Skip to main content
Erschienen in: Calcified Tissue International 3/2017

20.12.2016 | Original Research

Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response

verfasst von: Annette I. Birkhold, Hajar Razi, Georg N. Duda, Sara Checa, Bettina M. Willie

Erschienen in: Calcified Tissue International | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Bone has an adaptive capacity to maintain structural integrity. However, there seems to be a heterogeneous cortical (re)modeling response to loading at different regions within the same bone, which may lead to inconsistent findings since most studies analyze only one region. It remains unclear if the local mechanical environment is responsible for this heterogeneous response and whether both formation and resorption are affected. Thus, we compared the formation and resorptive response to in vivo loading and the strain environment at two commonly analyzed regions in the mouse tibia, the mid-diaphysis and proximal metaphysis. We quantified cortical surface (re)modeling by tracking changes between geometrically aligned consecutive in vivo micro-tomography images (time lapse 15 days). We investigated the local mechanical strain environment using finite element analyses. The relationship between mechanical stimuli and surface (re)modeling was examined by sub-dividing the mid-diaphysis and proximal metaphysis into 32 sub-regions. In response to loading, metaphyseal cortical bone (re)modeled predominantly at the periosteal surface, whereas diaphyseal (re)modeling was more pronounced at the endocortical surface. Furthermore, different set points and slopes of the relationship between engendered strains and remodeling response were found for the endosteal and periosteal surfaces at the metaphyseal and diaphyseal regions. Resorption was correlated with strain at the endocortical, but not the periosteal surfaces, whereas, formation correlated with strain at all surfaces, except at the metaphyseal periosteal surface. Therefore, besides mechanical stimuli, other non-mechanical factors are likely driving regional differences in adaptation. Studies investigating adaptation to loading or other treatments should consider region-specific (re)modeling differences.
Literatur
3.
Zurück zum Zitat Hsieh YF, Robling AG, Ambrosius WT et al (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. JBMR 16(12):2291–2297CrossRef Hsieh YF, Robling AG, Ambrosius WT et al (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. JBMR 16(12):2291–2297CrossRef
5.
Zurück zum Zitat Rubin C, Turner AS, Mallinckrodt C et al (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452CrossRefPubMed Rubin C, Turner AS, Mallinckrodt C et al (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452CrossRefPubMed
6.
Zurück zum Zitat Willie BM, Birkhold AI, Razi H et al (2013) Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load. Bone 55(2):335–346. doi:10.1016/j.bone.2013.04.023 CrossRefPubMed Willie BM, Birkhold AI, Razi H et al (2013) Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load. Bone 55(2):335–346. doi:10.​1016/​j.​bone.​2013.​04.​023 CrossRefPubMed
7.
8.
Zurück zum Zitat Hamrick MW, Skedros JG, Pennington C et al (2006) Increased osteogenic response to exercise in metaphyseal versus diaphyseal cortical bone. J Musculoskelet Neuronal Interact 6(3):258–263PubMed Hamrick MW, Skedros JG, Pennington C et al (2006) Increased osteogenic response to exercise in metaphyseal versus diaphyseal cortical bone. J Musculoskelet Neuronal Interact 6(3):258–263PubMed
11.
Zurück zum Zitat Bertram JE, Biewener AA (1988) Bone curvature: sacrificing strength for load predictability. J Theor Biol 131(1):75–92CrossRefPubMed Bertram JE, Biewener AA (1988) Bone curvature: sacrificing strength for load predictability. J Theor Biol 131(1):75–92CrossRefPubMed
15.
Zurück zum Zitat Lieberman DE (1996) How and why humans grow thin skulls: experimental evidence for systemic cortical robusticity. Am J Phys Anthropol 101(2):217–236CrossRefPubMed Lieberman DE (1996) How and why humans grow thin skulls: experimental evidence for systemic cortical robusticity. Am J Phys Anthropol 101(2):217–236CrossRefPubMed
16.
Zurück zum Zitat Alexandre C, Vico L (1996) Adaptation of the skeleton to microgravity. Nouvelle Revue Aeronautique Astronautique 4:34–37 Alexandre C, Vico L (1996) Adaptation of the skeleton to microgravity. Nouvelle Revue Aeronautique Astronautique 4:34–37
18.
Zurück zum Zitat Currey JD (2002) Bones: structure and mechanics: chapter 11: modeling and reconstruction. Princeton University Press, Princeton Currey JD (2002) Bones: structure and mechanics: chapter 11: modeling and reconstruction. Princeton University Press, Princeton
19.
Zurück zum Zitat Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37(4):411–417CrossRefPubMed Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37(4):411–417CrossRefPubMed
20.
Zurück zum Zitat Mosley JR, March BM, Lynch J et al (1997) Strain magnitude related changes in whole bone architecture in growing rats. Bone 20(3):191–198CrossRefPubMed Mosley JR, March BM, Lynch J et al (1997) Strain magnitude related changes in whole bone architecture in growing rats. Bone 20(3):191–198CrossRefPubMed
22.
Zurück zum Zitat Carter DR (1982) The relationship between in vivo strains and cortical bone remodeling. Crit Rev Biomed Eng 8(1):1–28PubMed Carter DR (1982) The relationship between in vivo strains and cortical bone remodeling. Crit Rev Biomed Eng 8(1):1–28PubMed
23.
Zurück zum Zitat Skerry TM (2006) One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 6(2):122–127PubMed Skerry TM (2006) One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 6(2):122–127PubMed
25.
Zurück zum Zitat Judex S, Gross TS, Zernicke RF (1997) Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J Bone Miner Res 12(10):1737–1745CrossRefPubMed Judex S, Gross TS, Zernicke RF (1997) Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J Bone Miner Res 12(10):1737–1745CrossRefPubMed
26.
Zurück zum Zitat Razi H, Birkhold AI, Weinkamer R et al (2015) Aging leads to a dysregulation in mechanically driven bone formation and resorption. JBMR 30(10):1864–1873. doi:10.1002/jbmr.2528 CrossRef Razi H, Birkhold AI, Weinkamer R et al (2015) Aging leads to a dysregulation in mechanically driven bone formation and resorption. JBMR 30(10):1864–1873. doi:10.​1002/​jbmr.​2528 CrossRef
27.
Zurück zum Zitat O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15(10):767–781CrossRefPubMed O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15(10):767–781CrossRefPubMed
28.
Zurück zum Zitat Brown TD, Pedersen GM et al (1990) Toward an identification of mechanical parameters initiating periosteal remodeling—a combined experimental and analytical approach. J Biomech 23(9):893–905CrossRefPubMed Brown TD, Pedersen GM et al (1990) Toward an identification of mechanical parameters initiating periosteal remodeling—a combined experimental and analytical approach. J Biomech 23(9):893–905CrossRefPubMed
29.
Zurück zum Zitat Wallace IJ, Tommasini SM, Judex S et al (2012) Genetic variations and physical activity as determinants of limb bone morphology: an experimental approach using a mouse model. Am J Phys Anthropol 148(1):24–35. doi:10.1002/ajpa.22028 CrossRefPubMed Wallace IJ, Tommasini SM, Judex S et al (2012) Genetic variations and physical activity as determinants of limb bone morphology: an experimental approach using a mouse model. Am J Phys Anthropol 148(1):24–35. doi:10.​1002/​ajpa.​22028 CrossRefPubMed
30.
Zurück zum Zitat Farber CR, Kelly SA, Baruch E et al (2011) Identification of quantitative trait loci influencing skeletal architecture in mice: emergence of Cdh11 as a primary candidate gene regulating femoral morphology. JBMR 26(9):2174–2183. doi:10.1002/jbmr.436 CrossRef Farber CR, Kelly SA, Baruch E et al (2011) Identification of quantitative trait loci influencing skeletal architecture in mice: emergence of Cdh11 as a primary candidate gene regulating femoral morphology. JBMR 26(9):2174–2183. doi:10.​1002/​jbmr.​436 CrossRef
35.
Zurück zum Zitat Cummings SR, Karpf DB, Harris F et al (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112(4):281–289CrossRefPubMed Cummings SR, Karpf DB, Harris F et al (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112(4):281–289CrossRefPubMed
36.
Zurück zum Zitat Riggs BL, Melton LJ III (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. JBMR 17(1):11–14. doi:10.1359/jbmr.2002.17.1.11 CrossRef Riggs BL, Melton LJ III (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. JBMR 17(1):11–14. doi:10.​1359/​jbmr.​2002.​17.​1.​11 CrossRef
37.
Zurück zum Zitat Faulkner KG (2000) Bone matters: are density increases necessary to reduce fracture risk? JBMR 15(2):183–187CrossRef Faulkner KG (2000) Bone matters: are density increases necessary to reduce fracture risk? JBMR 15(2):183–187CrossRef
44.
Zurück zum Zitat Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Mine Res 28(1):2–17. doi:10.1002/jbmr.1805 CrossRef Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Mine Res 28(1):2–17. doi:10.​1002/​jbmr.​1805 CrossRef
46.
Zurück zum Zitat Pødenphant J, Engel U (1987) Regional variations in histomorphometric bone dynamics from the skeleton of an osteoporotic woman. Calcif Tissue Int 40(4):184–188CrossRefPubMed Pødenphant J, Engel U (1987) Regional variations in histomorphometric bone dynamics from the skeleton of an osteoporotic woman. Calcif Tissue Int 40(4):184–188CrossRefPubMed
49.
Zurück zum Zitat Cadet ER, Gafni RI, McCarthy EF et al (2003) Mechanisms responsible for longitudinal growth of the cortex: coalescence of trabecular bone into cortical bone. J Bone Joint Joint Surg 85A(9):1739–1748CrossRef Cadet ER, Gafni RI, McCarthy EF et al (2003) Mechanisms responsible for longitudinal growth of the cortex: coalescence of trabecular bone into cortical bone. J Bone Joint Joint Surg 85A(9):1739–1748CrossRef
50.
Zurück zum Zitat Rosner B (1995) Fundamentals of biostatistics. Duxbury Press, Pacific Grove, p 507 Rosner B (1995) Fundamentals of biostatistics. Duxbury Press, Pacific Grove, p 507
Metadaten
Titel
Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response
verfasst von
Annette I. Birkhold
Hajar Razi
Georg N. Duda
Sara Checa
Bettina M. Willie
Publikationsdatum
20.12.2016
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 3/2017
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-016-0217-4

Weitere Artikel der Ausgabe 3/2017

Calcified Tissue International 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.