Skip to main content
Erschienen in: Virology Journal 1/2020

Open Access 01.12.2020 | Review

Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways

verfasst von: Wenjin Zheng, Qing Xu, Yiyuan Zhang, Xiaofei E, Wei Gao, Mogen Zhang, Weijie Zhai, Ronaldjit Singh Rajkumar, Zhijun Liu

Erschienen in: Virology Journal | Ausgabe 1/2020

Abstract

Background

In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system.

Main body

Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved.

Conclusions

Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.
Hinweise
The original version of this article was revised: the authors identified an error in the author name of Xiaofei E. The given name and family name were erroneously transposed.
Wenjin Zheng and Qing Xu have contributed equally to this work
A correction to this article is available online at https://​doi.​org/​10.​1186/​s12985-020-01481-0.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
TLRs
Toll-Like receptors
HSV-1,-2
Herpes simplex virus type 1 and 2
VZV
Varicella zoster virus
EBV
Epstein-Barr virus
CMV
Cytomegalovirus
HHV-6, -7
Human herpesvirus 6 and 7
KSHV
Kaposi's sarcoma-associated herpesvirus
PRRs
Pathogen recognition receptors
MyD88
Myeloid differentiation 88
TRIF
Toll/IL-1R(TIR)-domain-containing adaptor protein
TIRAP
TIR-domain-containing adaptor protein
TRAM
TRIF-related adaptor molecule
CpG
Cytosine-phosphate-guanine
PI3K
Phosphatidylinositol 3-kinase
TRAF
Tumor-necrosis-factor-receptor-associated factor
IRAK1
Interleukin-1 receptor-associated kinase 1
MAPKs
Mitogen-activated protein kinases
Akt (PκB)
Protein kinase B
JNK
Jun N-terminal kinase
NAP1
NAK-associated protein 1
TBK1
Tumor-necrosis-factor receptor-associated factor (TRAF) family-member-associated NF-κB activator (TANK) binding kinase 1
TAK-1
Transforming growth factor-β (TGF-β)-activated kinase 1-related kinase
IKK
Inhibitor of NF-κB kinase
NF-κB
Nuclear factor-κB
TNF
Tumor-necrosis factor
IRF
Interferon regulatory factor
IFN
Interferon, CD14: cluster differentiation antigen 14
LMP1
EBV latent membrane protein 1
NEMO
IKK receptor protein IKKγ
pDCs
PlaSmacytoid dendritic cells
IL
Interleukin
PMC
Peripheral blood mononuclear cells
RIP1
Receptor interacting protein 1
LRRs
Leucine-rich repeats
UNC-93B
Unc-93 homolog B1
AP-1
Activator protein-1
APC
Antigen-presenting cells
NK
Natural killer
dsRNA
Double-stranded RNA
ssRNA
Single-stranded RNA
EGFR
Epidermal growth factor receptor
ERK
Extracellular receptor kinase
STING
Stimulator of interferon genes

Background

Toll-like receptors (TLRs) are a group of single, membrane-spanning, non-catalytic proteins in the immune system that are critical for recognizing structurally-conserved molecules derived from pathogenic microbes. To date, thirteen members have been identified in the TLR family. TLRs 1–10 are found in the human genome, and TLRs 11–13 occur in mice [16]. The structures of TLRs and other TLR-ligand complexes have been described [715]. Leucine-rich repeats have been described in the variable N-terminal extracellular part of TLRs, and have been shown to bind pathogen-associated molecular patterns, which are broadly shared by pathogens but not the host. This interaction allows the host to discriminate autologous from xenogenous substances [16].
TLRs are mainly expressed on the membranes of immune cells including macrophages, dendritic cells, T cells, and B cells [1722]. Moreover, TLRs are also found in non-immune cells, such as endothelial and epithelial cells, adipocytes, and cardiomyocytes [2327]. TLRs predominantly occur on the cell surface, while TLRs 3, 7, 8, and 9 are expressed inside cells [3]. These four TLRs are primarily involved in the identification of xenogenous nucleic acids from invaders. The cellular localizations and ligands of human TLRs 1–9 are listed in Table 1.
Table 1
Properties of toll-like receptors
TLRs
Localization
Ligands
TLR1/2 [3335]
Cell surface
Triacylated lipopeptides
TLR2/6 [3641]
Cell surface
Diacylated lipopeptides (Mycoplasma), Lipoteichoic acid (Streptococcus), Zymosan (Saccharomyces cerevisiae)
TLR2 [38, 4248]
Cell surface
Peptidoglycan (Gram-positive bacteria), Lipoarabinomannan (Mycobacteria), Hemagglutinin (measles virus), phosphatidylinositol mannoside 6 (Mycobacteria), Glycosylphosphatidylinositol (Trypanosoma)
TLR3 [4952]
Endosome
ssRNA virus (West Nile virus), dsRNA virus (Respiratory syncytial virus, murine cytomegalovirus)
TLR4 [43, 5359]
Cell surface
Lipopolysaccharide (Gram-negative bacteria), Mannan-binding lectin (Candida albicans), glycoinositol- phospholipids (Trypanosoma cruzi), Envelope proteins (respiratory syncytial virus, mouse mammary tumor)
TLR5 [60, 61]
Cell surface
Flagellin (flagellated bacteria)
TLR7 [62, 63]
Endosome
ssRNA viruses (vesicular stomatitis virus, influenza virus)
TLR8 [6466]
Endosome
ssRNA from RNA viruses
TLR9 [6771]
Endosome
dsRNA viruses (herpes simplex virus, murine cytomegalovirus), CpG motifs from bacteria and viruses, Hemozoin (Plasmodium)
The herpesviridae family comprises a large group of enveloped DNA viruses characterized by latent infection in their hosts. Currently, eight family members are known to be associated with widespread human infection (Table 2). Upon detecting members of this family, TLRs recruit adaptor proteins, including myeloid differentiation factor 88 (MyD88), TIR-domain-containing adaptor-inducing interferon-β (TRIF), TIR-domain-containing adaptor protein (TIRAP), and TRIF-related adapter molecule (TRAM). This is followed by signal transmission to activate transcription factors including nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factors (IRF3/7). These factors enter the nucleus, stimulating transcription to promote pro-inflammatory cytokines and interferon (IFN) expression [5, 6, 28]. The inflammatory cascades defend against viruses while also injuring the host. Under physiological conditions, regulatory systems function in the host to inhibit excessive activation of the TLR signaling pathways to maintain homeostasis; these include Annexin A2, the ubiquitin ligase TRIAD3A, RP105, and acetylation of lysine residues [2932]. Here, we clarify the mechanism underlying the human TLR-mediated innate immune response against herpesviridae in the activation and reactivation of virus infection.
Table 2
Properties of the herpesviridae family
Herpesviridae family members
Corresponding TLRs
Herpes simplex virus type 1 (HSV-1) [7275]
TLR2, TLR3, TLR4, TLR9
HSV-2 [76, 77]
TLR2, TLR3, TLR4, TLR9
Varicella zoster virus [78, 79]
TLR2, TLR3, TLR9
Epstein-Barr virus [8083]
TLR2, TLR3, TLR7, TLR9
Cytomegalovirus [84, 85]
TLR2, TLR3, TLR4, TLR5, TLR9
Human herpesvirus 6 (HHV-6) [8689]
TLR4
HHV-7 [86]
TLR2, TLR4
Kaposi's sarcoma-associated herpesvirus [9093]
TLR3, TLR4, TLR9

Main text

Herpes simplex virus

Herpes Simplex Virus (HSV) infection is a worldwide cause of severe medical conditions such as encephalitis, keratitis, and neonatal herpes [94, 95]. It has two serotypes, HSV-1 and HSV-2, which primarily infect individuals through epithelial cells. After initial infection, it forms a latent infection in ganglia and latency-associated transcripts are expressed [96]. HSV US3 protein inhibits TLR3 responses in cultured human monocytes [97]. Similarly, HSV immediate-early ICP0 protein suppresses the TLR2-mediated innate immune response and NF-κB signaling [98]. HSV downregulates TLR2 and TLR4 in a THP-1 monocyte cell line [99]. These findings reveal the evasion mechanism of HSV. When host immunity is weak, HSVs begin to reactive to establish infection.
Studies have revealed that TLR2, TLR3, TLR4, and TLR9 are capable of recognizing specific components of HSV such as glycoprotein B (gB), glycoprotein H (gH), glycoprotein K (gK), glycoprotein L (gL), and US2 protein in the activation and reactivation of HSV [100105]. TLR signaling activates the transcription of immune response genes by inducing the secretion of intracellular protein signaling molecules such as interleukins (ILs) and interferons (IFNs) to protect the host. Furthermore, TLR2 and TLR9 have been shown to synergistically fuel innate immunity to defend against HSV-1 and -2, showing a protective effect [102, 106].

Interactions of HSV with TLR2 and TLR4

Upon invasion of HSV-1 and -2, viral glycoproteins including gH and gL are recognized by TLR2 [107]. TLR2 is located on the dendritic cell surface and hetero-dimerizes with TLR6 or TLR1 to recognize viral glycoproteins [108]. Once HSV-2 has invaded the host, TLR4 recognizes the short-hairpin DNA from HSV on the cell surface [109]. Villalba et al. reported that TLR2 and TLR4 expression occurs as early as 1 h after HSV-1 infection and increase the levels of IRF3, IRF7, INF-β, and IL-6 [110]. The activation of TLR2 or TLR4 launches the MyD88-dependent signaling cascades and assembles macrophages and natural killer cells [109, 111]. MyD88 recruits IL-1 receptor-associated kinase 1 (IRAK1), then activates tumor necrosis factor receptor-associated factor (TRAF6) [112115]. Subsequently, transforming growth factor-β-activated protein kinase-1-binding protein-2 (TAB2) and transforming growth factor-β-activated kinase-1 (TAK1) are recruited to stimulate the inhibitor of nuclear factor κB kinase (IKK) complex which comprises IκB kinase α (IKKα), IKKβ, and IKKγ (NEMO) [113, 116, 117]. IKKα serves as a stimulator of NF-κB in the IKK complex. In contrast, IKKβ phosphorylates and degrades the inhibitor of NF-κB (IκB) to release NF-κB [118, 119]. Alternatively, mitogen-activated protein kinases (MAPKs) are triggered by TAK1 to allow AP-1 into the nucleus [120124]. NF-κB and AP-1 enable immune cells to secrete IL-15, TNF-α, and IFN to defend against HSV and counteract viral absorption. In addition, studies have demonstrated that the expression of chemokines, such as chemokine (C–C motif) ligands 7, 8, and 9, as well as chemokine (C-X-C motif) ligands 1, 2, 4, and 5, which play important roles in the innate immune response against HSV [125, 126]. Surprisingly, when activated via the TLR4-MyD88 axis, AP-1 upregulates TLR4 expression by feedback in genital epithelial cells to enhance immunity in humans [127]. A study has also shown that Sp1 has a significant effect as a major transcription factor involved in TLR2 promoter activity [107, 128].
Moreover, Kurt-Jones et al. demonstrated that neonates produce more pro-inflammatory cytokines than adults, which may explain the sepsis syndrome that is seen with HSV-1 and -2 [129]. This result is in accord with the finding that TLR2-deficient mice are more likely to survive HSV-1 than wild-type mice [105]. Besides the cytokine response, TLR2 signaling generates reactive oxygen species and induces oxidative stress, which cause damage in wild-type microglial cell cultures; but this does not occur in cells from TLR2-deficient mice. The consequences of oxidative stress are associated with reduced activation of the MAPK pathway [130]. These results suggest that the immune response mediated by TLR-2 can be not only beneficial but also detrimental to the host [105]. Surprisingly, TLR2 and TLR9 synergistically activate the innate antiviral response defense against HSV-1 and -2, showing a protective effect [106]. Compared to TLR2, TLR3 seems to have a protective effect [131, 132].

Interactions between HSV and TLR3

Upon identification of invasive HSV-1 and -2, the host cells form endosomes that spontaneously wrap up the virus. Unc-93 homolog B1 (UNC-93B) is a transmembrane protein localized on the endoplasmic reticulum (ER) that transfers TLR3, 7, 8, and 9 from the ER to the endosome [133136]. Upon HSV-1 and -2 stimulation, TLR3 interacts with UNC-93B1 and shifts from the ER to endosome [134, 135]. In the endosome, TLR3 is phosphorylated by tyrosine kinase c-Src, epidermal growth factor receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) to form dimeric TLR3, which initiates a downstream signaling pathway. Although a mutual action between HSV RNA and TLR3 has not yet been demonstrated, it is likely that HSV-1 and -2 produce dsRNA that serves as a ligand for TLR3 [137147]. The activation of TLR3 recruits TRIF and TRAF [148, 149]. TLR3 is the only member of the TLR family that can recruit TRIF and TRAF as the signal transduction factor, instead of MyD88. Upon TRIF recruitment, TANK-binding kinase-1 (TBK1), inhibitor of nuclear factor κB kinase ε (IKKε), NAK-associated protein 1 (NAP1), and TRAF3 constitute a signaling complex that leads to the activation of IRF3/IRF7 and NF-κB [150157]. The activation of IRF3 and NF-κB induces the production of IFN-β, TNF-α, and IL-6 [158, 159]. Meanwhile, TRAF recruits the downstream protein receptor interacting protein 1 (RIP1), which subsequently recruits TAB2 and TAK1 to form a complex to trigger IKKα and IKKβ [160162]. These two kinases with the IKK receptor protein IKKγ (NEMO) constitute the IKK complex [163]. IKKα activates downstream NF-κB, while IKKβ phosphorylates the inhibitor of NF-κB (IκB) leading to the degradation of IκB [119, 161]. The complex formed by TAB2 and TAK1 also activates AP-1 via MAPKs [164]. Subsequently, NF-κB, AP-1, and IRF3/IRF7 enter the nucleus and facilitate the release of IFN-β, TNF-α, and IL-6 to defend against HSV [165, 166] (Fig. 1).

Interactions between HSV and TLR9

TLR9 is one of the crucial components in the defense against HSV-1 and -2. Similar to TLR3, TLR9 is stabilized by UNC-93B1 through preventing its degradation and transporting it from the ER to the endosome [136]. This redistribution of TLR9 is associated with cytosine-phosphate-guanine DNA (CpG DNA). Both HSV DNA and CpG oligonucleotides contain abundant CpG motifs [167, 168]. CpG DNA drives TLR9 to shift into early endosomes and CpG oligonucleotides access the endosome. Subsequently, the oligonucleotides assemble and form a secondary structure near the core CpG motif to activate TLR9 [3, 169, 170]. Guanosine triphosphatases (Rab GTPases) mediate the maturation of endosomes. Upon maturation, endosomes that contain CpG DNA combine with lysosomes. The hallmark of the maturation of endosomes involves the formation of endolysosomes [171173]. On the endosomal membrane, Rab5 mediates class III phosphatidylinositol-3 kinase to produce phosphatidylinositol-3 phosphate that interacts with Rab5 to regulate and promote the maturation of early endosomes [174176]. Furthermore, MyD88 activates IRAK1/4 to trigger the protein TRAF6. Subsequently, TRAF6 recruits and activates TAK1 (transforming growth factor-β-activated kinase 1) through the K-63-linked poly-ubiquitination of TAK1 and TRAF6 [177179]. TAK1 initiates downstream cascades, including MAPKs and the NF-κB-inducing kinase (NIK)-IKK-IκB signaling pathway [180, 181]. In this pathway, NF-κB is isolated and inactivated in the cytoplasm primarily by IκB. The proteolysis of IκB is regulated by the activation of IKKs including IKKα, IKKβ, and IKKγ [182, 183]. Activated IKKβ leads to the phosphorylation and proteolysis of IκB [182]. NF-κB is unlocked and subsequently enters the nucleus. These processes induce the activation of transcription factors such as AP-l and NF-κB, directly facilitating the downstream gene expression of IL-10, IL-12, TNF-α, and IFN-β [180, 184186] (Fig. 1).

Varicella zoster virus

Varicella zoster virus (VZV) causes chicken-pox in the primary infection. In elderly or immunosuppressed patients, reactive VZV can cause herpes zoster after latency [187]. During the latency, VZV downregulates the surface expression of the NKG2D ligands of ULBP2 and ULBP3, which reduce the activation of natural killer cells in the presence of VZV [188].
Studies have reported that TLR2, TLR3, and TLR9 play crucial roles in the activation and reactivation of VZV [189191]. TLR9 induces plasmacytoid dendritic cells (pDCs) to secrete IFN-α via the MyD88 signaling pathway involved in infection by VZV [191]. In addition, VZV triggers monocytes and macrophages to produce NF-κB via TLR2 and allows the secretion of the antiviral factor IL-6, but TLR2, TLR3, and TLR4 are not involved in the IFN-α production induced by VZV infection [189, 192]. Besides, studies have demonstrated that TLR3 is involved in the recognition of VZV [193]. There is no evidence that the expression of TLRs on non-immune cells react to infection with VZV. However, unlike other herpesviruses, the cytokine response to VZV is species-specific. VZV does not induce cytokines in mouse embryonic fibroblasts or in a mouse cell line, but it does trigger NF-κB in a human cell line expressing a mouse TLR2 construct [189].

Epstein-Barr virus

Interactions of EBV with TLR2

Epstein-Barr virus (EBV/HHV-4) is primarily transmitted via saliva. It proliferates in oropharyngeal epithelial cells, infects B lymphocytes, and enters the bloodstream to cause systemic infection. During the latency, the EBV lytic protein BGLF5 targets TLR9 mRNA for degradation in EBV-infected B cells, reducing the function of TLR9 [194]. Moreover, BGLF5 also targets TLR2 in infected cells [195]. In addition, a late lytic tegument protein, BPLF1, prevents TLR-mediated IFN production [196]. Besides, EBV-encoded miRNAs inhibit the TLR signaling pathway [197].
In the activation and reactivation of EBV, a membrane receptor expressed on the surface of B lymphocytes, TLR2 unites with TLR1 or TLR6 to form a hetero-dimer, which combines with lipoproteins or lipopeptides to serve as an active signaling complex. The TLR heterodimer (TLR2/TLRx) is the key to recognizing EBV. Eric Gaudreault et al. found that infectious and UV-inactivated EBV induce NF-κB activation and the secretion of primary monocyte chemotactic protein in a TLR2-dependent manner [198]. TLR2 activation initiates the MyD88-dependent signaling cascades. MyD88 recruits IRAKs, including IRAK1 and IRAK4, which stimulate TRAF6 and phosphorylate IKK, IκB, and NF-κB [199].

Interactions of EBV with TLR3

When EBV penetrates a cell, it transcribes small non-coding RNAs called EBERs by using the host RNA polymerase III, and TLR3 is activated in the ER. EBERs induce inflammatory responses through TLR3 and neural precursor cells, resulting in high levels of cytokines such as TNF-α and IL-6. In addition to acting as an inflammatory mediator, NF-κB is capable of upregulating the expression of EBERs and LMP1 (EBV latent membrane protein 1), thereby triggering moderate inflammation [200, 201]. EBERs promote LMP1 transcription through NF-κB. Conversely, MP1 also stimulates NF-κB to increase the expression of EBERs. This positive regulatory loop becomes a necessary driving force for the inflammatory–carcinogenic transformation of EBV-infected epithelial cells.

Interactions of EBV with TLR7

Furthermore, the EBV genome encodes two membrane proteins, LMP1 and LMP2, that act as natural signals of B-cell activation. LMP1 and LMP2 are required for the interaction of the ligand with the CD40 receptor and B-cell receptor. Martin et al. found that the TLR signaling pathway is a third pathway for activated B lymphocytes [202]. They reported that, after EBV infection of B lymphocytes, EBV gene expression transcribes ssRNA that stimulates TLR7 signaling, resulting in up-regulation of the TLR7 and MyD88 genes to activate IRF-5 and IRF-7 [203]. IRF-5 and NF-κB synergistically trigger cytokine promoters to induce the production of inflammatory cytokines. Moreover, they also provide a signal equivalent to the CD40 ligand to promote B cell activation and expansion in the initial phase of EBV infection. Therefore, it has been suggested that, in the early stage of infection, EBV stimulates TLR7 signaling to promote the initial stage of B cell activation and expansion. Subsequently, EBV induces negative-regulatory factors of the TLR7 pathway, which are necessary for the establishment of latency.

Interactions of EBV with TLR9

In the primary infection, EBV initiates progressive lytic infection by expressing BZLF-1, which is the immediate-early lytic EBV gene and regulates the productive replication of EBV [204]. CpG oligodeoxynucleotide 2006 triggers innate immunity via the TLR9 of B cells to substantially inhibit BZLF-1 mRNA expression in acute EBV infection ex vivo and in Akata Burkitt lymphoma cells with latent EBV infection stimulated by anti-IgG. This reaction is mediated by IL-12 and IFN-γ [205]. When triggering TLR9, B cells infected with EBV ex vivo efficiently transform by reducing the initiation of lytic EBV infection, and thereby reinforcing the maintenance of EBV latency [206].
The newly-formed EBV DNA in virus-infected cells contains an unmethylated CpG dinucleotide sequence. When the newly-formed virion is subsequently released, this dinucleotide is considered to be the main trigger of TLR9 [207]. After TLR9 recognizes EBV DNA, IRAK-1 and TRAF6 are activated by phosphorylation, thereby eliciting the IKK complex, resulting in NF-κB expression [180]. Subsequently, NF-κB promotes the production of inflammatory cytokines such as TGF-β, IL-6, IL-1, IL-23, and IL-21 [207]. These cytokines induce Th17 cells to secrete IL-17A, causing the recruitment of neutrophils and macrophages to infected sites and triggering the secretion of various pro-inflammatory mediators by various cell types. Salloum et al. treated mouse peripheral blood mononuclear cells with EBV DNA in the presence or absence of the TLR9 inhibitor oligodeoxynucleotide 2088, and showed that TLR9 inhibitors significantly decrease IL-17A production and play a crucial role in promoting IL-17A secretion [208] (Fig. 2).

Human cytomegalovirus

Interactions of HCMV with TLR2

Human cytomegalovirus (HCMV) is an important cause of disease in the immunodeficient host and the most common intrauterine infection in humans [209]. Acquired during early life, HCMV persists in a latent state for the life of the individual. Inflammatory cytokines can cause an innate immune response in the host. Through different effector cells (such as antigen-presenting cells [APCs], natural killer [NK] cells and phagocytes), anti-inflammatory cytokines, and IFNs respond to act against HCMV infection. The early release of IFN-I and other pro-inflammatory cytokines limits the spread of infection by establishing an “antiviral state” that triggers an efficient adaptive immune response to achieve latency and persistence [210]. To achieve latency, the HCMV-encoded US7 and US8 proteins impair the activation of TLR3 and TLR4 [211]. Similarly, the HCMV-encoded US9 protein reduces stimulator of interferon genes (STING) signaling and the production of IFN [212]. In addition, the HCMV tegument protein UL82 inhibits STING-mediated signaling to evade the antiviral immune response [213].
Generally, researchers have shown that TLRs 2–5 and TLR9 play crucial roles in the immune response to the activation of HCMV [50, 67, 214217]. TLR2 recognizes the viral envelope glycoproteins gB and gH. Together with TLR1 or TLR6, TLR2 activates the MyD88-dependent and downstream transcription factor NF-κB signaling pathway to induce a series of pro-inflammatory cytokines, chemokines, and adhesion molecules, such as IL-6 and IL-8 [218220]. MyD88 recruits TRAF6 and IRAKs to activate IKKα and IKKβ, together with NEMO, to form the IKK complex. IKKα triggers downstream NF-κB, while IKKβ phosphorylates the NF-κB inhibitor IκB, leading to its degradation [160, 161, 163]. This process results in the production of inflammatory cytokines. For example, IFN-γ stimulates a variety of innate immune cells and immune effector cells to develop the adaptive immune response and exert an antiviral effect [221]. MicroRNAs are small non-coding RNAs that cooperate with viral proteins to regulate the expression of viral and/or host genes, and they are involved in the immune evasion of infected cells, as well as the latency and reactivation of HCMV [222]. CMV-encoded microRNAs have also been shown to downregulate TLR2 expression [217]. Using an in-silico method, this study postulated that HCMV microRNAs trigger the TLR innate immune pathway; specifically, TLR2 might be a target for HCMV miR-UL112-3p. Because miR-UL112-3p is expressed after virus entry, downregulation of TLR2 occurs in the late stage of lytic infection. Immunoblot analysis of miR-UL112-3p-transfected cells revealed that it induces the reduction of endogenous TLR2 expression. The microRNA-mediated downregulation of TLR2 affects innate signal transduction, significantly inhibiting the activation of the IRAK1 and NF-κB pathways located in the TLR2/NF-κB signaling axis of the upstream kinase, as well as the expression of various cytokines such as IL-1β, -6, and -8. TLR2 protein levels decrease in the late stage of HCMV infection, and this is associated with the accumulation of miR-UL112-3p in fibroblasts and mononuclear THP1 cells.

Interactions of HCMV with TLR3, TLR4, and TLR5

TLR3 and TLR5 are also critical factors in the CMV infection pathway. TLR3 targets TRIF as a downstream adapter molecule instead of the adaptor protein MyD88 [149]. TLR3 activates the signaling complex assembled by TRIF. As a factor downstream to TRIF, TBK1 forms NAP1 and TRAF3 to elicit phosphorylation of the transcription factor IRF3, which produces inflammatory factors such as IFN-β [154156, 221, 223]. CMV stimulates mast cells through the TLR3/TRIF signaling pathway to transmit effector functions. Subsequently, these cells release a large number of pro-inflammatory and antimicrobial mediators, many of which are stored in granules and released after degranulation, to enhance their protective properties and attract supplemental CD8 T cells to extravascular sites of viral replication [216]. During HCMV infection/reactivation, TLR5 plays an atypical role, probably because of the indirect effects of immunomodulation and immunostimulation on HCMV responses.
HCMV also promotes macrophage-mediated inflammatory responses through TLRs. HCMV infection stimulates cluster differentiation antigen 14 (CD14), TLR2, TLR4, and TLR5 on the surface to enhance the intracellular expression of the adaptor protein MyD88, and phosphorylation of IκB and NF-κB, thereby increasing the response of macrophages to viral components. The protein and mRNA levels of MyD88 are significantly elevated in macrophages. MyD88 combines with the cytoplasmic Toll/IL-1 region and triggers the phosphorylation of IRAK4, followed by the recruitment and phosphorylation of IRAK1, which then leads to the release of TNF-6 and transmission of the NF-κB signaling cascade [115, 224228]. These mechanisms promote ligand-induced pro-inflammatory cytokine mRNA expression and the production of TNF-α, IL-6, and IL-8 proteins.

Interactions of HCMV with TLR9

TLR9, a pattern recognition receptor for HCMV in natural IFN-producing cells and DCs, recognizes unmethylated CpG motifs in viral DNA to initiate the transduction of intracellular signals by the adapter molecule MyD88, ultimately leading to the activation and transcription of NF-κB. Therefore, phosphorylated NF-κB encodes pro-inflammatory cytokines and chemokines, such as IFN-α and IL-12, to promote NK cells that recognize MCMV-infected cells by activating the receptor Ly49H [229, 230]. Ly49H interacts with the MCMV-encoded protein m157 on the surface of infected cells, resulting in elimination of the virus by NK cells [67] (Fig. 2).

Human herpesvirus-6 and -7

Interaction between HHV-6 and TLRs

HHV-6 causes the exanthema subtype; it preferentially infects functional immune cells and elicits various immunobiological changes [231234]. Murakami et al. pointed out that HHV-6 infection significantly effects TLR4-induced cytokine levels [235]. This report revealed that TLR4 and the adaptor molecule MyD88 are significantly increased in HHV-6-infected cells. On the contrary, the phosphorylation levels of TAK-1, IKKα/β, and IκBα are reduced and affect the expression of NF-κB [236]. Therefore, upon stimulation of the TLR4 ligand, the ability of HHV-6-infected DCs to produce IL-10 and IL-8 is significantly impaired. This indicates that, in HHV-6-infected DCs, the disruption of TLR4 signaling is caused by a block in the downstream signaling pathway.

Interaction between HHV-7 and TLRs

HHV-6 and -7 participate in the pathogenesis of pityriasis rosea through TLRs. In HHV-7-positive cases, the expression levels of TLR2 and TLR4 are notably increased, while TLR9 and the HHV-7 viral load are positively correlated [237]. Interestingly, there is an interaction between HHV-6 and HHV-7: HHV-6 can be reactivated by HHV-7 infection [238].

Kaposi's sarcoma-associated herpesvirus

Kaposi's sarcoma-associated herpesvirus (KSHV), also named human herpesvirus-8, is well correlated with several forms of cancer such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease [239]. Like other herpesviruses, KSHV also causes latency in the host. During the latency, KSHV viral interferon regulatory factors (vIRFs) inhibit TLR3-mediated IFN induction [240]. Moreover, the replication and transcription activator (RTA) protein from KSHV triggers proteasomal degradation of the TLR3 adaptor protein TRIF, which blocks the subsequent pathway [241]. RTA also prevents TLR4 signaling via the degradation of MyD88 [242]. West et al. first reported that KSHV upregulates the TLR3 pathway during infection to induce TLR3-specific cytokines and chemokines such as IFN-1β and CXCL10 (IP-10) [243]. Furthermore, researchers have determined that TLR9 is the major receptor for KSHV. Once pDCs are infected, KSHV upregulates TLR9, CD83, and CD86, causing pDCs to produce IFN-α [244].
In addition, TLR4 plays an essential role in innate immunity to KSHV. KSHV microRNA clusters (particularly miRNA-K1, -K3, and -K11) trigger TLR4 with its co-receptors, CD14 and myeloid differentiation protein 2, to activate the MyD88-NF-κB pathway and produce IL-1β, IL-6, and IL-18 [245]. In addition, Lagos et al. found that KSHV suppression of TLR4 expression is the mechanism of immune escape during KSHV infection in endothelial cells [246]. Moreover, KSHV inhibits the TLR2 signaling pathway after infection in macrophages. In addition, the replication of KSHV and the transcriptional activator RTA/ORF50 block the TLR2 and TLR4 signaling pathways via reducing the expression of functional proteins. Moreover, KSHV-encoded microRNAs reduce the inflammatory factor expression by modulating two components of the TLR/IL-1R pathway, IRAK1 and MyD88 [247]. Thus, KSHV uses two mechanisms to avoid attack by the host immune system, leading to repeated infection in the host [248].

Conclusions

To date, studies have shed light on the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways. Research continues to reveal new insights into TLR pathways and their roles in host defense responses, especially in innate immunity [249251]. However, the detailed mechanisms of mutual action between HSV RNA and TLR3 remain unclear [138140, 148]. Moreover, understanding the mechanisms of activation and regulation in detail will help in the design of efficient vaccines and therapeutics based on modulating the TLRs more precisely. In this context, the use of TLR antagonists and regulators such as MPL, topical SMIP-7.7, Annexin A2, ubiquitin ligase TRIAD3A, pathogenesis-related protein from Oenanthe javanica, and RP105 might have broader applications [29, 31, 32, 252254]. Although computer-assisted screening of TLR regulators is plausible, the rational design of selective TLR modulators still faces enormous challenges and studies are few. Furthermore, there are some new developments in anti-viral targeting of the host factors involved in TLR signaling. BX795, an inhibitor TBK1, potently suppresses multiple strains of HSV-1, including an ACV-resistant HSV-1 strain. BX795 targets Akt and blocks viral protein synthesis by reducing Akt phosphorylation in infected cells, but a more precise antiviral mechanism requires further investigation [255]. Therefore, clarifying the interaction between each TLR and the associated virus is critical for controlling the development of the diseases caused by the herpesviruses.

Acknowledgements

We thank Dr. IC Bruce for reading the manuscript.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Mahla RS, Reddy MC, Prasad DV, Kumar H. Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vaccine biology. Front Immunol. 2013;4:248.PubMedPubMedCentral Mahla RS, Reddy MC, Prasad DV, Kumar H. Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vaccine biology. Front Immunol. 2013;4:248.PubMedPubMedCentral
3.
Zurück zum Zitat Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.PubMed Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.PubMed
4.
Zurück zum Zitat Celhar T, Magalhaes R, Fairhurst AM. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res. 2012;53:58–77.PubMed Celhar T, Magalhaes R, Fairhurst AM. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res. 2012;53:58–77.PubMed
5.
Zurück zum Zitat Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.PubMed Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.PubMed
6.
Zurück zum Zitat Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–84.PubMed Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–84.PubMed
7.
Zurück zum Zitat Song WS, Jeon YJ, Namgung B, Hong M, Yoon SI. A conserved TLR5 binding and activation hot spot on flagellin. Sci Rep. 2017;7:40878.PubMedPubMedCentral Song WS, Jeon YJ, Namgung B, Hong M, Yoon SI. A conserved TLR5 binding and activation hot spot on flagellin. Sci Rep. 2017;7:40878.PubMedPubMedCentral
8.
Zurück zum Zitat Gosu V, Son S, Shin D, Song KD. Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep. 2019;9:3652.PubMedPubMedCentral Gosu V, Son S, Shin D, Song KD. Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep. 2019;9:3652.PubMedPubMedCentral
9.
Zurück zum Zitat Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335:859–64.PubMedPubMedCentral Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335:859–64.PubMedPubMedCentral
10.
11.
Zurück zum Zitat Ohto U, Tanji H, Shimizu T. Structure and function of toll-like receptor 8. Microbes Infect. 2014;16:273–82.PubMed Ohto U, Tanji H, Shimizu T. Structure and function of toll-like receptor 8. Microbes Infect. 2014;16:273–82.PubMed
12.
Zurück zum Zitat Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K, Shimizu T. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature. 2015;520:702–5.PubMed Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K, Shimizu T. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature. 2015;520:702–5.PubMed
13.
Zurück zum Zitat Maeda K, Akira S. TLR7 structure: cut in Z-Loop. Immunity. 2016;45:705–7.PubMed Maeda K, Akira S. TLR7 structure: cut in Z-Loop. Immunity. 2016;45:705–7.PubMed
14.
Zurück zum Zitat Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, Shimizu T. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45:737–48.PubMed Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, Shimizu T. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45:737–48.PubMed
15.
Zurück zum Zitat Su L, Wang Y, Wang J, Mifune Y, Morin MD, Jones BT, Moresco EMY, Boger DL, Beutler B, Zhang H. Structural basis of TLR2/TLR1 activation by the synthetic agonist diprovocim. J Med Chem. 2019;62:2938–49.PubMedPubMedCentral Su L, Wang Y, Wang J, Mifune Y, Morin MD, Jones BT, Moresco EMY, Boger DL, Beutler B, Zhang H. Structural basis of TLR2/TLR1 activation by the synthetic agonist diprovocim. J Med Chem. 2019;62:2938–49.PubMedPubMedCentral
16.
Zurück zum Zitat Hallman M, Ramet M, Ezekowitz RA. Toll-like receptors as sensors of pathogens. Pediatr Res. 2001;50:315–21.PubMed Hallman M, Ramet M, Ezekowitz RA. Toll-like receptors as sensors of pathogens. Pediatr Res. 2001;50:315–21.PubMed
17.
Zurück zum Zitat Jang AR, Choi JH, Shin SJ, Park JH. Mycobacterium tuberculosis ESAT6 induces IFN-beta gene expression in Macrophages via TLRs-mediated signaling. Cytokine. 2018;104:104–9.PubMed Jang AR, Choi JH, Shin SJ, Park JH. Mycobacterium tuberculosis ESAT6 induces IFN-beta gene expression in Macrophages via TLRs-mediated signaling. Cytokine. 2018;104:104–9.PubMed
18.
Zurück zum Zitat Kugelberg E. Dendritic cells: TLR agonists trigger rapid metabolic changes. Nat Rev Immunol. 2014;14:209.PubMed Kugelberg E. Dendritic cells: TLR agonists trigger rapid metabolic changes. Nat Rev Immunol. 2014;14:209.PubMed
19.
Zurück zum Zitat Zahm CD, Colluru VT, McIlwain SJ, Ong IM, McNeel DG. TLR stimulation during T-cell activation lowers PD-1 expression on CD8(+) T Cells. Cancer Immunol Res. 2018;6:1364–74.PubMedPubMedCentral Zahm CD, Colluru VT, McIlwain SJ, Ong IM, McNeel DG. TLR stimulation during T-cell activation lowers PD-1 expression on CD8(+) T Cells. Cancer Immunol Res. 2018;6:1364–74.PubMedPubMedCentral
20.
Zurück zum Zitat Flaherty S, Reynolds JM. TLR function in murine CD4(+) T lymphocytes and their role in inflammation. Methods Mol Biol. 2016;1390:215–27.PubMed Flaherty S, Reynolds JM. TLR function in murine CD4(+) T lymphocytes and their role in inflammation. Methods Mol Biol. 2016;1390:215–27.PubMed
21.
Zurück zum Zitat Hua Z, Hou B. TLR signaling in B-cell development and activation. Cell Mol Immunol. 2013;10:103–6.PubMed Hua Z, Hou B. TLR signaling in B-cell development and activation. Cell Mol Immunol. 2013;10:103–6.PubMed
22.
Zurück zum Zitat Naradikian MS, Myles A, Beiting DP, Roberts KJ, Dawson L, Herati RS, Bengsch B, Linderman SL, Stelekati E, Spolski R, et al. Cutting edge: IL-4, IL-21, and IFN-gamma interact To govern T-bet and CD11c expression in TLR-activated B cells. J Immunol. 2016;197:1023–8.PubMed Naradikian MS, Myles A, Beiting DP, Roberts KJ, Dawson L, Herati RS, Bengsch B, Linderman SL, Stelekati E, Spolski R, et al. Cutting edge: IL-4, IL-21, and IFN-gamma interact To govern T-bet and CD11c expression in TLR-activated B cells. J Immunol. 2016;197:1023–8.PubMed
23.
Zurück zum Zitat Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–80.PubMed Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–80.PubMed
24.
Zurück zum Zitat Menden H, Xia S, Mabry SM, Noel-MacDonnell J, Rajasingh J, Ye SQ, Sampath V. Histone deacetylase 6 regulates endothelial MyD88-dependent canonical TLR signaling, lung inflammation, and alveolar remodeling in the developing lung. Am J Physiol Lung Cell Mol Physiol. 2019;317:L332–46.PubMedPubMedCentral Menden H, Xia S, Mabry SM, Noel-MacDonnell J, Rajasingh J, Ye SQ, Sampath V. Histone deacetylase 6 regulates endothelial MyD88-dependent canonical TLR signaling, lung inflammation, and alveolar remodeling in the developing lung. Am J Physiol Lung Cell Mol Physiol. 2019;317:L332–46.PubMedPubMedCentral
25.
Zurück zum Zitat Thomalla M, Schmid A, Neumann E, Pfefferle PI, Muller-Ladner U, Schaffler A, Karrasch T. Evidence of an anti-inflammatory toll-like receptor 9 (TLR 9) pathway in adipocytes. J Endocrinol. 2019;240:325–43.PubMed Thomalla M, Schmid A, Neumann E, Pfefferle PI, Muller-Ladner U, Schaffler A, Karrasch T. Evidence of an anti-inflammatory toll-like receptor 9 (TLR 9) pathway in adipocytes. J Endocrinol. 2019;240:325–43.PubMed
26.
Zurück zum Zitat Yang Y, Sun Y, Xu J, Bao K, Luo M, Liu X, Wang Y. Epithelial cells attenuate toll-like receptor-mediated inflammatory responses in monocyte-derived macrophage-like cells to mycobacterium tuberculosis by modulating the PI3K/Akt/mTOR signaling pathway. Mediators Inflamm. 2018;2018:3685948.PubMedPubMedCentral Yang Y, Sun Y, Xu J, Bao K, Luo M, Liu X, Wang Y. Epithelial cells attenuate toll-like receptor-mediated inflammatory responses in monocyte-derived macrophage-like cells to mycobacterium tuberculosis by modulating the PI3K/Akt/mTOR signaling pathway. Mediators Inflamm. 2018;2018:3685948.PubMedPubMedCentral
27.
Zurück zum Zitat Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL. Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res. 2013;156:262–70.PubMed Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL. Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res. 2013;156:262–70.PubMed
28.
Zurück zum Zitat Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24–32.PubMed Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24–32.PubMed
29.
Zurück zum Zitat Zhang S, Yu M, Guo Q, Li R, Li G, Tan S, Li X, Wei Y, Wu M. Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep. 2015;5:15859.PubMedPubMedCentral Zhang S, Yu M, Guo Q, Li R, Li G, Tan S, Li X, Wei Y, Wu M. Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep. 2015;5:15859.PubMedPubMedCentral
30.
Zurück zum Zitat Hu X, Yu Y, Eugene Chin Y, Xia Q. The role of acetylation in TLR4-mediated innate immune responses. Immunol Cell Biol. 2013;91:611–4.PubMed Hu X, Yu Y, Eugene Chin Y, Xia Q. The role of acetylation in TLR4-mediated innate immune responses. Immunol Cell Biol. 2013;91:611–4.PubMed
31.
Zurück zum Zitat Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, et al. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J Endotoxin Res. 2005;11:363–8.PubMed Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, et al. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J Endotoxin Res. 2005;11:363–8.PubMed
32.
Zurück zum Zitat Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol. 2004;5:495–502.PubMed Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol. 2004;5:495–502.PubMed
33.
Zurück zum Zitat Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, Sano H, Shibata K. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex. Cell Microbiol. 2006;8:1899–909.PubMed Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, Sano H, Shibata K. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex. Cell Microbiol. 2006;8:1899–909.PubMed
34.
Zurück zum Zitat Ranoa DR, Kelley SL, Tapping RI. Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J Biol Chem. 2013;288:9729–41.PubMedPubMedCentral Ranoa DR, Kelley SL, Tapping RI. Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J Biol Chem. 2013;288:9729–41.PubMedPubMedCentral
35.
Zurück zum Zitat Turner ML, Cronin JG, Healey GD, Sheldon IM. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453–65.PubMedPubMedCentral Turner ML, Cronin JG, Healey GD, Sheldon IM. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453–65.PubMedPubMedCentral
36.
Zurück zum Zitat Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, Schumann RR. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 2003;278:15587–94.PubMed Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, Schumann RR. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 2003;278:15587–94.PubMed
37.
Zurück zum Zitat Into T, Kiura K, Yasuda M, Kataoka H, Inoue N, Hasebe A, Takeda K, Akira S, Shibata K. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol. 2004;6:187–99.PubMed Into T, Kiura K, Yasuda M, Kataoka H, Inoue N, Hasebe A, Takeda K, Akira S, Shibata K. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol. 2004;6:187–99.PubMed
38.
Zurück zum Zitat Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004;42:485–98.PubMed Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004;42:485–98.PubMed
39.
Zurück zum Zitat Mayer ML, Phillips CM, Townsend RA, Halperin SA, Lee SF. Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii. Scand J Immunol. 2009;69:351–6.PubMed Mayer ML, Phillips CM, Townsend RA, Halperin SA, Lee SF. Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii. Scand J Immunol. 2009;69:351–6.PubMed
40.
Zurück zum Zitat Hong SW, Baik JE, Kang SS, Yun CH, Seo DG, Han SH. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol Immunol. 2014;57:284–91.PubMed Hong SW, Baik JE, Kang SS, Yun CH, Seo DG, Han SH. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol Immunol. 2014;57:284–91.PubMed
41.
Zurück zum Zitat Taghavi M, Mortaz E, Khosravi A, Vahedi G, Folkerts G, Varahram M, Kazempour-Dizaji M, Garssen J, Adcock IM. Zymosan attenuates melanoma growth progression, increases splenocyte proliferation and induces TLR-2/4 and TNF-alpha expression in mice. J Inflamm (Lond). 2018;15:5. Taghavi M, Mortaz E, Khosravi A, Vahedi G, Folkerts G, Varahram M, Kazempour-Dizaji M, Garssen J, Adcock IM. Zymosan attenuates melanoma growth progression, increases splenocyte proliferation and induces TLR-2/4 and TNF-alpha expression in mice. J Inflamm (Lond). 2018;15:5.
42.
Zurück zum Zitat Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274:17406–9.PubMed Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274:17406–9.PubMed
43.
Zurück zum Zitat Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.PubMed Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.PubMed
44.
Zurück zum Zitat Talreja J, Kabir MH. M BF, Stechschulte DJ, Dileepan KN: Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology. 2004;113:224–33.PubMedPubMedCentral Talreja J, Kabir MH. M BF, Stechschulte DJ, Dileepan KN: Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology. 2004;113:224–33.PubMedPubMedCentral
45.
Zurück zum Zitat Castillo C, Munoz L, Carrillo I, Liempi A, Medina L, Galanti N, Maya JD, Kemmerling U. Toll-like receptor-2 mediates local innate immune response against Trypanosoma cruzi in ex vivo infected human placental chorionic villi explants. Placenta. 2017;60:40–6.PubMed Castillo C, Munoz L, Carrillo I, Liempi A, Medina L, Galanti N, Maya JD, Kemmerling U. Toll-like receptor-2 mediates local innate immune response against Trypanosoma cruzi in ex vivo infected human placental chorionic villi explants. Placenta. 2017;60:40–6.PubMed
46.
Zurück zum Zitat Shukla S, Richardson ET, Drage MG, Boom WH, Harding CV: Mycobacterium tuberculosis lipoprotein and lipoglycan binding to toll-like receptor 2 correlates with agonist activity and functional outcomes. Infect Immun 2018, 86. Shukla S, Richardson ET, Drage MG, Boom WH, Harding CV: Mycobacterium tuberculosis lipoprotein and lipoglycan binding to toll-like receptor 2 correlates with agonist activity and functional outcomes. Infect Immun 2018, 86.
47.
Zurück zum Zitat Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, Ter Meulen V, Schneider-Schaulies S. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol. 2002;76:8729–36.PubMedPubMedCentral Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, Ter Meulen V, Schneider-Schaulies S. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol. 2002;76:8729–36.PubMedPubMedCentral
48.
Zurück zum Zitat Gravina HD, Antonelli L, Gazzinelli RT, Ropert C. Differential use of TLR2 and TLR9 in the regulation of immune responses during the infection with Trypanosoma cruzi. PLoS ONE. 2013;8:e63100.PubMedPubMedCentral Gravina HD, Antonelli L, Gazzinelli RT, Ropert C. Differential use of TLR2 and TLR9 in the regulation of immune responses during the infection with Trypanosoma cruzi. PLoS ONE. 2013;8:e63100.PubMedPubMedCentral
49.
Zurück zum Zitat Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10:1366–73.PubMed Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10:1366–73.PubMed
50.
Zurück zum Zitat Szomolanyi-Tsuda E, Liang X, Welsh RM, Kurt-Jones EA, Finberg RW. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol. 2006;80:4286–91.PubMedPubMedCentral Szomolanyi-Tsuda E, Liang X, Welsh RM, Kurt-Jones EA, Finberg RW. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol. 2006;80:4286–91.PubMedPubMedCentral
51.
Zurück zum Zitat Satkunanathan S, Kumar N, Bajorek M, Purbhoo MA, Culley FJ. Respiratory syncytial virus infection, TLR3 ligands, and proinflammatory cytokines induce CD161 ligand LLT1 expression on the respiratory epithelium. J Virol. 2014;88:2366–73.PubMedPubMedCentral Satkunanathan S, Kumar N, Bajorek M, Purbhoo MA, Culley FJ. Respiratory syncytial virus infection, TLR3 ligands, and proinflammatory cytokines induce CD161 ligand LLT1 expression on the respiratory epithelium. J Virol. 2014;88:2366–73.PubMedPubMedCentral
52.
Zurück zum Zitat Verma R, Bharti K. Toll like receptor 3 and viral infections of nervous system. J Neurol Sci. 2017;372:40–8.PubMed Verma R, Bharti K. Toll like receptor 3 and viral infections of nervous system. J Neurol Sci. 2017;372:40–8.PubMed
53.
Zurück zum Zitat Oliveira AC, Peixoto JR, de Arruda LB, Campos MA, Gazzinelli RT, Golenbock DT, Akira S, Previato JO, Mendonca-Previato L, Nobrega A, Bellio M. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J Immunol. 2004;173:5688–96.PubMed Oliveira AC, Peixoto JR, de Arruda LB, Campos MA, Gazzinelli RT, Golenbock DT, Akira S, Previato JO, Mendonca-Previato L, Nobrega A, Bellio M. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J Immunol. 2004;173:5688–96.PubMed
54.
Zurück zum Zitat Medeiros MM, Peixoto JR, Oliveira AC, Cardilo-Reis L, Koatz VL, Van Kaer L, Previato JO, Mendonca-Previato L, Nobrega A, Bellio M. Toll-like receptor 4 (TLR4)-dependent proinflammatory and immunomodulatory properties of the glycoinositolphospholipid (GIPL) from Trypanosoma cruzi. J Leukoc Biol. 2007;82:488–96.PubMed Medeiros MM, Peixoto JR, Oliveira AC, Cardilo-Reis L, Koatz VL, Van Kaer L, Previato JO, Mendonca-Previato L, Nobrega A, Bellio M. Toll-like receptor 4 (TLR4)-dependent proinflammatory and immunomodulatory properties of the glycoinositolphospholipid (GIPL) from Trypanosoma cruzi. J Leukoc Biol. 2007;82:488–96.PubMed
55.
Zurück zum Zitat Wang M, Wang F, Yang J, Zhao D, Wang H, Shao F, Wang W, Sun R, Ling M, Zhai J, Song S. Mannan-binding lectin inhibits Candida albicans-induced cellular responses in PMA-activated THP-1 cells through Toll-like receptor 2 and Toll-like receptor 4. PLoS ONE. 2013;8:e83517.PubMedPubMedCentral Wang M, Wang F, Yang J, Zhao D, Wang H, Shao F, Wang W, Sun R, Ling M, Zhai J, Song S. Mannan-binding lectin inhibits Candida albicans-induced cellular responses in PMA-activated THP-1 cells through Toll-like receptor 2 and Toll-like receptor 4. PLoS ONE. 2013;8:e83517.PubMedPubMedCentral
56.
Zurück zum Zitat Plociennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72:557–81.PubMed Plociennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72:557–81.PubMed
57.
Zurück zum Zitat Jang JC, Li J, Gambini L, Batugedara HM, Sati S, Lazar MA, Fan L, Pellecchia M, Nair MG. Human resistin protects against endotoxic shock by blocking LPS-TLR4 interaction. Proc Natl Acad Sci U S A. 2017;114:E10399–408.PubMedPubMedCentral Jang JC, Li J, Gambini L, Batugedara HM, Sati S, Lazar MA, Fan L, Pellecchia M, Nair MG. Human resistin protects against endotoxic shock by blocking LPS-TLR4 interaction. Proc Natl Acad Sci U S A. 2017;114:E10399–408.PubMedPubMedCentral
58.
Zurück zum Zitat Ryu JK, Kim SJ, Rah SH, Kang JI, Jung HE, Lee D, Lee HK, Lee JO, Park BS, Yoon TY, Kim HM. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46:38–50.PubMed Ryu JK, Kim SJ, Rah SH, Kang JI, Jung HE, Lee D, Lee HK, Lee JO, Park BS, Yoon TY, Kim HM. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46:38–50.PubMed
59.
Zurück zum Zitat Yuan X, Hu T, He H, Qiu H, Wu X, Chen J, Wang M, Chen C, Huang S. Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin. J Biomed Sci. 2018;25:13.PubMedPubMedCentral Yuan X, Hu T, He H, Qiu H, Wu X, Chen J, Wang M, Chen C, Huang S. Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin. J Biomed Sci. 2018;25:13.PubMedPubMedCentral
60.
Zurück zum Zitat McHeik S, Al-Akl NS, Abdelnoor AM. The effect of denatured flagellin on toll-like receptor-5 (TLR-5) in mice. Endocr Metab Immune Disord Drug Targets. 2018;18:412–6.PubMed McHeik S, Al-Akl NS, Abdelnoor AM. The effect of denatured flagellin on toll-like receptor-5 (TLR-5) in mice. Endocr Metab Immune Disord Drug Targets. 2018;18:412–6.PubMed
61.
Zurück zum Zitat Ahmed M, Mitchell LM, Puckett S, Brzoza-Lewis KL, Lyles DS, Hiltbold EM. Vesicular stomatitis virus M protein mutant stimulates maturation of Toll-like receptor 7 (TLR7)-positive dendritic cells through TLR-dependent and -independent mechanisms. J Virol. 2009;83:2962–75.PubMedPubMedCentral Ahmed M, Mitchell LM, Puckett S, Brzoza-Lewis KL, Lyles DS, Hiltbold EM. Vesicular stomatitis virus M protein mutant stimulates maturation of Toll-like receptor 7 (TLR7)-positive dendritic cells through TLR-dependent and -independent mechanisms. J Virol. 2009;83:2962–75.PubMedPubMedCentral
62.
Zurück zum Zitat To EE, Broughton BR, Hendricks KS, Vlahos R, Selemidis S. Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages. Free Radic Res. 2014;48:940–7.PubMed To EE, Broughton BR, Hendricks KS, Vlahos R, Selemidis S. Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages. Free Radic Res. 2014;48:940–7.PubMed
63.
Zurück zum Zitat Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N, Shan F. Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-kappaB p65 signaling pathway. Int Immunopharmacol. 2018;55:38–48.PubMed Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N, Shan F. Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-kappaB p65 signaling pathway. Int Immunopharmacol. 2018;55:38–48.PubMed
64.
Zurück zum Zitat Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9.PubMed Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9.PubMed
65.
Zurück zum Zitat Han X, Li X, Yue SC, Anandaiah A, Hashem F, Reinach PS, Koziel H, Tachado SD. Epigenetic regulation of tumor necrosis factor alpha (TNFalpha) release in human macrophages by HIV-1 single-stranded RNA (ssRNA) is dependent on TLR8 signaling. J Biol Chem. 2012;287:13778–86.PubMedPubMedCentral Han X, Li X, Yue SC, Anandaiah A, Hashem F, Reinach PS, Koziel H, Tachado SD. Epigenetic regulation of tumor necrosis factor alpha (TNFalpha) release in human macrophages by HIV-1 single-stranded RNA (ssRNA) is dependent on TLR8 signaling. J Biol Chem. 2012;287:13778–86.PubMedPubMedCentral
66.
Zurück zum Zitat Bernard MA, Han X, Inderbitzin S, Agbim I, Zhao H, Koziel H, Tachado SD. HIV-derived ssRNA binds to TLR8 to induce inflammation-driven macrophage foam cell formation. PLoS ONE. 2014;9:e104039.PubMedPubMedCentral Bernard MA, Han X, Inderbitzin S, Agbim I, Zhao H, Koziel H, Tachado SD. HIV-derived ssRNA binds to TLR8 to induce inflammation-driven macrophage foam cell formation. PLoS ONE. 2014;9:e104039.PubMedPubMedCentral
67.
Zurück zum Zitat Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity. 2004;21:107–19.PubMed Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity. 2004;21:107–19.PubMed
68.
Zurück zum Zitat Zolini GP, Lima GK, Lucinda N, Silva MA, Dias MF, Pessoa NL, Coura BP, Cartelle CT, Arantes RM, Kroon EG, Campos MA. Defense against HSV-1 in a murine model is mediated by iNOS and orchestrated by the activation of TLR2 and TLR9 in trigeminal ganglia. J Neuroinflammation. 2014;11:20.PubMedPubMedCentral Zolini GP, Lima GK, Lucinda N, Silva MA, Dias MF, Pessoa NL, Coura BP, Cartelle CT, Arantes RM, Kroon EG, Campos MA. Defense against HSV-1 in a murine model is mediated by iNOS and orchestrated by the activation of TLR2 and TLR9 in trigeminal ganglia. J Neuroinflammation. 2014;11:20.PubMedPubMedCentral
69.
Zurück zum Zitat Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, Halmen KA, Lamphier M, Olivier M, Bartholomeu DC, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A. 2007;104:1919–24.PubMedPubMedCentral Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, Halmen KA, Lamphier M, Olivier M, Bartholomeu DC, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A. 2007;104:1919–24.PubMedPubMedCentral
70.
Zurück zum Zitat Santamaria MH, Perez Caballero E, Corral RS. Unmethylated CpG motifs in Toxoplasma gondii DNA induce TLR9- and IFN-beta-dependent expression of alpha-defensin-5 in intestinal epithelial cells. Parasitology. 2016;143:60–8.PubMed Santamaria MH, Perez Caballero E, Corral RS. Unmethylated CpG motifs in Toxoplasma gondii DNA induce TLR9- and IFN-beta-dependent expression of alpha-defensin-5 in intestinal epithelial cells. Parasitology. 2016;143:60–8.PubMed
71.
Zurück zum Zitat Pohar J, Yamamoto C, Fukui R, Cajnko MM, Miyake K, Jerala R, Bencina M. Selectivity of human TLR9 for double cpg motifs and implications for the recognition of genomic DNA. J Immunol. 2017;198:2093–104.PubMed Pohar J, Yamamoto C, Fukui R, Cajnko MM, Miyake K, Jerala R, Bencina M. Selectivity of human TLR9 for double cpg motifs and implications for the recognition of genomic DNA. J Immunol. 2017;198:2093–104.PubMed
72.
Zurück zum Zitat Bradshaw MJ, Venkatesan A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics. 2016;13:493–508.PubMedPubMedCentral Bradshaw MJ, Venkatesan A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics. 2016;13:493–508.PubMedPubMedCentral
73.
Zurück zum Zitat Mader J, Gallo A, Schommartz T, Handke W, Nagel CH, Gunther P, Brune W, Reich K. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J Allergy Clin Immunol. 2016;137(197–203):e193. Mader J, Gallo A, Schommartz T, Handke W, Nagel CH, Gunther P, Brune W, Reich K. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J Allergy Clin Immunol. 2016;137(197–203):e193.
74.
Zurück zum Zitat Koyanagi N, Imai T, Shindo K, Sato A, Fujii W, Ichinohe T, Takemura N, Kakuta S, Uematsu S, Kiyono H, et al. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. J Clin Invest. 2017;127:3784–95.PubMedPubMedCentral Koyanagi N, Imai T, Shindo K, Sato A, Fujii W, Ichinohe T, Takemura N, Kakuta S, Uematsu S, Kiyono H, et al. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. J Clin Invest. 2017;127:3784–95.PubMedPubMedCentral
75.
Zurück zum Zitat Majer A, Caligiuri KA, Gale KK, Niu Y, Phillipson CS, Booth TF, Booth SA. Induction of multiple miR-200/182 members in the brains of mice are associated with acute herpes simplex virus 1 encephalitis. PLoS ONE. 2017;12:e0169081.PubMedPubMedCentral Majer A, Caligiuri KA, Gale KK, Niu Y, Phillipson CS, Booth TF, Booth SA. Induction of multiple miR-200/182 members in the brains of mice are associated with acute herpes simplex virus 1 encephalitis. PLoS ONE. 2017;12:e0169081.PubMedPubMedCentral
76.
Zurück zum Zitat Suazo PA, Tognarelli EI, Kalergis AM, Gonzalez PA. Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease. Med Microbiol Immunol. 2015;204:161–76.PubMed Suazo PA, Tognarelli EI, Kalergis AM, Gonzalez PA. Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease. Med Microbiol Immunol. 2015;204:161–76.PubMed
77.
Zurück zum Zitat Hensel MT, Marshall JD, Dorwart MR, Heeke DS, Rao E, Tummala P, Yu L, Cohen GH, Eisenberg RJ, Sloan DD: Prophylactic herpes simplex virus 2 (HSV-2) vaccines adjuvanted with stable emulsion and toll-like receptor 9 agonist induce a robust HSV-2-specific cell-mediated immune response, protect against symptomatic disease, and reduce the latent viral reservoir. J Virol 2017, 91. Hensel MT, Marshall JD, Dorwart MR, Heeke DS, Rao E, Tummala P, Yu L, Cohen GH, Eisenberg RJ, Sloan DD: Prophylactic herpes simplex virus 2 (HSV-2) vaccines adjuvanted with stable emulsion and toll-like receptor 9 agonist induce a robust HSV-2-specific cell-mediated immune response, protect against symptomatic disease, and reduce the latent viral reservoir. J Virol 2017, 91.
78.
Zurück zum Zitat Betta M, Laurino M, Pugliese A, Guzzetta G, Landi A, Manfredi P. Perspectives on optimal control of varicella and herpes zoster by mass routine varicella vaccination. Proc Biol Sci. 2016;283:20160054.PubMedPubMedCentral Betta M, Laurino M, Pugliese A, Guzzetta G, Landi A, Manfredi P. Perspectives on optimal control of varicella and herpes zoster by mass routine varicella vaccination. Proc Biol Sci. 2016;283:20160054.PubMedPubMedCentral
79.
Zurück zum Zitat Nagel MA, Jones D, Wyborny A. Varicella zoster virus vasculopathy: the expanding clinical spectrum and pathogenesis. J Neuroimmunol. 2017;308:112–7.PubMedPubMedCentral Nagel MA, Jones D, Wyborny A. Varicella zoster virus vasculopathy: the expanding clinical spectrum and pathogenesis. J Neuroimmunol. 2017;308:112–7.PubMedPubMedCentral
80.
81.
Zurück zum Zitat Singavi AK, Harrington AM, Fenske TS. Post-transplant lymphoproliferative disorders. Cancer Treat Res. 2015;165:305–27.PubMed Singavi AK, Harrington AM, Fenske TS. Post-transplant lymphoproliferative disorders. Cancer Treat Res. 2015;165:305–27.PubMed
82.
Zurück zum Zitat Zhang J, Jia L, Tsang CM, Tsao SW. EBV infection and glucose metabolism in nasopharyngeal carcinoma. Adv Exp Med Biol. 2017;1018:75–90.PubMed Zhang J, Jia L, Tsang CM, Tsao SW. EBV infection and glucose metabolism in nasopharyngeal carcinoma. Adv Exp Med Biol. 2017;1018:75–90.PubMed
83.
Zurück zum Zitat Abdelrahim LM, Peh SC, Kallarakkal TG. Epstein-Barr virus infection in B-cell Non-Hodgkin’s Lymphomas of the oral and maxillofacial region: is there any evidence? Malays J Pathol. 2018;40:49–56.PubMed Abdelrahim LM, Peh SC, Kallarakkal TG. Epstein-Barr virus infection in B-cell Non-Hodgkin’s Lymphomas of the oral and maxillofacial region: is there any evidence? Malays J Pathol. 2018;40:49–56.PubMed
84.
Zurück zum Zitat Meunier YA. Infectious mononucleosis-like syndrome and gastrointestinal disorders in acute acquired cytomegalovirus infection. Singapore Med J. 2005;46:421–3.PubMed Meunier YA. Infectious mononucleosis-like syndrome and gastrointestinal disorders in acute acquired cytomegalovirus infection. Singapore Med J. 2005;46:421–3.PubMed
85.
Zurück zum Zitat Yonezawa A, Onaka T, Imada K. Cytomegalovirus-associated infectious mononucleosis-like syndrome accompanied by transient monoclonal expansion of CD8+ T-cells. Rinsho Ketsueki. 2009;50:652–7.PubMed Yonezawa A, Onaka T, Imada K. Cytomegalovirus-associated infectious mononucleosis-like syndrome accompanied by transient monoclonal expansion of CD8+ T-cells. Rinsho Ketsueki. 2009;50:652–7.PubMed
86.
Zurück zum Zitat Leach CT. Human herpesvirus-6 and -7 infections in children: agents of roseola and other syndromes. Curr Opin Pediatr. 2000;12:269–74.PubMed Leach CT. Human herpesvirus-6 and -7 infections in children: agents of roseola and other syndromes. Curr Opin Pediatr. 2000;12:269–74.PubMed
87.
Zurück zum Zitat Razonable RR, Paya CV. The impact of human herpesvirus-6 and -7 infection on the outcome of liver transplantation. Liver Transpl. 2002;8:651–8.PubMed Razonable RR, Paya CV. The impact of human herpesvirus-6 and -7 infection on the outcome of liver transplantation. Liver Transpl. 2002;8:651–8.PubMed
88.
Zurück zum Zitat Buyse S, Roque-Afonso AM, Vaghefi P, Gigou M, Dussaix E, Duclos-Vallee JC, Samuel D, Guettier C. Acute hepatitis with periportal confluent necrosis associated with human herpesvirus 6 infection in liver transplant patients. Am J Clin Pathol. 2013;140:403–9.PubMed Buyse S, Roque-Afonso AM, Vaghefi P, Gigou M, Dussaix E, Duclos-Vallee JC, Samuel D, Guettier C. Acute hepatitis with periportal confluent necrosis associated with human herpesvirus 6 infection in liver transplant patients. Am J Clin Pathol. 2013;140:403–9.PubMed
89.
Zurück zum Zitat Ogata M, Oshima K, Ikebe T, Takano K, Kanamori H, Kondo T, Ueda Y, Mori T, Hashimoto H, Ogawa H, et al. Clinical characteristics and outcome of human herpesvirus-6 encephalitis after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52:1563–70.PubMed Ogata M, Oshima K, Ikebe T, Takano K, Kanamori H, Kondo T, Ueda Y, Mori T, Hashimoto H, Ogawa H, et al. Clinical characteristics and outcome of human herpesvirus-6 encephalitis after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52:1563–70.PubMed
90.
Zurück zum Zitat Cesarman E, Knowles DM. Kaposi’s sarcoma-associated herpesvirus: a lymphotropic human herpesvirus associated with Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Semin Diagn Pathol. 1997;14:54–66.PubMed Cesarman E, Knowles DM. Kaposi’s sarcoma-associated herpesvirus: a lymphotropic human herpesvirus associated with Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Semin Diagn Pathol. 1997;14:54–66.PubMed
91.
Zurück zum Zitat Said J. Kaposi’s sarcoma-associated herpesvirus (KSHV): a new viral pathogen associated with Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. West J Med. 1997;167:37–8.PubMedPubMedCentral Said J. Kaposi’s sarcoma-associated herpesvirus (KSHV): a new viral pathogen associated with Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. West J Med. 1997;167:37–8.PubMedPubMedCentral
92.
Zurück zum Zitat van Rhee F, Wong RS, Munshi N, Rossi JF, Ke XY, Fossa A, Simpson D, Capra M, Liu T, Hsieh RK, et al. Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2014;15:966–74.PubMed van Rhee F, Wong RS, Munshi N, Rossi JF, Ke XY, Fossa A, Simpson D, Capra M, Liu T, Hsieh RK, et al. Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2014;15:966–74.PubMed
93.
Zurück zum Zitat Mariggio G, Koch S, Schulz TF: Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2017, 372. Mariggio G, Koch S, Schulz TF: Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2017, 372.
94.
Zurück zum Zitat Harris KD. Herpes simplex virus keratitis. Home Healthc Now. 2019;37:281–4.PubMed Harris KD. Herpes simplex virus keratitis. Home Healthc Now. 2019;37:281–4.PubMed
95.
Zurück zum Zitat Vitale S, Loubatier C, Cannavo I, Giordanengo V. Problematic molecular diagnosis of HSV-1 infection due to a single nucleotide polymorphism in the US7 gene. J Clin Virol. 2019;110:42–4.PubMed Vitale S, Loubatier C, Cannavo I, Giordanengo V. Problematic molecular diagnosis of HSV-1 infection due to a single nucleotide polymorphism in the US7 gene. J Clin Virol. 2019;110:42–4.PubMed
96.
Zurück zum Zitat Sun L, Li Q. The miRNAs of herpes simplex virus (HSV). Virol Sin. 2012;27:333–8.PubMed Sun L, Li Q. The miRNAs of herpes simplex virus (HSV). Virol Sin. 2012;27:333–8.PubMed
97.
Zurück zum Zitat Peri P, Mattila RK, Kantola H, Broberg E, Karttunen HS, Waris M, Vuorinen T, Hukkanen V. Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells. Virol J. 2008;5:140.PubMedPubMedCentral Peri P, Mattila RK, Kantola H, Broberg E, Karttunen HS, Waris M, Vuorinen T, Hukkanen V. Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells. Virol J. 2008;5:140.PubMedPubMedCentral
98.
Zurück zum Zitat van Lint AL, Murawski MR, Goodbody RE, Severa M, Fitzgerald KA, Finberg RW, Knipe DM, Kurt-Jones EA. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J Virol. 2010;84:10802–11.PubMedPubMedCentral van Lint AL, Murawski MR, Goodbody RE, Severa M, Fitzgerald KA, Finberg RW, Knipe DM, Kurt-Jones EA. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J Virol. 2010;84:10802–11.PubMedPubMedCentral
99.
Zurück zum Zitat Cermelli C, Orsi CF, Ardizzoni A, Lugli E, Cenacchi V, Cossarizza A, Blasi E. Herpes simplex virus type 1 dysregulates anti-fungal defenses preventing monocyte activation and downregulating toll-like receptor-2. Microbiol Immunol. 2008;52:575–84.PubMed Cermelli C, Orsi CF, Ardizzoni A, Lugli E, Cenacchi V, Cossarizza A, Blasi E. Herpes simplex virus type 1 dysregulates anti-fungal defenses preventing monocyte activation and downregulating toll-like receptor-2. Microbiol Immunol. 2008;52:575–84.PubMed
100.
Zurück zum Zitat Jaggi U, Wang S, Tormanen K, Matundan H, Ljubimov AV, Ghiasi H. Role of herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) pathogenic CD8(+) T cells in exacerbation of eye disease. Front Immunol. 2018;9:2895.PubMedPubMedCentral Jaggi U, Wang S, Tormanen K, Matundan H, Ljubimov AV, Ghiasi H. Role of herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) pathogenic CD8(+) T cells in exacerbation of eye disease. Front Immunol. 2018;9:2895.PubMedPubMedCentral
101.
Zurück zum Zitat Lu X, Huang C, Zhang Y, Lin Y, Wang X, Li Q, Liu S, Tang J, Zhou L. The Us2 gene product of herpes simplex virus 2 modulates NF-kappaB activation by targeting TAK1. Sci Rep. 2017;7:8396.PubMedPubMedCentral Lu X, Huang C, Zhang Y, Lin Y, Wang X, Li Q, Liu S, Tang J, Zhou L. The Us2 gene product of herpes simplex virus 2 modulates NF-kappaB activation by targeting TAK1. Sci Rep. 2017;7:8396.PubMedPubMedCentral
102.
Zurück zum Zitat Guo YJ, Luo T, Wu F, Mei YW, Peng J, Liu H, Li HR, Zhang SL, Dong JH, Fang Y, Zhao L. Involvement of TLR2 and TLR9 in the anti-inflammatory effects of chlorogenic acid in HSV-1-infected microglia. Life Sci. 2015;127:12–8.PubMed Guo YJ, Luo T, Wu F, Mei YW, Peng J, Liu H, Li HR, Zhang SL, Dong JH, Fang Y, Zhao L. Involvement of TLR2 and TLR9 in the anti-inflammatory effects of chlorogenic acid in HSV-1-infected microglia. Life Sci. 2015;127:12–8.PubMed
103.
Zurück zum Zitat Wang X, Li Y, Liu S, Yu X, Li L, Shi C, He W, Li J, Xu L, Hu Z, et al. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci U S A. 2014;111:15438–43.PubMedPubMedCentral Wang X, Li Y, Liu S, Yu X, Li L, Shi C, He W, Li J, Xu L, Hu Z, et al. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci U S A. 2014;111:15438–43.PubMedPubMedCentral
104.
Zurück zum Zitat Wang JP, Bowen GN, Zhou S, Cerny A, Zacharia A, Knipe DM, Finberg RW, Kurt-Jones EA. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J Virol. 2012;86:2273–81.PubMedPubMedCentral Wang JP, Bowen GN, Zhou S, Cerny A, Zacharia A, Knipe DM, Finberg RW, Kurt-Jones EA. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J Virol. 2012;86:2273–81.PubMedPubMedCentral
105.
Zurück zum Zitat Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A. 2004;101:1315–20.PubMedPubMedCentral Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A. 2004;101:1315–20.PubMedPubMedCentral
106.
Zurück zum Zitat Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol. 2008;181:8604–12.PubMed Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol. 2008;181:8604–12.PubMed
107.
Zurück zum Zitat Leoni V, Gianni T, Salvioli S, Campadelli-Fiume G. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappaB. J Virol. 2012;86:6555–62.PubMedPubMedCentral Leoni V, Gianni T, Salvioli S, Campadelli-Fiume G. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappaB. J Virol. 2012;86:6555–62.PubMedPubMedCentral
108.
Zurück zum Zitat Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130:1071–82.PubMed Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130:1071–82.PubMed
109.
Zurück zum Zitat Liu H, Chen K, Feng W, Wu X, Li H. TLR4-MyD88/Mal-NF-kB axis is involved in infection of HSV-2 in human cervical epithelial cells. PLoS ONE. 2013;8:e80327.PubMedPubMedCentral Liu H, Chen K, Feng W, Wu X, Li H. TLR4-MyD88/Mal-NF-kB axis is involved in infection of HSV-2 in human cervical epithelial cells. PLoS ONE. 2013;8:e80327.PubMedPubMedCentral
110.
Zurück zum Zitat Villalba M, Hott M, Martin C, Aguila B, Valdivia S, Quezada C, Zambrano A, Concha MI, Otth C. Herpes simplex virus type 1 induces simultaneous activation of Toll-like receptors 2 and 4 and expression of the endogenous ligand serum amyloid A in astrocytes. Med Microbiol Immunol. 2012;201:371–9.PubMed Villalba M, Hott M, Martin C, Aguila B, Valdivia S, Quezada C, Zambrano A, Concha MI, Otth C. Herpes simplex virus type 1 induces simultaneous activation of Toll-like receptors 2 and 4 and expression of the endogenous ligand serum amyloid A in astrocytes. Med Microbiol Immunol. 2012;201:371–9.PubMed
111.
Zurück zum Zitat Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, De Caro R, Scarpa M, Calistri A, Castagliuolo I. Herpes simplex virus type 1 engages toll like receptor 2 to Recruit macrophages during infection of enteric neurons. Front Microbiol. 2018;9:2148.PubMedPubMedCentral Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, De Caro R, Scarpa M, Calistri A, Castagliuolo I. Herpes simplex virus type 1 engages toll like receptor 2 to Recruit macrophages during infection of enteric neurons. Front Microbiol. 2018;9:2148.PubMedPubMedCentral
112.
Zurück zum Zitat Strickson S, Emmerich CH, Goh ETH, Zhang J, Kelsall IR, Macartney T, Hastie CJ, Knebel A, Peggie M, Marchesi F, et al. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A. 2017;114:E3481–9.PubMedPubMedCentral Strickson S, Emmerich CH, Goh ETH, Zhang J, Kelsall IR, Macartney T, Hastie CJ, Knebel A, Peggie M, Marchesi F, et al. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A. 2017;114:E3481–9.PubMedPubMedCentral
113.
Zurück zum Zitat Moon G, Kim J, Min Y, Wi SM, Shim JH, Chun E, Lee KY. Phosphoinositide-dependent kinase-1 inhibits TRAF6 ubiquitination by interrupting the formation of TAK1-TAB2 complex in TLR4 signaling. Cell Signal. 2015;27:2524–33.PubMed Moon G, Kim J, Min Y, Wi SM, Shim JH, Chun E, Lee KY. Phosphoinositide-dependent kinase-1 inhibits TRAF6 ubiquitination by interrupting the formation of TAK1-TAB2 complex in TLR4 signaling. Cell Signal. 2015;27:2524–33.PubMed
114.
Zurück zum Zitat Vollmer S, Strickson S, Zhang T, Gray N, Lee KL, Rao VR, Cohen P. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J. 2017;474:2027–38.PubMed Vollmer S, Strickson S, Zhang T, Gray N, Lee KL, Rao VR, Cohen P. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J. 2017;474:2027–38.PubMed
115.
Zurück zum Zitat Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465:885–90.PubMedPubMedCentral Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465:885–90.PubMedPubMedCentral
116.
Zurück zum Zitat Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, Wu H, Darnay BG. TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem. 2007;282:3918–28.PubMed Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, Wu H, Darnay BG. TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem. 2007;282:3918–28.PubMed
117.
Zurück zum Zitat Broglie P, Matsumoto K, Akira S, Brautigan DL, Ninomiya-Tsuji J. Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem. 2010;285:2333–9.PubMed Broglie P, Matsumoto K, Akira S, Brautigan DL, Ninomiya-Tsuji J. Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem. 2010;285:2333–9.PubMed
118.
Zurück zum Zitat Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14:289–301.PubMed Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14:289–301.PubMed
119.
Zurück zum Zitat Kim ML, Jeong HG, Kasper CA, Arrieumerlou C. IKKalpha contributes to canonical NF-kappaB activation downstream of Nod1-mediated peptidoglycan recognition. PLoS ONE. 2010;5:e15371.PubMedPubMedCentral Kim ML, Jeong HG, Kasper CA, Arrieumerlou C. IKKalpha contributes to canonical NF-kappaB activation downstream of Nod1-mediated peptidoglycan recognition. PLoS ONE. 2010;5:e15371.PubMedPubMedCentral
120.
Zurück zum Zitat Mansur DS, Kroon EG, Nogueira ML, Arantes RM, Rodrigues SC, Akira S, Gazzinelli RT, Campos MA. Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol. 2005;166:1419–26.PubMedPubMedCentral Mansur DS, Kroon EG, Nogueira ML, Arantes RM, Rodrigues SC, Akira S, Gazzinelli RT, Campos MA. Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol. 2005;166:1419–26.PubMedPubMedCentral
121.
Zurück zum Zitat Cai M, Li M, Wang K, Wang S, Lu Q, Yan J, Mossman KL, Lin R, Zheng C. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-kappaB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway. PLoS ONE. 2013;8:e54586.PubMedPubMedCentral Cai M, Li M, Wang K, Wang S, Lu Q, Yan J, Mossman KL, Lin R, Zheng C. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-kappaB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway. PLoS ONE. 2013;8:e54586.PubMedPubMedCentral
122.
Zurück zum Zitat Gianni T, Leoni V, Campadelli-Fiume G. Type I interferon and NF-kappaB activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial and neuronal cell lines. J Virol. 2013;87:13911–6.PubMedPubMedCentral Gianni T, Leoni V, Campadelli-Fiume G. Type I interferon and NF-kappaB activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial and neuronal cell lines. J Virol. 2013;87:13911–6.PubMedPubMedCentral
123.
Zurück zum Zitat Kim WJ, Choi JW, Jang WJ, Kang YS, Lee CW, Synytsya A, Park YI. Low-molecular weight mannogalactofucans prevent herpes simplex virus type 1 infection via activation of Toll-like receptor 2. Int J Biol Macromol. 2017;103:286–93.PubMed Kim WJ, Choi JW, Jang WJ, Kang YS, Lee CW, Synytsya A, Park YI. Low-molecular weight mannogalactofucans prevent herpes simplex virus type 1 infection via activation of Toll-like receptor 2. Int J Biol Macromol. 2017;103:286–93.PubMed
124.
Zurück zum Zitat Vageli DP, Exarchou A, Zafiriou E, Doukas PG, Doukas S, Roussaki-Schulze A. Effect of TNF-alpha inhibitors on transcriptional levels of pro-inflammatory interleukin-33 and Toll-like receptors-2 and -9 in psoriatic plaques. Exp Ther Med. 2015;10:1573–7.PubMedPubMedCentral Vageli DP, Exarchou A, Zafiriou E, Doukas PG, Doukas S, Roussaki-Schulze A. Effect of TNF-alpha inhibitors on transcriptional levels of pro-inflammatory interleukin-33 and Toll-like receptors-2 and -9 in psoriatic plaques. Exp Ther Med. 2015;10:1573–7.PubMedPubMedCentral
125.
126.
Zurück zum Zitat Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol. 2005;175:4189–93.PubMed Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol. 2005;175:4189–93.PubMed
127.
Zurück zum Zitat Lv X, Wang H, Su A, Xu S, Chu Y. Herpes simplex virus type 2 infection triggers AP-1 transcription activity through TLR4 signaling in genital epithelial cells. Virol J. 2018;15:173.PubMedPubMedCentral Lv X, Wang H, Su A, Xu S, Chu Y. Herpes simplex virus type 2 infection triggers AP-1 transcription activity through TLR4 signaling in genital epithelial cells. Virol J. 2018;15:173.PubMedPubMedCentral
128.
Zurück zum Zitat Ahmad R, El Bassam S, Cordeiro P, Menezes J. Requirement of TLR2-mediated signaling for the induction of IL-15 gene expression in human monocytic cells by HSV-1. Blood. 2008;112:2360–8.PubMed Ahmad R, El Bassam S, Cordeiro P, Menezes J. Requirement of TLR2-mediated signaling for the induction of IL-15 gene expression in human monocytic cells by HSV-1. Blood. 2008;112:2360–8.PubMed
129.
Zurück zum Zitat Kurt-Jones EA, Belko J, Yu C, Newburger PE, Wang J, Chan M, Knipe DM, Finberg RW. The role of toll-like receptors in herpes simplex infection in neonates. J Infect Dis. 2005;191:746–8.PubMed Kurt-Jones EA, Belko J, Yu C, Newburger PE, Wang J, Chan M, Knipe DM, Finberg RW. The role of toll-like receptors in herpes simplex infection in neonates. J Infect Dis. 2005;191:746–8.PubMed
130.
Zurück zum Zitat Schachtele SJ, Hu S, Little MR, Lokensgard JR. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation. 2010;7:35.PubMedPubMedCentral Schachtele SJ, Hu S, Little MR, Lokensgard JR. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation. 2010;7:35.PubMedPubMedCentral
131.
Zurück zum Zitat Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnaes-Hansen F, Ulhoi BP, Holm TH, Mogensen TH, Owens T, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest. 2012;122:1368–76.PubMedPubMedCentral Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnaes-Hansen F, Ulhoi BP, Holm TH, Mogensen TH, Owens T, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest. 2012;122:1368–76.PubMedPubMedCentral
132.
Zurück zum Zitat Willmann O, Ahmad-Nejad P, Neumaier M, Hennerici MG, Fatar M. Toll-like receptor 3 immune deficiency may be causative for HSV-2-associated mollaret meningitis. Eur Neurol. 2010;63:249–51.PubMed Willmann O, Ahmad-Nejad P, Neumaier M, Hennerici MG, Fatar M. Toll-like receptor 3 immune deficiency may be causative for HSV-2-associated mollaret meningitis. Eur Neurol. 2010;63:249–51.PubMed
133.
Zurück zum Zitat Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol. 2006;7:156–64.PubMed Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol. 2006;7:156–64.PubMed
134.
Zurück zum Zitat Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 2007;177:265–75.PubMedPubMedCentral Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 2007;177:265–75.PubMedPubMedCentral
135.
Zurück zum Zitat Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature. 2008;452:234–8.PubMed Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature. 2008;452:234–8.PubMed
136.
Zurück zum Zitat Pelka K, Bertheloot D, Reimer E, Phulphagar K, Schmidt SV, Christ A, Stahl R, Watson N, Miyake K, Hacohen N, et al. The chaperone UNC93B1 regulates toll-like receptor stability independently of endosomal TLR transport. Immunity. 2018;48(911–922):e917. Pelka K, Bertheloot D, Reimer E, Phulphagar K, Schmidt SV, Christ A, Stahl R, Watson N, Miyake K, Hacohen N, et al. The chaperone UNC93B1 regulates toll-like receptor stability independently of endosomal TLR transport. Immunity. 2018;48(911–922):e917.
137.
Zurück zum Zitat Vercammen E, Staal J, Beyaert R. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev. 2008;21:13–25.PubMedPubMedCentral Vercammen E, Staal J, Beyaert R. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev. 2008;21:13–25.PubMedPubMedCentral
138.
Zurück zum Zitat Suh HS, Brosnan CF, Lee SC. Toll-like receptors in CNS viral infections. Curr Top Microbiol Immunol. 2009;336:63–81.PubMed Suh HS, Brosnan CF, Lee SC. Toll-like receptors in CNS viral infections. Curr Top Microbiol Immunol. 2009;336:63–81.PubMed
139.
Zurück zum Zitat Mielcarska MB, Bossowska-Nowicka M, Toka FN. Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis. J Neuroimmunol. 2018;316:65–73.PubMed Mielcarska MB, Bossowska-Nowicka M, Toka FN. Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis. J Neuroimmunol. 2018;316:65–73.PubMed
140.
Zurück zum Zitat Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol. 2006;80:5059–64.PubMedPubMedCentral Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol. 2006;80:5059–64.PubMedPubMedCentral
141.
Zurück zum Zitat Wall AA, Luo L, Hung Y, Tong SJ, Condon ND, Blumenthal A, Sweet MJ, Stow JL. Small GTPase Rab8a-recruited Phosphatidylinositol 3-Kinase gamma regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem. 2017;292:4411–22.PubMedPubMedCentral Wall AA, Luo L, Hung Y, Tong SJ, Condon ND, Blumenthal A, Sweet MJ, Stow JL. Small GTPase Rab8a-recruited Phosphatidylinositol 3-Kinase gamma regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem. 2017;292:4411–22.PubMedPubMedCentral
142.
Zurück zum Zitat Sun H, Zhuang G, Chai L, Wang Z, Johnson D, Ma Y, Chen YH. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. J Immunol. 2012;189:2768–73.PubMed Sun H, Zhuang G, Chai L, Wang Z, Johnson D, Ma Y, Chen YH. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. J Immunol. 2012;189:2768–73.PubMed
143.
Zurück zum Zitat Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel JL, Sen GC. Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Sci Signal. 2012;5:ra50.PubMedPubMedCentral Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel JL, Sen GC. Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Sci Signal. 2012;5:ra50.PubMedPubMedCentral
144.
Zurück zum Zitat Donepudi M, Resh MD. c-Src trafficking and co-localization with the EGF receptor promotes EGF ligand-independent EGF receptor activation and signaling. Cell Signal. 2008;20:1359–67.PubMedPubMedCentral Donepudi M, Resh MD. c-Src trafficking and co-localization with the EGF receptor promotes EGF ligand-independent EGF receptor activation and signaling. Cell Signal. 2008;20:1359–67.PubMedPubMedCentral
145.
Zurück zum Zitat Koff JL, Shao MX, Ueki IF, Nadel JA. Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1068-1075.PubMed Koff JL, Shao MX, Ueki IF, Nadel JA. Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1068-1075.PubMed
146.
Zurück zum Zitat Johnsen IB, Nguyen TT, Ringdal M, Tryggestad AM, Bakke O, Lien E, Espevik T, Anthonsen MW. Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling. EMBO J. 2006;25:3335–46.PubMedPubMedCentral Johnsen IB, Nguyen TT, Ringdal M, Tryggestad AM, Bakke O, Lien E, Espevik T, Anthonsen MW. Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling. EMBO J. 2006;25:3335–46.PubMedPubMedCentral
147.
Zurück zum Zitat Naito E, Dewa K, Yamanouchi H, Mitani K, Kominami R. DNA fingerprinting by means of a nonradioactive probe of sulfonated DNA. Nihon Hoigaku Zasshi. 1989;43:243–5.PubMed Naito E, Dewa K, Yamanouchi H, Mitani K, Kominami R. DNA fingerprinting by means of a nonradioactive probe of sulfonated DNA. Nihon Hoigaku Zasshi. 1989;43:243–5.PubMed
148.
Zurück zum Zitat Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 2003;4:161–7.PubMed Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 2003;4:161–7.PubMed
149.
Zurück zum Zitat Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.PubMed Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.PubMed
150.
Zurück zum Zitat Joung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY. Akt contributes to activation of the TRIF-dependent signaling pathways of TLRs by interacting with TANK-binding kinase 1. J Immunol. 2011;186:499–507.PubMed Joung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY. Akt contributes to activation of the TRIF-dependent signaling pathways of TLRs by interacting with TANK-binding kinase 1. J Immunol. 2011;186:499–507.PubMed
151.
Zurück zum Zitat Han KJ, Su X, Xu LG, Bin LH, Zhang J, Shu HB. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem. 2004;279:15652–61.PubMed Han KJ, Su X, Xu LG, Bin LH, Zhang J, Shu HB. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem. 2004;279:15652–61.PubMed
152.
Zurück zum Zitat Ruckdeschel K, Pfaffinger G, Haase R, Sing A, Weighardt H, Hacker G, Holzmann B, Heesemann J. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol. 2004;173:3320–8.PubMed Ruckdeschel K, Pfaffinger G, Haase R, Sing A, Weighardt H, Hacker G, Holzmann B, Heesemann J. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol. 2004;173:3320–8.PubMed
153.
Zurück zum Zitat Ueda S, Mineta T, Nakahara Y, Okamoto H, Shiraishi T, Tabuchi K. Induction of the DNA repair gene O6-methylguanine-DNA methyltransferase by dexamethasone in glioblastomas. J Neurosurg. 2004;101:659–63.PubMed Ueda S, Mineta T, Nakahara Y, Okamoto H, Shiraishi T, Tabuchi K. Induction of the DNA repair gene O6-methylguanine-DNA methyltransferase by dexamethasone in glioblastomas. J Neurosurg. 2004;101:659–63.PubMed
154.
Zurück zum Zitat Sasai M, Oshiumi H, Matsumoto M, Inoue N, Fujita F, Nakanishi M, Seya T. Cutting edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol. 2005;174:27–30.PubMed Sasai M, Oshiumi H, Matsumoto M, Inoue N, Fujita F, Nakanishi M, Seya T. Cutting edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol. 2005;174:27–30.PubMed
155.
Zurück zum Zitat Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature. 2006;439:204–7.PubMed Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature. 2006;439:204–7.PubMed
156.
Zurück zum Zitat Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature. 2006;439:208–11.PubMed Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature. 2006;439:208–11.PubMed
157.
Zurück zum Zitat Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4:491–6.PubMed Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4:491–6.PubMed
158.
Zurück zum Zitat Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity. 2002;17:251–63.PubMed Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity. 2002;17:251–63.PubMed
159.
Zurück zum Zitat Liu Z, Guan Y, Sun X, Shi L, Liang R, Lv X, Xin W. HSV-1 activates NF-kappaB in mouse astrocytes and increases TNF-alpha and IL-6 expression via Toll-like receptor 3. Neurol Res. 2013;35:755–62.PubMed Liu Z, Guan Y, Sun X, Shi L, Liang R, Lv X, Xin W. HSV-1 activates NF-kappaB in mouse astrocytes and increases TNF-alpha and IL-6 expression via Toll-like receptor 3. Neurol Res. 2013;35:755–62.PubMed
160.
Zurück zum Zitat Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem. 2003;278:16713–9.PubMed Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem. 2003;278:16713–9.PubMed
161.
Zurück zum Zitat Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19:2668–81.PubMedPubMedCentral Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19:2668–81.PubMedPubMedCentral
162.
Zurück zum Zitat Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol. 2004;5:503–7.PubMed Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol. 2004;5:503–7.PubMed
163.
Zurück zum Zitat Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.PubMedPubMedCentral Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.PubMedPubMedCentral
164.
Zurück zum Zitat Ma Y, He B. Recognition of herpes simplex viruses: toll-like receptors and beyond. J Mol Biol. 2014;426:1133–47.PubMed Ma Y, He B. Recognition of herpes simplex viruses: toll-like receptors and beyond. J Mol Biol. 2014;426:1133–47.PubMed
165.
Zurück zum Zitat Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003;171:4304–10.PubMed Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003;171:4304–10.PubMed
166.
Zurück zum Zitat Gohda J, Matsumura T, Inoue J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol. 2004;173:2913–7.PubMed Gohda J, Matsumura T, Inoue J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol. 2004;173:2913–7.PubMed
167.
Zurück zum Zitat Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A. 2004;101:11416–21.PubMedPubMedCentral Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A. 2004;101:11416–21.PubMedPubMedCentral
168.
Zurück zum Zitat Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 2003;198:513–20.PubMedPubMedCentral Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 2003;198:513–20.PubMedPubMedCentral
169.
Zurück zum Zitat Wu CC, Lee J, Raz E, Corr M, Carson DA. Necessity of oligonucleotide aggregation for toll-like receptor 9 activation. J Biol Chem. 2004;279:33071–8.PubMed Wu CC, Lee J, Raz E, Corr M, Carson DA. Necessity of oligonucleotide aggregation for toll-like receptor 9 activation. J Biol Chem. 2004;279:33071–8.PubMed
170.
Zurück zum Zitat Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004;5:190–8.PubMed Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004;5:190–8.PubMed
171.
Zurück zum Zitat Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature. 2012;485:465–70.PubMed Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature. 2012;485:465–70.PubMed
172.
Zurück zum Zitat Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005;122:735–49.PubMed Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005;122:735–49.PubMed
173.
Zurück zum Zitat McDermott H, Kim K. Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol. 2015;94:235–48.PubMed McDermott H, Kim K. Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol. 2015;94:235–48.PubMed
175.
Zurück zum Zitat Futter CE, Collinson LM, Backer JM, Hopkins CR. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol. 2001;155:1251–64.PubMedPubMedCentral Futter CE, Collinson LM, Backer JM, Hopkins CR. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol. 2001;155:1251–64.PubMedPubMedCentral
176.
Zurück zum Zitat Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol. 2001;155:19–25.PubMedPubMedCentral Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol. 2001;155:19–25.PubMedPubMedCentral
177.
Zurück zum Zitat Shuto T, Xu H, Wang B, Han J, Kai H, Gu XX, Murphy TF, Lim DJ, Li JD. Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha /beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A. 2001;98:8774–9.PubMedPubMedCentral Shuto T, Xu H, Wang B, Han J, Kai H, Gu XX, Murphy TF, Lim DJ, Li JD. Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha /beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A. 2001;98:8774–9.PubMedPubMedCentral
178.
Zurück zum Zitat Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, Klinman DM. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol. 2001;167:3555–8.PubMed Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, Klinman DM. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol. 2001;167:3555–8.PubMed
179.
Zurück zum Zitat Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol. 2002;22:7158–67.PubMedPubMedCentral Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol. 2002;22:7158–67.PubMedPubMedCentral
180.
Zurück zum Zitat Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin Immunol. 2004;16:17–22.PubMed Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin Immunol. 2004;16:17–22.PubMed
181.
Zurück zum Zitat Gomes MT, Campos PC, Pereira Gde S, Bartholomeu DC, Splitter G, Oliveira SC. TLR9 is required for MAPK/NF-kappaB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus. J Leukoc Biol. 2016;99:771–80.PubMed Gomes MT, Campos PC, Pereira Gde S, Bartholomeu DC, Splitter G, Oliveira SC. TLR9 is required for MAPK/NF-kappaB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus. J Leukoc Biol. 2016;99:771–80.PubMed
182.
Zurück zum Zitat Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity. 2004;21:477–89.PubMed Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity. 2004;21:477–89.PubMed
183.
Zurück zum Zitat Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell. 1998;93:1231–40.PubMed Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell. 1998;93:1231–40.PubMed
184.
Zurück zum Zitat Hacker H, Mischak H, Hacker G, Eser S, Prenzel N, Ullrich A, Wagner H. Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999;18:6973–82.PubMedPubMedCentral Hacker H, Mischak H, Hacker G, Eser S, Prenzel N, Ullrich A, Wagner H. Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999;18:6973–82.PubMedPubMedCentral
185.
Zurück zum Zitat Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000;164:944–53.PubMed Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000;164:944–53.PubMed
186.
Zurück zum Zitat Ruan M, Thorn K, Liu S, Li S, Yang W, Zhang C, Zhang C. The secretion of IL-6 by CpG-ODN-treated cancer cells promotes T-cell immune responses partly through the TLR-9/AP-1 pathway in oral squamous cell carcinoma. Int J Oncol. 2014;44:2103–10.PubMed Ruan M, Thorn K, Liu S, Li S, Yang W, Zhang C, Zhang C. The secretion of IL-6 by CpG-ODN-treated cancer cells promotes T-cell immune responses partly through the TLR-9/AP-1 pathway in oral squamous cell carcinoma. Int J Oncol. 2014;44:2103–10.PubMed
187.
Zurück zum Zitat Mueller NH, Gilden DH, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol Clin. 2008;26:675–97.PubMedPubMedCentral Mueller NH, Gilden DH, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol Clin. 2008;26:675–97.PubMedPubMedCentral
188.
Zurück zum Zitat Campbell TM, McSharry BP, Steain M, Slobedman B, Abendroth A. Varicella-zoster virus and herpes simplex virus 1 differentially modulate NKG2D ligand expression during productive infection. J Virol. 2015;89:7932–43.PubMedPubMedCentral Campbell TM, McSharry BP, Steain M, Slobedman B, Abendroth A. Varicella-zoster virus and herpes simplex virus 1 differentially modulate NKG2D ligand expression during productive infection. J Virol. 2015;89:7932–43.PubMedPubMedCentral
189.
Zurück zum Zitat Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol. 2005;79:12658–66.PubMedPubMedCentral Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol. 2005;79:12658–66.PubMedPubMedCentral
190.
Zurück zum Zitat Black AP, Jones L, Malavige GN, Ogg GS. Immune evasion during varicella zoster virus infection of keratinocytes. Clin Exp Dermatol. 2009;34:e941-944.PubMed Black AP, Jones L, Malavige GN, Ogg GS. Immune evasion during varicella zoster virus infection of keratinocytes. Clin Exp Dermatol. 2009;34:e941-944.PubMed
191.
Zurück zum Zitat Yu HR, Huang HC, Kuo HC, Sheen JM, Ou CY, Hsu TY, Yang KD. IFN-alpha production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol. 2011;8:181–8.PubMedPubMedCentral Yu HR, Huang HC, Kuo HC, Sheen JM, Ou CY, Hsu TY, Yang KD. IFN-alpha production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol. 2011;8:181–8.PubMedPubMedCentral
192.
Zurück zum Zitat Malmgaard L, Melchjorsen J, Bowie AG, Mogensen SC, Paludan SR. Viral activation of macrophages through TLR-dependent and -independent pathways. J Immunol. 2004;173:6890–8.PubMed Malmgaard L, Melchjorsen J, Bowie AG, Mogensen SC, Paludan SR. Viral activation of macrophages through TLR-dependent and -independent pathways. J Immunol. 2004;173:6890–8.PubMed
193.
Zurück zum Zitat Sironi M, Peri AM, Cagliani R, Forni D, Riva S, Biasin M, Clerici M, Gori A. TLR3 mutations in adult patients with herpes simplex virus and varicella-zoster virus encephalitis. J Infect Dis. 2017;215:1430–4.PubMed Sironi M, Peri AM, Cagliani R, Forni D, Riva S, Biasin M, Clerici M, Gori A. TLR3 mutations in adult patients with herpes simplex virus and varicella-zoster virus encephalitis. J Infect Dis. 2017;215:1430–4.PubMed
194.
Zurück zum Zitat Albanese M, Tagawa T, Buschle A, Hammerschmidt W: MicroRNAs of epstein-barr virus control innate and adaptive antiviral immunity. J Virol 2017, 91. Albanese M, Tagawa T, Buschle A, Hammerschmidt W: MicroRNAs of epstein-barr virus control innate and adaptive antiviral immunity. J Virol 2017, 91.
195.
Zurück zum Zitat van Gent M, Braem SG, de Jong A, Delagic N, Peeters JG, Boer IG, Moynagh PN, Kremmer E, Wiertz EJ, Ovaa H, et al. Epstein-barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10:e1003960.PubMedPubMedCentral van Gent M, Braem SG, de Jong A, Delagic N, Peeters JG, Boer IG, Moynagh PN, Kremmer E, Wiertz EJ, Ovaa H, et al. Epstein-barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10:e1003960.PubMedPubMedCentral
196.
Zurück zum Zitat van Gent M, Gram AM, Boer IGJ, Geerdink RJ, Lindenbergh MFS, Lebbink RJ, Wiertz EJ, Ressing ME. Silencing the shutoff protein of Epstein-Barr virus in productively infected B cells points to (innate) targets for immune evasion. J Gen Virol. 2015;96:858–65.PubMed van Gent M, Gram AM, Boer IGJ, Geerdink RJ, Lindenbergh MFS, Lebbink RJ, Wiertz EJ, Ressing ME. Silencing the shutoff protein of Epstein-Barr virus in productively infected B cells points to (innate) targets for immune evasion. J Gen Virol. 2015;96:858–65.PubMed
197.
Zurück zum Zitat van Gent M, Griffin BD, Berkhoff EG, van Leeuwen D, Boer IG, Buisson M, Hartgers FC, Burmeister WP, Wiertz EJ, Ressing ME. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. J Immunol. 2011;186:1694–702.PubMed van Gent M, Griffin BD, Berkhoff EG, van Leeuwen D, Boer IG, Buisson M, Hartgers FC, Burmeister WP, Wiertz EJ, Ressing ME. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. J Immunol. 2011;186:1694–702.PubMed
198.
Zurück zum Zitat Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol. 2007;81:8016–24.PubMedPubMedCentral Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol. 2007;81:8016–24.PubMedPubMedCentral
199.
Zurück zum Zitat Ntoufa S, Vilia MG, Stamatopoulos K, Ghia P, Muzio M. Toll-like receptors signaling: A complex network for NF-kappaB activation in B-cell lymphoid malignancies. Semin Cancer Biol. 2016;39:15–25.PubMed Ntoufa S, Vilia MG, Stamatopoulos K, Ghia P, Muzio M. Toll-like receptors signaling: A complex network for NF-kappaB activation in B-cell lymphoid malignancies. Semin Cancer Biol. 2016;39:15–25.PubMed
200.
Zurück zum Zitat Li Z, Duan Y, Cheng S, Chen Y, Hu Y, Zhang L, He J, Liao Q, Yang L, Sun LQ. EBV-encoded RNA via TLR3 induces inflammation in nasopharyngeal carcinoma. Oncotarget. 2015;6:24291–303.PubMedPubMedCentral Li Z, Duan Y, Cheng S, Chen Y, Hu Y, Zhang L, He J, Liao Q, Yang L, Sun LQ. EBV-encoded RNA via TLR3 induces inflammation in nasopharyngeal carcinoma. Oncotarget. 2015;6:24291–303.PubMedPubMedCentral
201.
Zurück zum Zitat Iwakiri D. Epstein-barr virus-encoded RNAs: key molecules in viral pathogenesis. Cancers (Basel). 2014;6:1615–30. Iwakiri D. Epstein-barr virus-encoded RNAs: key molecules in viral pathogenesis. Cancers (Basel). 2014;6:1615–30.
202.
Zurück zum Zitat Martin HJ, Lee JM, Walls D, Hayward SD. Manipulation of the toll-like receptor 7 signaling pathway by epstein-barr virus. J Virol. 2007;81:9748–58.PubMedPubMedCentral Martin HJ, Lee JM, Walls D, Hayward SD. Manipulation of the toll-like receptor 7 signaling pathway by epstein-barr virus. J Virol. 2007;81:9748–58.PubMedPubMedCentral
203.
Zurück zum Zitat Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem. 2005;280:17005–12.PubMed Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem. 2005;280:17005–12.PubMed
204.
Zurück zum Zitat Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, Delecluse HJ. The epstein-barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J. 2000;19:3080–9.PubMedPubMedCentral Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, Delecluse HJ. The epstein-barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J. 2000;19:3080–9.PubMedPubMedCentral
205.
Zurück zum Zitat Ladell K, Dorner M, Zauner L, Berger C, Zucol F, Bernasconi M, Niggli FK, Speck RF, Nadal D. Immune activation suppresses initiation of lytic Epstein-Barr virus infection. Cell Microbiol. 2007;9:2055–69.PubMed Ladell K, Dorner M, Zauner L, Berger C, Zucol F, Bernasconi M, Niggli FK, Speck RF, Nadal D. Immune activation suppresses initiation of lytic Epstein-Barr virus infection. Cell Microbiol. 2007;9:2055–69.PubMed
206.
Zurück zum Zitat Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 2004;10:871–5.PubMedPubMedCentral Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 2004;10:871–5.PubMedPubMedCentral
207.
Zurück zum Zitat Fiola S, Gosselin D, Takada K, Gosselin J. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J Immunol. 2010;185:3620–31.PubMed Fiola S, Gosselin D, Takada K, Gosselin J. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J Immunol. 2010;185:3620–31.PubMed
208.
Zurück zum Zitat Salloum N, Hussein HM, Jammaz R, Jiche S, Uthman IW, Abdelnoor AM, Rahal EA. Epstein-Barr virus DNA modulates regulatory T-cell programming in addition to enhancing interleukin-17A production via Toll-like receptor 9. PLoS ONE. 2018;13:e0200546.PubMedPubMedCentral Salloum N, Hussein HM, Jammaz R, Jiche S, Uthman IW, Abdelnoor AM, Rahal EA. Epstein-Barr virus DNA modulates regulatory T-cell programming in addition to enhancing interleukin-17A production via Toll-like receptor 9. PLoS ONE. 2018;13:e0200546.PubMedPubMedCentral
209.
Zurück zum Zitat Dell’Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the orchestra: HCMV vs innate immunity. Front Microbiol. 2020;11:661.PubMedPubMedCentral Dell’Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the orchestra: HCMV vs innate immunity. Front Microbiol. 2020;11:661.PubMedPubMedCentral
210.
Zurück zum Zitat Choi HJ, Park A, Kang S, Lee E, Lee TA, Ra EA, Lee J, Lee S, Park B. Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type I interferon immune responses. Nat Commun. 2018;9:125.PubMedPubMedCentral Choi HJ, Park A, Kang S, Lee E, Lee TA, Ra EA, Lee J, Lee S, Park B. Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type I interferon immune responses. Nat Commun. 2018;9:125.PubMedPubMedCentral
211.
Zurück zum Zitat Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol. 2008;325:417–70.PubMed Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol. 2008;325:417–70.PubMed
212.
Zurück zum Zitat Fu YZ, Su S, Gao YQ, Wang PP, Huang ZF, Hu MM, Luo WW, Li S, Luo MH, Wang YY, Shu HB. Human cytomegalovirus tegument protein UL82 Inhibits STING-mediated signaling to evade antiviral immunity. Cell Host Microbe. 2017;21:231–43.PubMed Fu YZ, Su S, Gao YQ, Wang PP, Huang ZF, Hu MM, Luo WW, Li S, Luo MH, Wang YY, Shu HB. Human cytomegalovirus tegument protein UL82 Inhibits STING-mediated signaling to evade antiviral immunity. Cell Host Microbe. 2017;21:231–43.PubMed
213.
Zurück zum Zitat Park A, Ra EA, Lee TA, Choi HJ, Lee E, Kang S, Seo JY, Lee S, Park B. HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways. Nat Commun. 2019;10:4670.PubMedPubMedCentral Park A, Ra EA, Lee TA, Choi HJ, Lee E, Kang S, Seo JY, Lee S, Park B. HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways. Nat Commun. 2019;10:4670.PubMedPubMedCentral
214.
Zurück zum Zitat Skert C, Fogli M, Garaffa E, Perucca S, Fiorentini S, Cancelli V, Turra A, Ribolla R, Fili C, Malagola M, et al. A specific Toll-like receptor profile on T lymphocytes and values of monocytes correlate with bacterial, fungal, and cytomegalovirus infections in the early period of allogeneic stem cell transplantation. Transpl Infect Dis. 2014;16:697–712.PubMed Skert C, Fogli M, Garaffa E, Perucca S, Fiorentini S, Cancelli V, Turra A, Ribolla R, Fili C, Malagola M, et al. A specific Toll-like receptor profile on T lymphocytes and values of monocytes correlate with bacterial, fungal, and cytomegalovirus infections in the early period of allogeneic stem cell transplantation. Transpl Infect Dis. 2014;16:697–712.PubMed
215.
Zurück zum Zitat Smith PD, Shimamura M, Musgrove LC, Dennis EA, Bimczok D, Novak L, Ballestas M, Fenton A, Dandekar S, Britt WJ, Smythies LE. Cytomegalovirus enhances macrophage TLR expression and MyD88-mediated signal transduction to potentiate inducible inflammatory responses. J Immunol. 2014;193:5604–12.PubMed Smith PD, Shimamura M, Musgrove LC, Dennis EA, Bimczok D, Novak L, Ballestas M, Fenton A, Dandekar S, Britt WJ, Smythies LE. Cytomegalovirus enhances macrophage TLR expression and MyD88-mediated signal transduction to potentiate inducible inflammatory responses. J Immunol. 2014;193:5604–12.PubMed
216.
Zurück zum Zitat Becker M, Lemmermann NA, Ebert S, Baars P, Renzaho A, Podlech J, Stassen M, Reddehase MJ. Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cell Mol Immunol. 2015;12:192–201.PubMed Becker M, Lemmermann NA, Ebert S, Baars P, Renzaho A, Podlech J, Stassen M, Reddehase MJ. Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cell Mol Immunol. 2015;12:192–201.PubMed
217.
Zurück zum Zitat Landais I, Pelton C, Streblow D, DeFilippis V, McWeeney S, Nelson JA. Human cytomegalovirus miR-UL112-3p targets TLR2 and modulates the TLR2/IRAK1/NFkappaB signaling pathway. PLoS Pathog. 2015;11:e1004881.PubMedPubMedCentral Landais I, Pelton C, Streblow D, DeFilippis V, McWeeney S, Nelson JA. Human cytomegalovirus miR-UL112-3p targets TLR2 and modulates the TLR2/IRAK1/NFkappaB signaling pathway. PLoS Pathog. 2015;11:e1004881.PubMedPubMedCentral
218.
Zurück zum Zitat Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol. 2003;77:4588–96.PubMedPubMedCentral Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol. 2003;77:4588–96.PubMedPubMedCentral
219.
Zurück zum Zitat Boehme KW, Guerrero M, Compton T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol. 2006;177:7094–102.PubMed Boehme KW, Guerrero M, Compton T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol. 2006;177:7094–102.PubMed
220.
Zurück zum Zitat Brown RA, Gralewski JH, Razonable RR. The R753Q polymorphism abrogates toll-like receptor 2 signaling in response to human cytomegalovirus. Clin Infect Dis. 2009;49:e96-99.PubMed Brown RA, Gralewski JH, Razonable RR. The R753Q polymorphism abrogates toll-like receptor 2 signaling in response to human cytomegalovirus. Clin Infect Dis. 2009;49:e96-99.PubMed
221.
Zurück zum Zitat Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–90.PubMedPubMedCentral Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–90.PubMedPubMedCentral
223.
Zurück zum Zitat Gatot JS, Gioia R, Chau TL, Patrascu F, Warnier M, Close P, Chapelle JP, Muraille E, Brown K, Siebenlist U, et al. Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J Biol Chem. 2007;282:31131–46.PubMed Gatot JS, Gioia R, Chau TL, Patrascu F, Warnier M, Close P, Chapelle JP, Muraille E, Brown K, Siebenlist U, et al. Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J Biol Chem. 2007;282:31131–46.PubMed
224.
Zurück zum Zitat Cohen L, Henzel WJ, Baeuerle PA. IKAP is a scaffold protein of the IkappaB kinase complex. Nature. 1998;395:292–6.PubMed Cohen L, Henzel WJ, Baeuerle PA. IKAP is a scaffold protein of the IkappaB kinase complex. Nature. 1998;395:292–6.PubMed
225.
Zurück zum Zitat Watters TM, Kenny EF, O’Neill LA. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol. 2007;85:411–9.PubMed Watters TM, Kenny EF, O’Neill LA. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol. 2007;85:411–9.PubMed
226.
Zurück zum Zitat Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9:684–91.PubMed Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9:684–91.PubMed
227.
Zurück zum Zitat Loiarro M, Gallo G, Fanto N, De Santis R, Carminati P, Ruggiero V, Sette C. Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases. J Biol Chem. 2009;284:28093–103.PubMedPubMedCentral Loiarro M, Gallo G, Fanto N, De Santis R, Carminati P, Ruggiero V, Sette C. Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases. J Biol Chem. 2009;284:28093–103.PubMedPubMedCentral
228.
Zurück zum Zitat Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470:115–9.PubMed Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470:115–9.PubMed
229.
Zurück zum Zitat Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.PubMed Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.PubMed
230.
Zurück zum Zitat Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60.PubMed Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60.PubMed
231.
Zurück zum Zitat De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev. 2005;18:217–45.PubMedPubMedCentral De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev. 2005;18:217–45.PubMedPubMedCentral
232.
Zurück zum Zitat Zerr DM. Human herpesvirus 6: a clinical update. Herpes. 2006;13:20–4.PubMed Zerr DM. Human herpesvirus 6: a clinical update. Herpes. 2006;13:20–4.PubMed
233.
Zurück zum Zitat Furukawa M, Yasukawa M, Yakushijin Y, Fujita S. Distinct effects of human herpesvirus 6 and human herpesvirus 7 on surface molecule expression and function of CD4+ T cells. J Immunol. 1994;152:5768–75.PubMed Furukawa M, Yasukawa M, Yakushijin Y, Fujita S. Distinct effects of human herpesvirus 6 and human herpesvirus 7 on surface molecule expression and function of CD4+ T cells. J Immunol. 1994;152:5768–75.PubMed
234.
Zurück zum Zitat Hasegawa A, Yasukawa M, Sakai I, Fujita S. Transcriptional down-regulation of CXC chemokine receptor 4 induced by impaired association of transcription regulator YY1 with c-Myc in human herpesvirus 6-infected cells. J Immunol. 2001;166:1125–31.PubMed Hasegawa A, Yasukawa M, Sakai I, Fujita S. Transcriptional down-regulation of CXC chemokine receptor 4 induced by impaired association of transcription regulator YY1 with c-Myc in human herpesvirus 6-infected cells. J Immunol. 2001;166:1125–31.PubMed
235.
Zurück zum Zitat Murakami Y, Tanimoto K, Fujiwara H, An J, Suemori K, Ochi T, Hasegawa H, Yasukawa M. Human herpesvirus 6 infection impairs Toll-like receptor signaling. Virol J. 2010;7:91.PubMedPubMedCentral Murakami Y, Tanimoto K, Fujiwara H, An J, Suemori K, Ochi T, Hasegawa H, Yasukawa M. Human herpesvirus 6 infection impairs Toll-like receptor signaling. Virol J. 2010;7:91.PubMedPubMedCentral
236.
Zurück zum Zitat Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997;91:243–52.PubMed Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997;91:243–52.PubMed
237.
Zurück zum Zitat El-Ela MA, Shaarawy E, El-Komy M, Fawzy M, Hay RA, Hegazy R, Sharobim A, Moustafa N, Rashed L, Sayed Amr KS. Is there a link between human herpesvirus infection and toll-like receptors in the pathogenesis of pityriasis rosea? A case-control study. Acta Dermatovenerol Croat. 2016;24:282–7.PubMed El-Ela MA, Shaarawy E, El-Komy M, Fawzy M, Hay RA, Hegazy R, Sharobim A, Moustafa N, Rashed L, Sayed Amr KS. Is there a link between human herpesvirus infection and toll-like receptors in the pathogenesis of pityriasis rosea? A case-control study. Acta Dermatovenerol Croat. 2016;24:282–7.PubMed
238.
Zurück zum Zitat Prantsidis A, Rigopoulos D, Papatheodorou G, Menounos P, Gregoriou S, Alexiou-Mousatou I, Katsambas A. Detection of human herpesvirus 8 in the skin of patients with pityriasis rosea. Acta Derm Venereol. 2009;89:604–6.PubMed Prantsidis A, Rigopoulos D, Papatheodorou G, Menounos P, Gregoriou S, Alexiou-Mousatou I, Katsambas A. Detection of human herpesvirus 8 in the skin of patients with pityriasis rosea. Acta Derm Venereol. 2009;89:604–6.PubMed
239.
Zurück zum Zitat Ueda K. KSHV genome replication and maintenance in latency. Adv Exp Med Biol. 2018;1045:299–320.PubMed Ueda K. KSHV genome replication and maintenance in latency. Adv Exp Med Biol. 2018;1045:299–320.PubMed
240.
Zurück zum Zitat Jacobs SR, Gregory SM, West JA, Wollish AC, Bennett CL, Blackbourn DJ, Heise MT, Damania B. The viral interferon regulatory factors of kaposi’s sarcoma-associated herpesvirus differ in their inhibition of interferon activation mediated by toll-like receptor 3. J Virol. 2013;87:798–806.PubMedPubMedCentral Jacobs SR, Gregory SM, West JA, Wollish AC, Bennett CL, Blackbourn DJ, Heise MT, Damania B. The viral interferon regulatory factors of kaposi’s sarcoma-associated herpesvirus differ in their inhibition of interferon activation mediated by toll-like receptor 3. J Virol. 2013;87:798–806.PubMedPubMedCentral
241.
Zurück zum Zitat Meyer F, Ehlers E, Steadman A, Waterbury T, Cao M, Zhang L. TLR-TRIF pathway enhances the expression of KSHV replication and transcription activator. J Biol Chem. 2013;288:20435–42.PubMedPubMedCentral Meyer F, Ehlers E, Steadman A, Waterbury T, Cao M, Zhang L. TLR-TRIF pathway enhances the expression of KSHV replication and transcription activator. J Biol Chem. 2013;288:20435–42.PubMedPubMedCentral
242.
Zurück zum Zitat Lingel A, Ehlers E, Wang Q, Cao M, Wood C, Lin R, Zhang L. Kaposi’s sarcoma-associated herpesvirus reduces cellular myeloid differentiation primary-response gene 88 (MyD88) expression via modulation of Its RNA. J Virol. 2016;90:180–8.PubMed Lingel A, Ehlers E, Wang Q, Cao M, Wood C, Lin R, Zhang L. Kaposi’s sarcoma-associated herpesvirus reduces cellular myeloid differentiation primary-response gene 88 (MyD88) expression via modulation of Its RNA. J Virol. 2016;90:180–8.PubMed
243.
Zurück zum Zitat West J, Damania B. Upregulation of the TLR3 pathway by Kaposi’s sarcoma-associated herpesvirus during primary infection. J Virol. 2008;82:5440–9.PubMedPubMedCentral West J, Damania B. Upregulation of the TLR3 pathway by Kaposi’s sarcoma-associated herpesvirus during primary infection. J Virol. 2008;82:5440–9.PubMedPubMedCentral
244.
Zurück zum Zitat West JA, Gregory SM, Sivaraman V, Su L, Damania B. Activation of plasmacytoid dendritic cells by Kaposi’s sarcoma-associated herpesvirus. J Virol. 2011;85:895–904.PubMed West JA, Gregory SM, Sivaraman V, Su L, Damania B. Activation of plasmacytoid dendritic cells by Kaposi’s sarcoma-associated herpesvirus. J Virol. 2011;85:895–904.PubMed
245.
Zurück zum Zitat Gruffaz M, Vasan K, Tan B. TLR4-mediated inflammation promotes KSHV-induced cellular transformation and tumorigenesis by activating the STAT3 pathway. Cancer Res. 2017;77:7094–108.PubMedPubMedCentral Gruffaz M, Vasan K, Tan B. TLR4-mediated inflammation promotes KSHV-induced cellular transformation and tumorigenesis by activating the STAT3 pathway. Cancer Res. 2017;77:7094–108.PubMedPubMedCentral
246.
Zurück zum Zitat Lagos D, Vart RJ, Gratrix F, Westrop SJ, Emuss V, Wong PP, Robey R, Imami N, Bower M, Gotch F, Boshoff C. Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus. Cell Host Microbe. 2008;4:470–83.PubMedPubMedCentral Lagos D, Vart RJ, Gratrix F, Westrop SJ, Emuss V, Wong PP, Robey R, Imami N, Bower M, Gotch F, Boshoff C. Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus. Cell Host Microbe. 2008;4:470–83.PubMedPubMedCentral
247.
Zurück zum Zitat Abend JR, Ramalingam D, Kieffer-Kwon P, Uldrick TS, Yarchoan R, Ziegelbauer JM. Kaposi’s sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. J Virol. 2012;86:11663–74.PubMedPubMedCentral Abend JR, Ramalingam D, Kieffer-Kwon P, Uldrick TS, Yarchoan R, Ziegelbauer JM. Kaposi’s sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. J Virol. 2012;86:11663–74.PubMedPubMedCentral
248.
Zurück zum Zitat Bussey KA, Reimer E, Todt H, Denker B, Gallo A, Konrad A, Ottinger M, Adler H, Sturzl M, Brune W, Brinkmann MM. The gammaherpesviruses Kaposi’s sarcoma-associated herpesvirus and murine gammaherpesvirus 68 modulate the Toll-like receptor-induced proinflammatory cytokine response. J Virol. 2014;88:9245–59.PubMedPubMedCentral Bussey KA, Reimer E, Todt H, Denker B, Gallo A, Konrad A, Ottinger M, Adler H, Sturzl M, Brune W, Brinkmann MM. The gammaherpesviruses Kaposi’s sarcoma-associated herpesvirus and murine gammaherpesvirus 68 modulate the Toll-like receptor-induced proinflammatory cytokine response. J Virol. 2014;88:9245–59.PubMedPubMedCentral
249.
Zurück zum Zitat Lore K, Betts MR, Brenchley JM, Kuruppu J, Khojasteh S, Perfetto S, Roederer M, Seder RA, Koup RA. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J Immunol. 2003;171:4320–8.PubMed Lore K, Betts MR, Brenchley JM, Kuruppu J, Khojasteh S, Perfetto S, Roederer M, Seder RA, Koup RA. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J Immunol. 2003;171:4320–8.PubMed
250.
Zurück zum Zitat Lucinda N, Figueiredo MM, Pessoa NL, Santos BS, Lima GK, Freitas AM, Machado AM, Kroon EG, Antonelli LR, Campos MA. Dendritic cells, macrophages, NK and CD8(+) T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virol J. 2017;14:37.PubMedPubMedCentral Lucinda N, Figueiredo MM, Pessoa NL, Santos BS, Lima GK, Freitas AM, Machado AM, Kroon EG, Antonelli LR, Campos MA. Dendritic cells, macrophages, NK and CD8(+) T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virol J. 2017;14:37.PubMedPubMedCentral
251.
Zurück zum Zitat Kawai T, Akira S. Antiviral signaling through pattern recognition receptors. J Biochem. 2007;141:137–45.PubMed Kawai T, Akira S. Antiviral signaling through pattern recognition receptors. J Biochem. 2007;141:137–45.PubMed
252.
Zurück zum Zitat Bernstein DI, Cardin RD, Bravo FJ, Earwood J, Clark JR, Li Y, Mishra P, Li C, Nayak BP, Miller AT, et al. Topical SMIP-7.7, a toll-like receptor 7 agonist, protects against genital herpes simplex virus type-2 disease in the guinea pig model of genital herpes. Antivir Chem Chemother. 2014;23:189–96.PubMed Bernstein DI, Cardin RD, Bravo FJ, Earwood J, Clark JR, Li Y, Mishra P, Li C, Nayak BP, Miller AT, et al. Topical SMIP-7.7, a toll-like receptor 7 agonist, protects against genital herpes simplex virus type-2 disease in the guinea pig model of genital herpes. Antivir Chem Chemother. 2014;23:189–96.PubMed
253.
Zurück zum Zitat Dendouga N, Fochesato M, Lockman L, Mossman S, Giannini SL. Cell-mediated immune responses to a varicella-zoster virus glycoprotein E vaccine using both a TLR agonist and QS21 in mice. Vaccine. 2012;30:3126–35.PubMed Dendouga N, Fochesato M, Lockman L, Mossman S, Giannini SL. Cell-mediated immune responses to a varicella-zoster virus glycoprotein E vaccine using both a TLR agonist and QS21 in mice. Vaccine. 2012;30:3126–35.PubMed
254.
Zurück zum Zitat Jo BR, Yu JM, Jang S, Ahn JW, Kim HS, Seoung EA, Park HY, Jin DH, Joo SS. Cloning, expression, and purification of a pathogenesis-related protein from oenanthe javanica and its biological properties. Biol Pharm Bull. 2020;43:158–68.PubMed Jo BR, Yu JM, Jang S, Ahn JW, Kim HS, Seoung EA, Park HY, Jin DH, Joo SS. Cloning, expression, and purification of a pathogenesis-related protein from oenanthe javanica and its biological properties. Biol Pharm Bull. 2020;43:158–68.PubMed
255.
Zurück zum Zitat Su AR, Qiu M, Li YL, Xu WT, Song SW, Wang XH, Song HY, Zheng N, Wu ZW. BX-795 inhibits HSV-1 and HSV-2 replication by blocking the JNK/p38 pathways without interfering with PDK1 activity in host cells. Acta Pharmacol Sin. 2017;38:402–14.PubMedPubMedCentral Su AR, Qiu M, Li YL, Xu WT, Song SW, Wang XH, Song HY, Zheng N, Wu ZW. BX-795 inhibits HSV-1 and HSV-2 replication by blocking the JNK/p38 pathways without interfering with PDK1 activity in host cells. Acta Pharmacol Sin. 2017;38:402–14.PubMedPubMedCentral
Metadaten
Titel
Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways
verfasst von
Wenjin Zheng
Qing Xu
Yiyuan Zhang
Xiaofei E
Wei Gao
Mogen Zhang
Weijie Zhai
Ronaldjit Singh Rajkumar
Zhijun Liu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2020
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01463-2

Weitere Artikel der Ausgabe 1/2020

Virology Journal 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.