 PubMedCrossRef
120.
Zurück zum Zitat Padron AS, Neto RAL, Pantaleão TU, de Souza dos Santos MC, Araujo RL, de Andrade BM et al (2014) Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol 221(3):415–427. doi:10.1530/JOE-13-0502 PubMedPubMedCentralCrossRef Padron AS, Neto RAL, Pantaleão TU, de Souza dos Santos MC, Araujo RL, de Andrade BM et al (2014) Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol 221(3):415–427. doi:10.​1530/​JOE-13-0502 PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M (2009) 3,5-Diiodo-l-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 296(3):E497–E502. doi:10.1152/ajpendo.90642.2008 PubMedCrossRef Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M (2009) 3,5-Diiodo-l-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 296(3):E497–E502. doi:10.​1152/​ajpendo.​90642.​2008 PubMedCrossRef
126.
Zurück zum Zitat Lombardi A, De Matteis R, Moreno M, Napolitano L, Busiello RA, Senese R et al (2012) Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36. Am J Physiol Endocrinol Metab 303(10):E1222–E1233. doi:10.1152/ajpendo.00037.2012 PubMedCrossRef Lombardi A, De Matteis R, Moreno M, Napolitano L, Busiello RA, Senese R et al (2012) Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36. Am J Physiol Endocrinol Metab 303(10):E1222–E1233. doi:10.​1152/​ajpendo.​00037.​2012 PubMedCrossRef
128.
Zurück zum Zitat Mangiullo R, Gnoni A, Damiano F, Siculella L, Zanotti F, Papa S, Gnoni GV (2010) 3,5-diiodo-l-thyronine upregulates rat-liver mitochondrial F(o)F(1)-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim Biophys Acta 1797(2):233–240. doi:10.1016/j.bbabio.2009.10.009 PubMedCrossRef Mangiullo R, Gnoni A, Damiano F, Siculella L, Zanotti F, Papa S, Gnoni GV (2010) 3,5-diiodo-l-thyronine upregulates rat-liver mitochondrial F(o)F(1)-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim Biophys Acta 1797(2):233–240. doi:10.​1016/​j.​bbabio.​2009.​10.​009 PubMedCrossRef
129.
Zurück zum Zitat Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U et al (2015) 3,5-Diiodo-l-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1):389–399. doi:10.1210/en.2014-1604 PubMedCrossRef Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U et al (2015) 3,5-Diiodo-l-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1):389–399. doi:10.​1210/​en.​2014-1604 PubMedCrossRef
130.
Zurück zum Zitat Antonelli A, Fallahi P, Ferrari SM, Di Domenicantonio A, Moreno M, Lanni A, Goglia F 3,5-diiodo-l-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J Biol Regul Homeost Agents 25(4):655–660. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22217997 Antonelli A, Fallahi P, Ferrari SM, Di Domenicantonio A, Moreno M, Lanni A, Goglia F 3,5-diiodo-l-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J Biol Regul Homeost Agents 25(4):655–660. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22217997
131.
Zurück zum Zitat Cheng SY, Ransom SC, McPhie P, Bhat MK, Mixson AJ, Wintraub BD (1994) Analysis of the binding of 3,3′,5-triiodo-l-thyronine and its analogues to mutant human beta 1 thyroid hormone receptors: a model of the hormone binding site. Biochemistry 33(14):4319–4326. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8155649 Cheng SY, Ransom SC, McPhie P, Bhat MK, Mixson AJ, Wintraub BD (1994) Analysis of the binding of 3,3′,5-triiodo-l-thyronine and its analogues to mutant human beta 1 thyroid hormone receptors: a model of the hormone binding site. Biochemistry 33(14):4319–4326. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8155649
132.
Zurück zum Zitat Mendoza A, Navarrete-Ramírez P, Hernández-Puga G, Villalobos P, Holzer G, Renaud JP et al (2013) 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1. Endocrinology 154(8):2948–2958. doi:10.1210/en.2013-1030 PubMedCrossRef Mendoza A, Navarrete-Ramírez P, Hernández-Puga G, Villalobos P, Holzer G, Renaud JP et al (2013) 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1. Endocrinology 154(8):2948–2958. doi:10.​1210/​en.​2013-1030 PubMedCrossRef
133.
136.
Zurück zum Zitat Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J et al (2015) 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 54(3):205–216. doi:10.1530/JME-15-0003 PubMedCrossRef Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J et al (2015) 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 54(3):205–216. doi:10.​1530/​JME-15-0003 PubMedCrossRef
137.
Zurück zum Zitat Frascarelli S, Ghelardoni S, Chiellini G, Galli E, Ronca F, Scanlan TS, Zucchi R (2011) Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 25(4):307–313. doi:10.1007/s10557-011-6320-x PubMedCrossRef Frascarelli S, Ghelardoni S, Chiellini G, Galli E, Ronca F, Scanlan TS, Zucchi R (2011) Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 25(4):307–313. doi:10.​1007/​s10557-011-6320-x PubMedCrossRef
138.
Zurück zum Zitat Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, Di Meo S (2011) Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 341(1–2):55–62. doi:10.1016/j.mce.2011.05.013 PubMedCrossRef Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, Di Meo S (2011) Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 341(1–2):55–62. doi:10.​1016/​j.​mce.​2011.​05.​013 PubMedCrossRef
141.
Zurück zum Zitat Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennström B, Mittag J (2015) 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 172(13):3426–3433. doi:10.1111/bph.13131 PubMedCrossRef Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennström B, Mittag J (2015) 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 172(13):3426–3433. doi:10.​1111/​bph.​13131 PubMedCrossRef
142.
Zurück zum Zitat Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87(3):968–974. doi:10.1210/jcem.87.3.8302 PubMedCrossRef Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87(3):968–974. doi:10.​1210/​jcem.​87.​3.​8302 PubMedCrossRef
145.
Zurück zum Zitat Pachucki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85(6):498–503PubMedCrossRef Pachucki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85(6):498–503PubMedCrossRef
147.
148.
Zurück zum Zitat Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR et al (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85(3):560–570. doi:10.1093/cvr/cvp304 PubMedCrossRef Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR et al (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85(3):560–570. doi:10.​1093/​cvr/​cvp304 PubMedCrossRef
149.
Zurück zum Zitat Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH (1999) Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res 43(2):382–388PubMedCrossRef Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH (1999) Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res 43(2):382–388PubMedCrossRef
151.
Zurück zum Zitat Dernellis J, Panaretou M (2002) Effects of thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism. Am Heart J 143:718–724PubMedCrossRef Dernellis J, Panaretou M (2002) Effects of thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism. Am Heart J 143:718–724PubMedCrossRef
152.
Zurück zum Zitat Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci USA 89(12):5251–5255PubMedPubMedCentralCrossRef Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci USA 89(12):5251–5255PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 132(4):270–278. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10681281 Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 132(4):270–278. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10681281
154.
Zurück zum Zitat Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM (2009) Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol 294(5):H2137–H2143. doi:10.1152/ajpheart.01379.2007 CrossRef Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM (2009) Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol 294(5):H2137–H2143. doi:10.​1152/​ajpheart.​01379.​2007 CrossRef
155.
Zurück zum Zitat Saba A, Donzelli R, Colligiani D, Raffaelli A, Nannipieri M, Kusmic C et al (2014) Quantification of thyroxine and 3,5,3′-triiodo-thyronine in human and animal hearts by a novel liquid chromatography–tandem mass spectrometry method. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 46(9):628–634. doi:10.1055/s-0034-1368717 PubMedCrossRef Saba A, Donzelli R, Colligiani D, Raffaelli A, Nannipieri M, Kusmic C et al (2014) Quantification of thyroxine and 3,5,3′-triiodo-thyronine in human and animal hearts by a novel liquid chromatography–tandem mass spectrometry method. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 46(9):628–634. doi:10.​1055/​s-0034-1368717 PubMedCrossRef
157.
Zurück zum Zitat Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103(8):1089–1094. doi:10.1161/01.CIR.103.8.1089 PubMedCrossRef Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103(8):1089–1094. doi:10.​1161/​01.​CIR.​103.​8.​1089 PubMedCrossRef
158.
Zurück zum Zitat Belke DD, Gloss B, Swanson EA, Dillmann WH (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and-beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148(6):2870–2877. doi:10.1210/en.2007-0009 PubMedCrossRef Belke DD, Gloss B, Swanson EA, Dillmann WH (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and-beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148(6):2870–2877. doi:10.​1210/​en.​2007-0009 PubMedCrossRef
160.
Zurück zum Zitat Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A et al (2011) Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152(2):669–679. doi:10.1210/en.2010-0431 PubMedCrossRef Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A et al (2011) Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152(2):669–679. doi:10.​1210/​en.​2010-0431 PubMedCrossRef
161.
Zurück zum Zitat Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165(1):107–114. doi:10.1530/EJE-11-0062 PubMedCrossRef Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165(1):107–114. doi:10.​1530/​EJE-11-0062 PubMedCrossRef
Metadaten
Titel
Tissue thyroid hormones and thyronamines
verfasst von
Alice Accorroni
Federica Saponaro
Riccardo Zucchi
Publikationsdatum
26.04.2016
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 4/2016
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-016-9553-8

Weitere Artikel der Ausgabe 4/2016

Heart Failure Reviews 4/2016 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.