Skip to main content
Erschienen in: Inflammation 4/2020

26.02.2020 | Original Article

Titanium Ions Play a Synergistic Role in the Activation of NLRP3 Inflammasome in Jurkat T Cells

verfasst von: Xiao Li, Li Tang, Ye Myat Thu, Donghui Chen

Erschienen in: Inflammation | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Release of titanium ions (Ti ions) frequently occurs around dental implants and, as a consequence, higher content of Ti is typically present in peri-implantitis tissue. Unlike chronic periodontitis, Ti ions may play a role in the development of peri-implantitis. Inflammasomes are multiprotein signal transduction complexes, involved in inflammation and immune response, which lead to the secretion of mature cytokines associated with the progression of peri-implantitis. It is well known that T lymphocytes dominate the immune response in peri-implantitis, but whether Ti ions can impact the assembly of functional inflammasomes in T cells still remains unclear. Here, we observed that the mRNA expression of NLRP3 and CASP1, as well as the secretion of IL-1β, increased after 6-h incubation of Jurkat T cells with PHA and Ti ions. Moreover, measurement by confocal microscopy and flow cytometry assay indicates that Ti ions can promote the production of ROS, while NLRP3 expression and IL-1β secretion are reduced after treatment of Jurkat cells with NAC (ROS scavenger). Taken together, we presently show that Ti ions can activate NLRP3 inflammasome and then promote IL-β secretion in vitro, where ROS may play a mechanistic role in this activation process.
Literatur
1.
Zurück zum Zitat Derks, J., and C. Tomasi. 2015. Peri-implant health and disease. A systematic review of current epidemiology. Journal of Clinical Periodontology 42 (Suppl 16): S158–S171.PubMed Derks, J., and C. Tomasi. 2015. Peri-implant health and disease. A systematic review of current epidemiology. Journal of Clinical Periodontology 42 (Suppl 16): S158–S171.PubMed
2.
Zurück zum Zitat Schwarz, F., J. Derks, A. Monje, and H.L. Wang. 2018. Peri-implantitis. Journal of Periodontology 89 (Suppl 1): S267–S290.PubMed Schwarz, F., J. Derks, A. Monje, and H.L. Wang. 2018. Peri-implantitis. Journal of Periodontology 89 (Suppl 1): S267–S290.PubMed
3.
Zurück zum Zitat Albrektsson, T., L. Canullo, D. Cochran, and H. De Bruyn. 2016. “Peri-Implantitis”: a complication of a foreign body or a man-made “disease”. Facts and Fiction. Clinical Implant Dentistry and Related Research 18 (4):840–849. Albrektsson, T., L. Canullo, D. Cochran, and H. De Bruyn. 2016. “Peri-Implantitis”: a complication of a foreign body or a man-made “disease”. Facts and Fiction. Clinical Implant Dentistry and Related Research 18 (4):840–849.
4.
Zurück zum Zitat Matono, Y., M. Nakagawa, S. Matsuya, K. Ishikawa, and Y. Terada. 2006. Corrosion behavior of pure titanium and titanium alloys in various concentrations of acidulated phosphate fluoride (APF) solutions. Dental Materials Journal 25 (1): 104–112.PubMed Matono, Y., M. Nakagawa, S. Matsuya, K. Ishikawa, and Y. Terada. 2006. Corrosion behavior of pure titanium and titanium alloys in various concentrations of acidulated phosphate fluoride (APF) solutions. Dental Materials Journal 25 (1): 104–112.PubMed
5.
Zurück zum Zitat Nakagawa, M., S. Matsuya, and K. Udoh. 2002. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dental Materials Journal 21 (2): 83–92.PubMed Nakagawa, M., S. Matsuya, and K. Udoh. 2002. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dental Materials Journal 21 (2): 83–92.PubMed
6.
Zurück zum Zitat de Morais, L.S., G.G. Serra, E.F. Albuquerque Palermo, L.R. Andrade, C.A. Müller, M.A. Meyers, and C.N. Elias. 2009. Systemic levels of metallic ions released from orthodontic mini-implants. American Journal of Orthodontics and Dentofacial Orthopedics 135 (4): 522–529.PubMed de Morais, L.S., G.G. Serra, E.F. Albuquerque Palermo, L.R. Andrade, C.A. Müller, M.A. Meyers, and C.N. Elias. 2009. Systemic levels of metallic ions released from orthodontic mini-implants. American Journal of Orthodontics and Dentofacial Orthopedics 135 (4): 522–529.PubMed
7.
Zurück zum Zitat Schliephake, H., G. Reiss, R. Urban, F.W. Neukam, and S. Guckel. 1993. Metal release from titanium fixtures during placement in the mandible an experimental study. The International Journal of Oral & Maxillofacial Implants 8: 502–511. Schliephake, H., G. Reiss, R. Urban, F.W. Neukam, and S. Guckel. 1993. Metal release from titanium fixtures during placement in the mandible an experimental study. The International Journal of Oral & Maxillofacial Implants 8: 502–511.
8.
Zurück zum Zitat Meyer, U., M. Bühner, A. Büchter, B. Kruse-Lösler, T. Stamm, and H.P. Wiesmann. 2006. Fast element mapping of titanium wear around implants of different surface structures. Clinical Oral Implants Research 17 (2): 206–211.PubMed Meyer, U., M. Bühner, A. Büchter, B. Kruse-Lösler, T. Stamm, and H.P. Wiesmann. 2006. Fast element mapping of titanium wear around implants of different surface structures. Clinical Oral Implants Research 17 (2): 206–211.PubMed
9.
Zurück zum Zitat Wennerberg, A., A. Ide-Ektessabi, S. Hatkamata, T. Sawase, C. Johansson, T. Albrektsson, A. Martinelli, U. Södervall, and H. Odelius. 2004. Titanium release from implants prepared with different surface roughness. Clinical Oral Implants Research 15 (5): 505–512.PubMed Wennerberg, A., A. Ide-Ektessabi, S. Hatkamata, T. Sawase, C. Johansson, T. Albrektsson, A. Martinelli, U. Södervall, and H. Odelius. 2004. Titanium release from implants prepared with different surface roughness. Clinical Oral Implants Research 15 (5): 505–512.PubMed
10.
Zurück zum Zitat Chen, J., Q. Li, Z. Pang, M. Gong, and L. Tang. 2018. Titanium ions promote exogenous calcium-dependent calcium influx in activated Jurkat T cells: a possible mechanism to explain its immunostimulatory properties. Mediators of Inflammation 2018: 3286905.PubMedPubMedCentral Chen, J., Q. Li, Z. Pang, M. Gong, and L. Tang. 2018. Titanium ions promote exogenous calcium-dependent calcium influx in activated Jurkat T cells: a possible mechanism to explain its immunostimulatory properties. Mediators of Inflammation 2018: 3286905.PubMedPubMedCentral
11.
Zurück zum Zitat Ghassib, I., Z. Chen, J. Zhu, and H.L. Wang. 2019. Use of IL-1 beta, IL-6, TNF-alpha, and MMP-8 biomarkers to distinguish peri-implant diseases: a systematic review and meta-analysis. Clinical Implant Dentistry and Related Research 21 (1): 190–207.PubMed Ghassib, I., Z. Chen, J. Zhu, and H.L. Wang. 2019. Use of IL-1 beta, IL-6, TNF-alpha, and MMP-8 biomarkers to distinguish peri-implant diseases: a systematic review and meta-analysis. Clinical Implant Dentistry and Related Research 21 (1): 190–207.PubMed
12.
Zurück zum Zitat Makihira, S., Y. Mine, H. Nikawa, T. Shuto, S. Iwata, R. Hosokaw, K. Kamoia, S. Okazaki, and Y. Yamaguchi. 2010. Titanium ion induces necrosis and sensitivity to lipopolysaccharide in gingival epithelial-like cells. Toxicology In Vitro 24 (7): 1905–1910.PubMed Makihira, S., Y. Mine, H. Nikawa, T. Shuto, S. Iwata, R. Hosokaw, K. Kamoia, S. Okazaki, and Y. Yamaguchi. 2010. Titanium ion induces necrosis and sensitivity to lipopolysaccharide in gingival epithelial-like cells. Toxicology In Vitro 24 (7): 1905–1910.PubMed
13.
Zurück zum Zitat Pettersson, M., J. Pettersson, A. Johansson, and M. Molin Thoren. 2019. Titanium release in peri-implantitis. Journal of Oral Rehabilitation 46 (2): 179–188.PubMed Pettersson, M., J. Pettersson, A. Johansson, and M. Molin Thoren. 2019. Titanium release in peri-implantitis. Journal of Oral Rehabilitation 46 (2): 179–188.PubMed
14.
Zurück zum Zitat Brewer, S.M., S.W. Brubaker, and D.M. Monack. 2019. Host inflammasome defense mechanisms and bacterial pathogen evasion strategies. Current Opinion in Immunology 60: 63–70.PubMed Brewer, S.M., S.W. Brubaker, and D.M. Monack. 2019. Host inflammasome defense mechanisms and bacterial pathogen evasion strategies. Current Opinion in Immunology 60: 63–70.PubMed
15.
Zurück zum Zitat Latz, E., T. Sam Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature Reviews Immunology 13 (6): 397–411.PubMed Latz, E., T. Sam Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature Reviews Immunology 13 (6): 397–411.PubMed
16.
Zurück zum Zitat Man, S.M., and T.D. Kanneganti. 2016. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nature Reviews. Immunology 16 (1): 7–21.PubMed Man, S.M., and T.D. Kanneganti. 2016. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nature Reviews. Immunology 16 (1): 7–21.PubMed
17.
Zurück zum Zitat Creagh, E.M. 2014. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends in Immunology 35 (12): 631–640.PubMed Creagh, E.M. 2014. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends in Immunology 35 (12): 631–640.PubMed
18.
Zurück zum Zitat Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology 27: 519–550.PubMed Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology 27: 519–550.PubMed
19.
Zurück zum Zitat Obando-Pereda, G.A., L. Fischer, and D.R. Stach-Machado. 2014. Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sciences 97 (2): 96–106.PubMed Obando-Pereda, G.A., L. Fischer, and D.R. Stach-Machado. 2014. Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sciences 97 (2): 96–106.PubMed
20.
Zurück zum Zitat Broz, P., and V.M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews. Immunology 16 (7): 407–420.PubMed Broz, P., and V.M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews. Immunology 16 (7): 407–420.PubMed
21.
Zurück zum Zitat Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19 (8): 477–489.PubMedPubMedCentral Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19 (8): 477–489.PubMedPubMedCentral
22.
Zurück zum Zitat Tschopp, J., and K. Schroder. 2010. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nature Reviews. Immunology 10 (3): 210–215.PubMed Tschopp, J., and K. Schroder. 2010. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nature Reviews. Immunology 10 (3): 210–215.PubMed
23.
Zurück zum Zitat Moussa, H., C. Merlin, C. Dezanet, L. Balan, G. Medjahdi, M. Ben-Attia, and R. Schneider. 2016. Trace amounts of Cu(2)(+) ions influence ROS production and cytotoxicity of ZnO quantum dots. Journal of Hazardous Materials 304: 532–542.PubMed Moussa, H., C. Merlin, C. Dezanet, L. Balan, G. Medjahdi, M. Ben-Attia, and R. Schneider. 2016. Trace amounts of Cu(2)(+) ions influence ROS production and cytotoxicity of ZnO quantum dots. Journal of Hazardous Materials 304: 532–542.PubMed
24.
Zurück zum Zitat Wei, X., X. Zhang, L.M. Flick, H. Drissi, E.M. Schwarz, and R.J. O'Keefe. 2009. Titanium particles stimulate COX-2 expression in synovial fibroblasts through an oxidative stress-induced, calpain-dependent, NF-κB pathway. American Journal of Physiology-Cell Physiology 297 (2): C310–C320.PubMedPubMedCentral Wei, X., X. Zhang, L.M. Flick, H. Drissi, E.M. Schwarz, and R.J. O'Keefe. 2009. Titanium particles stimulate COX-2 expression in synovial fibroblasts through an oxidative stress-induced, calpain-dependent, NF-κB pathway. American Journal of Physiology-Cell Physiology 297 (2): C310–C320.PubMedPubMedCentral
25.
Zurück zum Zitat Galindo-Moreno, P., J. López-Martínez, M. Caba-Molina, R. Ríos-Pelegrina, L. Torrecillas-Martínez, A. Monje, F. Mesa, N. Chueca, F. García-García, and F. O'Valle. 2017. Morphological and immunophenotypical differences between chronic periodontitis and peri-implantitis – a cross-sectional study. European Journal of Oral Implantology 10 (4): 453–463.PubMed Galindo-Moreno, P., J. López-Martínez, M. Caba-Molina, R. Ríos-Pelegrina, L. Torrecillas-Martínez, A. Monje, F. Mesa, N. Chueca, F. García-García, and F. O'Valle. 2017. Morphological and immunophenotypical differences between chronic periodontitis and peri-implantitis – a cross-sectional study. European Journal of Oral Implantology 10 (4): 453–463.PubMed
26.
Zurück zum Zitat Kummer, J.A., R. Broekhuizen, H. Everett, L. Agostini, L. Kuijk, F. Martinon, R. van Bruggen, and J. Tschopp. 2007. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. The Journal of Histochemistry and Cytochemistry 55: 443–452.PubMed Kummer, J.A., R. Broekhuizen, H. Everett, L. Agostini, L. Kuijk, F. Martinon, R. van Bruggen, and J. Tschopp. 2007. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. The Journal of Histochemistry and Cytochemistry 55: 443–452.PubMed
27.
Zurück zum Zitat Arbore, G., E.E. West, R. Spolski, A.A.B. Robertson, A. Klos, C. Rheinheimer, P. Dutow, et al. 2016. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science 352 (6292): aad1210.PubMedPubMedCentral Arbore, G., E.E. West, R. Spolski, A.A.B. Robertson, A. Klos, C. Rheinheimer, P. Dutow, et al. 2016. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science 352 (6292): aad1210.PubMedPubMedCentral
28.
Zurück zum Zitat Chen, X., Z. Zhong, Z. Xu, L. Chen, and Y. Wang. 2010. 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radical Research 44 (6): 587–604.PubMed Chen, X., Z. Zhong, Z. Xu, L. Chen, and Y. Wang. 2010. 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radical Research 44 (6): 587–604.PubMed
29.
Zurück zum Zitat Davis-Gilbert, Z.W., and I.A. Tonks. 2017. Titanium redox catalysis: insights and applications of an earth-abundant base metal. Dalton Transactions 46 (35): 11522–11528.PubMed Davis-Gilbert, Z.W., and I.A. Tonks. 2017. Titanium redox catalysis: insights and applications of an earth-abundant base metal. Dalton Transactions 46 (35): 11522–11528.PubMed
30.
Zurück zum Zitat Berglundh, T., S. Jepsen, B. Stadlinger, and H. Terheyden. 2019. NLRP1 and NLRC4 inflammasomes are not responsible for the induction of inflammation in pulp tissues from carious teeth. Journal of Conservative Dentistry 22 (1): 12–16. Berglundh, T., S. Jepsen, B. Stadlinger, and H. Terheyden. 2019. NLRP1 and NLRC4 inflammasomes are not responsible for the induction of inflammation in pulp tissues from carious teeth. Journal of Conservative Dentistry 22 (1): 12–16.
31.
Zurück zum Zitat Hornung, V., A. Ablasser, M. Charrel-Dennis, F. Bauernfeind, G. Horvath, D.R. Caffrey, E. Latz, and K.A. Fitzgerald. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458 (7237): 514–518.PubMedPubMedCentral Hornung, V., A. Ablasser, M. Charrel-Dennis, F. Bauernfeind, G. Horvath, D.R. Caffrey, E. Latz, and K.A. Fitzgerald. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458 (7237): 514–518.PubMedPubMedCentral
32.
Zurück zum Zitat Jo, E.K., J.K. Kim, D.M. Shin, and C. Sasakawa. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology 13 (2): 148–159. Jo, E.K., J.K. Kim, D.M. Shin, and C. Sasakawa. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology 13 (2): 148–159.
33.
Zurück zum Zitat Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: guardians of the body. Annual Review of Immunology 27: 229–265.PubMed Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: guardians of the body. Annual Review of Immunology 27: 229–265.PubMed
34.
Zurück zum Zitat Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140 (6): 821–832.PubMed Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140 (6): 821–832.PubMed
35.
Zurück zum Zitat Vanaja, S.K., V.A. Rathinam, and K.A. Fitzgerald. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends in Cell Biology 25 (5): 308–315.PubMedPubMedCentral Vanaja, S.K., V.A. Rathinam, and K.A. Fitzgerald. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends in Cell Biology 25 (5): 308–315.PubMedPubMedCentral
36.
Zurück zum Zitat Pettersson, M., P. Kelk, G.N. Belibasakis, D. Bylund, M. Molin Thoren, and A. Johansson. 2017. Titanium ions form particles that activate and execute interleukin-1beta release from lipopolysaccharide-primed macrophages. Journal of Periodontal Research 52 (1): 21–32.PubMed Pettersson, M., P. Kelk, G.N. Belibasakis, D. Bylund, M. Molin Thoren, and A. Johansson. 2017. Titanium ions form particles that activate and execute interleukin-1beta release from lipopolysaccharide-primed macrophages. Journal of Periodontal Research 52 (1): 21–32.PubMed
37.
Zurück zum Zitat Awad, F., E. Assrawi, C. Louvrier, C. Jumeau, S. Georgin-Lavialle, G. Grateau, S. Amselem, I. Giurgea, and S.A. Karabina. 2018. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & Therapeutics 187: 133–149. Awad, F., E. Assrawi, C. Louvrier, C. Jumeau, S. Georgin-Lavialle, G. Grateau, S. Amselem, I. Giurgea, and S.A. Karabina. 2018. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & Therapeutics 187: 133–149.
38.
Zurück zum Zitat Ferreira, S.D., C.C. Martins, S.A. Amaral, T.R. Vieira, B.N. Albuquerque, L.O.M. Cota, R.P. Esteves Lima, and F.O. Costa. 2018. Periodontitis as a risk factor for peri-implantitis: systematic review and meta-analysis of observational studies. Journal of Dentistry 79: 1–10.PubMed Ferreira, S.D., C.C. Martins, S.A. Amaral, T.R. Vieira, B.N. Albuquerque, L.O.M. Cota, R.P. Esteves Lima, and F.O. Costa. 2018. Periodontitis as a risk factor for peri-implantitis: systematic review and meta-analysis of observational studies. Journal of Dentistry 79: 1–10.PubMed
39.
Zurück zum Zitat Broz, P., J. von Moltke, J.W. Jones, R.E. Vance, and D.M. Monack. 2010. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host & Microbe 8 (6): 471–483. Broz, P., J. von Moltke, J.W. Jones, R.E. Vance, and D.M. Monack. 2010. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host & Microbe 8 (6): 471–483.
40.
Zurück zum Zitat Dick, M.S., L. Sborgi, S. Ruhl, S. Hiller, and P. Broz. 2016. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nature Communications 7: 11929.PubMedPubMedCentral Dick, M.S., L. Sborgi, S. Ruhl, S. Hiller, and P. Broz. 2016. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nature Communications 7: 11929.PubMedPubMedCentral
41.
Zurück zum Zitat Van Opdenbosch, N., P. Gurung, L. Vande Walle, A. Fossoul, T.D. Kanneganti, and M. Lamkanfi. 2014. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nature Communications 5: 3209.PubMed Van Opdenbosch, N., P. Gurung, L. Vande Walle, A. Fossoul, T.D. Kanneganti, and M. Lamkanfi. 2014. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nature Communications 5: 3209.PubMed
42.
Zurück zum Zitat Dostert, C., V. Petrilli, R. Van Bruggen, C. Steele, B.T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320 (5876): 674–677.PubMedPubMedCentral Dostert, C., V. Petrilli, R. Van Bruggen, C. Steele, B.T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320 (5876): 674–677.PubMedPubMedCentral
43.
Zurück zum Zitat Milkovic, L., A. Cipak Gasparovic, M. Cindric, P.A. Mouthuy, and N. Zarkovic. 2019. Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8 (8): 793–807.PubMedCentral Milkovic, L., A. Cipak Gasparovic, M. Cindric, P.A. Mouthuy, and N. Zarkovic. 2019. Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8 (8): 793–807.PubMedCentral
44.
Zurück zum Zitat Abais, J.M., M. Xia, Y. Zhang, K.M. Boini, and P. Li. 2015. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & Redox Signaling 22 (13): 1111–1129. Abais, J.M., M. Xia, Y. Zhang, K.M. Boini, and P. Li. 2015. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & Redox Signaling 22 (13): 1111–1129.
45.
Zurück zum Zitat Ferko, M.A., and I. Catelas. 2018. Effects of metal ions on caspase-1 activation and interleukin-1beta release in murine bone marrow-derived macrophages. PLoS One 13 (8): e0199936.PubMedPubMedCentral Ferko, M.A., and I. Catelas. 2018. Effects of metal ions on caspase-1 activation and interleukin-1beta release in murine bone marrow-derived macrophages. PLoS One 13 (8): e0199936.PubMedPubMedCentral
46.
Zurück zum Zitat Niki, Y., H. Matsumoto, Y. Suda, T. Otani, K. Fujikawa, Y. Toyama, N. Hisamori, and A. Nozue. 2003. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials 24: 1447–1457.PubMed Niki, Y., H. Matsumoto, Y. Suda, T. Otani, K. Fujikawa, Y. Toyama, N. Hisamori, and A. Nozue. 2003. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials 24: 1447–1457.PubMed
47.
Zurück zum Zitat Petit, A., F. Mwale, C. Tkaczyk, J. Antoniou, D.J. Zukor, and O.L. Huk. 2005. Induction of protein oxidation by cobalt and chromium ions in human U937 macrophages. Biomaterials 26 (21): 4416–4422.PubMed Petit, A., F. Mwale, C. Tkaczyk, J. Antoniou, D.J. Zukor, and O.L. Huk. 2005. Induction of protein oxidation by cobalt and chromium ions in human U937 macrophages. Biomaterials 26 (21): 4416–4422.PubMed
48.
Zurück zum Zitat Simon, F., D. Varela, and C. Cabello-Verrugio. 2013. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cellular Signalling 25 (7): 1614–1624.PubMed Simon, F., D. Varela, and C. Cabello-Verrugio. 2013. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cellular Signalling 25 (7): 1614–1624.PubMed
49.
Zurück zum Zitat Bouron, A., K. Kiselyov, and J. Oberwinkler. 2015. Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflügers Archiv 467 (6): 1143–1164.PubMed Bouron, A., K. Kiselyov, and J. Oberwinkler. 2015. Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflügers Archiv 467 (6): 1143–1164.PubMed
Metadaten
Titel
Titanium Ions Play a Synergistic Role in the Activation of NLRP3 Inflammasome in Jurkat T Cells
verfasst von
Xiao Li
Li Tang
Ye Myat Thu
Donghui Chen
Publikationsdatum
26.02.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01206-z

Weitere Artikel der Ausgabe 4/2020

Inflammation 4/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.