Skip to main content
Erschienen in: Virology Journal 1/2018

Open Access 01.12.2018 | Research

Torque teno virus dynamics during the first year of life

verfasst von: Elena A. Tyschik, Anastasiya S. Rasskazova, Anna V. Degtyareva, Denis V. Rebrikov, Gennady T. Sukhikh

Erschienen in: Virology Journal | Ausgabe 1/2018

Abstract

Background

Torque teno virus is a small chronically persisting circular negative ssDNA virus reaching near 100% prevalence. It is reported to be a marker for immune function in immunocompromised patients. The possibility of vertical maternal-fetal transmission remains controversial but incidence rate of TTV DNA in children increased with age. TTV dynamics well studied for allogeneic hematopoietic stem cell transplantation as a predictor of post-transplant complications but there is no viral proliferation kinetics data for other patient groups or healthy individuals. The aim of this study was to determine TTV dynamics during the first year of life of healthy infants.

Methods

Ninety eight clinically healthy breastfeeding infants (1–12 months of age) were analyzed by quantitative PCR for the whole blood TTV load with the test sensitivity of about 1000 viral copies per milliliter of blood (total number of samples including repeatedly tested infants was 109).

Results

67% of all analyzed samples were TTV-positive demonstrating significant positive correlation between age and TTV load (r = 0.81, p < 0.01).

Conclusions

This is the first study to suggest that viral load increases during the first year of life reaching a plateau after 6 months with strong proliferation for the first 60 days. Our data well correlates with TTV dynamics in patients following allogeneic hematopoietic stem cell transplantation.
Abkürzungen
PCR
Polymerase chain reaction
qPCR
Quantitative polymerase chain reaction
ssDNA
Single stranded deoxyribonucleic acid
TTV
Torque teno virus
UV
Ultraviolet

Background

Torque teno virus (TTV) is a small chronically persisting circular negative ssDNA virus reaching near 100% prevalence [1, 2]. TTV is transmitted in all ways including contact and respiratory [3]. It was suggested that presence of TTV can cause several diseases such as acute respiratory diseases [4], liver diseases [5, 6] and cancer [7], but this data did not have any convincing support. It is reported to be a marker for immune function in immunocompromised patients [8].
The routes of mother-to-child transmission of TTV have not been fully elucidated and the possibility of vertical maternal-fetal transplacental transmission remains controversial [920]. Also, several authors demonstrated that incidence rate of TTV DNA in children increased with age [13, 15, 19], but there is no information about the viral load during the first months of life.
TTV dynamics well studied for allogeneic hematopoietic stem cell transplantation as a predictor of post-transplant complications [21, 22]. But there is no viral proliferation kinetics data for other patient groups or healthy individuals.
The aim of this study was to determine TTV dynamics during the first year of life of healthy breastfeeding infants.

Methods

Patients and blood samples collection

This prospective single-center study included 98 clinically healthy breastfeeding infants (1–12 months of age, number per month as 9; 6; 13; 8; 11; 14; 6; 9; 10; 6; 4; 2 accordingly). 10 infants were tested repeatedly (2 or 3 times), so the total number of samples was 109. The exclusion criteria were as follows: any infectious or genetic disease, any immunological deviations, voluntary refusal of research. Two separate aliquots of each capillary blood sample were collected into Microvette 200 K3EDTA (Sarstedt, Germany) between June 2017 and January 2018 at the Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology (Moscow, Russia). Samples were stored at − 20 °C for 1–7 days until DNA extraction.

DNA extraction

DNA was extracted from 50 μl aliquots of thawed whole blood using a standard commercial silica-sorbent kit for DNA extraction from body fluids (Probe-GS DNA Extraction Kit, DNA-Technology, Russia). To prevent exogenous contamination, DNA isolation was performed in a separate DNA extraction room (Zone 1). To prevent cross-contamination of the samples, all procedures were carried out in the UV-equipped PCR-box using sterile disposable tubes and aerosol-resistant tips.

TTV quantification

qPCR was performed using the DTprime Real-Time PCR Cycler (DNA-Technology, Russia) as described in [1], with the test sensitivity of about 1000 viral copies per milliliter of blood. qPCR of the unique human genome fragment (in a separate PCR tube) was used as DNA extraction control. To prevent PCR contamination by previous reactions or biological samples, the reactions were combined using aerosol-resistant tips in UV-equipped PCR-box in a separate PCR-preparation room (Zone 2). Also, no electrophoresis of TTV PCR products or other procedures that would require PCR-tube opening were performed in the building. All the negative controls and surface washings were negative.

Data analysis

qPCR data were analyzed using the DTprime Real-Time PCR Cycler Software v.7.7 (DNA-Technology, Russia). Microsoft Office Excel 2016 (Microsoft Corporation, USA) and GraphPad Prism 6 (GraphPad Software, USA) were used for statistical analysis.

Results

TTV whole blood viral load was quantified for 98 infants at 1–12 months of age (see. Fig. 1). Because of logistic difficulties only 10 infants were tested repeatedly (2 or 3 times) (blue lines at Fig. 1) and only several mother-child pairs were examined for TTV load (data not shown). No breast milk samples were tested.
67% of all analyzed samples were TTV-positive (higher than 103 copies per 1 mL of whole blood as a test sensitivity) with median 5 × 104 viral genomes per 1 mL (range of median values: 0–1,6 × 105) demonstrating significant positive correlation between age and TTV load (r = 0.81, p < 0.01).
For 10 repeatedly tested infants 3 did not show TTV for both tests, 1 was unchanged and other 6 show more TTV in a second analysis (see Fig. 1).

Discussions

Despite more than twenty years of TTV research, the routes of mother-to-child transmission have not been fully elucidated and the possibility of transplacental TTV transmission remains controversial [920]. Some authors demonstrate the absence of TTV in cord blood or baby blood after delivery [10, 13, 20], but other show 13.8–48.1% of TTV-DNA positive cord blood samples [9, 11, 14, 18]. Such differences can be explained by the low sensitivity of PCR (for studies where the virus did not detected) or by PCR-product contamination (since the cord blood TTV was usually detected by contamination-friendly Nested-PCR technique). In any case, it can be argued that even if the virus passes the transplacental barrier, the cord blood viral concentration is very low and does not depend on the mothers TTV load [20].
The major site of TTV replication is lymphocytes [2325] and the whole blood TTV load approximately 100 times higher than plasma samples [20]. Consequently, we decided to measure TTV load in the whole blood (instead of plasma or serum) to get more sensitive approach.
Bagaglio et al. and Komatsu et al. demonstrate increasing of the percent of TTV DNA positive infants during the first months of life by serum analysis [15, 19]. Our whole blood results correlates with previous serum data, expectantly showing a greater percentage of positive samples (see Fig. 2).
Breast milk is often positive for TTV (23.3–67.3%) [13, 14, 26] and it has been suggested to be one of the major routes of Torque teno virus transmission for babies. So, the newborn TTV progression may be a consequence of the mother’s breast milk TTV or immune system changes during the neonatal period.

Conclusions

This is the first study to suggest that TTV viral load increases during the first months of healthy infants development reaching a plateau after 3–6 months with strong proliferation for the first 60 days. Fast viral load increasing correlates with previous data on TTV DNA prevalence. Also, neonatal TTV dynamics is similar to TTV proliferation in patients following allogeneic hematopoietic stem cell transplantation, demonstrating the possible similarity of intracellular mechanisms of viral progression.
The study protocol was reviewed and approved by the Ethics Committee of the Pirogov Russian National Research Medical University (Protocol No.2017/23); the study was conducted in accordance with the Declaration of Helsinki. All participants (children’s parents) provided written informed consent.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat AbuOdeh R, Al-Mawlawi N, Al-Qahtani AA, Bohol MF, Al-Ahdal MN, Hasan HA, AbuOdeh L, Nasrallah GK. Detection and genotyping of torque teno virus (TTV) in healthy blood donors and patients infected with HBV or HCV in Qatar. J Med Virol. 2015; https://doi.org/10.1002/jmv.24146. AbuOdeh R, Al-Mawlawi N, Al-Qahtani AA, Bohol MF, Al-Ahdal MN, Hasan HA, AbuOdeh L, Nasrallah GK. Detection and genotyping of torque teno virus (TTV) in healthy blood donors and patients infected with HBV or HCV in Qatar. J Med Virol. 2015; https://​doi.​org/​10.​1002/​jmv.​24146.
4.
Zurück zum Zitat Maggi F, Pifferi M, Tempestini E, Fornai C, Lanini L, Andreoli E, Vatterloni M, Presciuttini S, Pietrobelli A, Boner A, Pistello M, Bendinelli M. TT virus load and lymphocyte subpopulations in children with acute respiratory diseases. J Virol. 2003;77:9081–3.CrossRefPubMedPubMedCentral Maggi F, Pifferi M, Tempestini E, Fornai C, Lanini L, Andreoli E, Vatterloni M, Presciuttini S, Pietrobelli A, Boner A, Pistello M, Bendinelli M. TT virus load and lymphocyte subpopulations in children with acute respiratory diseases. J Virol. 2003;77:9081–3.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Hsieh S-Y, Wu Y-H, Ho Y-P, Tsao K-C, Yeh C-T, Liaw Y-F. High prevalence of TT virus infection in healthy children and adults and in patients with liver disease in Taiwan. J Clin Microbiol. 1999;37:1829–31.PubMedPubMedCentral Hsieh S-Y, Wu Y-H, Ho Y-P, Tsao K-C, Yeh C-T, Liaw Y-F. High prevalence of TT virus infection in healthy children and adults and in patients with liver disease in Taiwan. J Clin Microbiol. 1999;37:1829–31.PubMedPubMedCentral
6.
Zurück zum Zitat Hafez MM, Shaarawy SM, Hassan AA, Salim RF, El Salam FMA, Ali AE. Prevalence of transfusion transmitted virus (TTV) genotypes among HCC patients in Qalupbia governorate. Virol J. 2007;4:135.CrossRefPubMedPubMedCentral Hafez MM, Shaarawy SM, Hassan AA, Salim RF, El Salam FMA, Ali AE. Prevalence of transfusion transmitted virus (TTV) genotypes among HCC patients in Qalupbia governorate. Virol J. 2007;4:135.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat McLaughlin-Dubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta. 2008;1782:127–50.CrossRef McLaughlin-Dubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta. 2008;1782:127–50.CrossRef
8.
Zurück zum Zitat Blasek A, Sillo P, Ishii N, Gergely P, Poor G, Preisz K, Hashimoto T, Medvecz M, Karpati S. Searching for foreign antigens as possible triggering factors of autoimmunity: torque Teno virus DNA prevalence is elevated in sera of patients with bullous pemphigoid. Exp Dermatol. 2008;17:446–54.CrossRef Blasek A, Sillo P, Ishii N, Gergely P, Poor G, Preisz K, Hashimoto T, Medvecz M, Karpati S. Searching for foreign antigens as possible triggering factors of autoimmunity: torque Teno virus DNA prevalence is elevated in sera of patients with bullous pemphigoid. Exp Dermatol. 2008;17:446–54.CrossRef
9.
Zurück zum Zitat Saback FL, Gomes SA, de Paula VS, da Silva RR, Lewis-Ximenez LL, Niel C. Age-specific prevalence and transmission of TT virus. J Med Virol. 1999;59:318.CrossRefPubMed Saback FL, Gomes SA, de Paula VS, da Silva RR, Lewis-Ximenez LL, Niel C. Age-specific prevalence and transmission of TT virus. J Med Virol. 1999;59:318.CrossRefPubMed
10.
Zurück zum Zitat Chen H, Wang YL, Qiu FG, Zhuang LL, Lin YR. Study on TT virus infection of pregnant women and their infant. Chin J Gynecol Obstet. 2000;35:277. Chen H, Wang YL, Qiu FG, Zhuang LL, Lin YR. Study on TT virus infection of pregnant women and their infant. Chin J Gynecol Obstet. 2000;35:277.
11.
Zurück zum Zitat Gerner P, Oettinger R, Gerner W, Falbrede J, Wirth S. Mother-to-infant transmission of TT virus: prevalence, extent and mechanism of vertical transmission. Pediatr Infect Dis J. 2000;19:1074–7.CrossRefPubMed Gerner P, Oettinger R, Gerner W, Falbrede J, Wirth S. Mother-to-infant transmission of TT virus: prevalence, extent and mechanism of vertical transmission. Pediatr Infect Dis J. 2000;19:1074–7.CrossRefPubMed
12.
Zurück zum Zitat Kazi A, Miyata H, Kurokawa K, Khan MA, Kamahora T, Katamine S, Hino S. High frequency of postnatal transmission of TT virus in infancy. Arch Virol. 2000;145:535–40.CrossRefPubMed Kazi A, Miyata H, Kurokawa K, Khan MA, Kamahora T, Katamine S, Hino S. High frequency of postnatal transmission of TT virus in infancy. Arch Virol. 2000;145:535–40.CrossRefPubMed
13.
Zurück zum Zitat Iso K, Suzuki Y, Takayama M. Mother-to-infant transmission of TT virus in Japan. Int J Gynaecol Obstet. 2001;75(1):11–9.CrossRefPubMed Iso K, Suzuki Y, Takayama M. Mother-to-infant transmission of TT virus in Japan. Int J Gynaecol Obstet. 2001;75(1):11–9.CrossRefPubMed
14.
Zurück zum Zitat Matsubara H, Michitaka K, Horiike N, Kihana T, Yano M, Mori T, Onji M. Existence of TT virus DNA and TTV-like mini virus DNA in infant cord blood: mother-to-neonatal transmission. Hepatol Res. 2001;21(3):280–7.CrossRefPubMed Matsubara H, Michitaka K, Horiike N, Kihana T, Yano M, Mori T, Onji M. Existence of TT virus DNA and TTV-like mini virus DNA in infant cord blood: mother-to-neonatal transmission. Hepatol Res. 2001;21(3):280–7.CrossRefPubMed
15.
Zurück zum Zitat Bagaglio S, Sitia G, Prati D, Cella D, Hasson H, Novati R, Lazzarin A, Morsica G. Mother-to-child transmission of TT virus: sequence analysis of non-coding region of TT virus in infected mother-infant pairs. Arch Virol. 2002;147:803–12.CrossRefPubMed Bagaglio S, Sitia G, Prati D, Cella D, Hasson H, Novati R, Lazzarin A, Morsica G. Mother-to-child transmission of TT virus: sequence analysis of non-coding region of TT virus in infected mother-infant pairs. Arch Virol. 2002;147:803–12.CrossRefPubMed
16.
Zurück zum Zitat Lin HH, Kao JH, Lee PI, Chen DS. Early acquisition of TT virus in infants: possible minor role of maternal transmission. J Med Virol. 2002;66:285–90.CrossRefPubMed Lin HH, Kao JH, Lee PI, Chen DS. Early acquisition of TT virus in infants: possible minor role of maternal transmission. J Med Virol. 2002;66:285–90.CrossRefPubMed
17.
Zurück zum Zitat Ohto H, Ujiie N, Takeuchi C, Sato A, Hayashi A, Ishiko H, Nishizawa T, Okamoto H, vertical transmission of hepatitis viruses collaborative study group. TT virus infection during childhood. Transfusion. 2002;42:892–8.CrossRefPubMed Ohto H, Ujiie N, Takeuchi C, Sato A, Hayashi A, Ishiko H, Nishizawa T, Okamoto H, vertical transmission of hepatitis viruses collaborative study group. TT virus infection during childhood. Transfusion. 2002;42:892–8.CrossRefPubMed
18.
Zurück zum Zitat Xin X, Xiaoguang Z, Ninghu Z, Youtong L, Liumei X, Boping Z. Mother-toinfant vertical transmission of transfusion transmitted virus in South China. J Perinat Med. 2004;32:404–6.CrossRefPubMed Xin X, Xiaoguang Z, Ninghu Z, Youtong L, Liumei X, Boping Z. Mother-toinfant vertical transmission of transfusion transmitted virus in South China. J Perinat Med. 2004;32:404–6.CrossRefPubMed
19.
Zurück zum Zitat Komatsu H, Inui A, Sogo T, Kuroda K, Tanaka T, Fujisawa T. TTV infection in children born to mothers infected with TTV but not with HBV, HCV, or HIV. J Med Virol. 2004;74:499–506.CrossRefPubMed Komatsu H, Inui A, Sogo T, Kuroda K, Tanaka T, Fujisawa T. TTV infection in children born to mothers infected with TTV but not with HBV, HCV, or HIV. J Med Virol. 2004;74:499–506.CrossRefPubMed
21.
22.
Zurück zum Zitat Albert, E., Solano, C., Giménez, E., Focosi, D., Pérez, A., Macera, L., … Navarro, D. (2017). The kinetics of torque teno virus plasma DNA load shortly after engraftment predicts the risk of high-level CMV DNAemia in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant, (august), 1–8. https://doi.org/10.1038/bmt.2017.235. Albert, E., Solano, C., Giménez, E., Focosi, D., Pérez, A., Macera, L., … Navarro, D. (2017). The kinetics of torque teno virus plasma DNA load shortly after engraftment predicts the risk of high-level CMV DNAemia in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant, (august), 1–8. https://​doi.​org/​10.​1038/​bmt.​2017.​235.
23.
Zurück zum Zitat Maggi F, Fornai C, Zaccaro L, Morrica A, Vatteroni ML, Isola P, et al. TT virus (TTV) loads associated with different peripheral blood cell types and evidence for TTV replication in activated mononuclear cells. J Med Virol. 2001;64:190–4.CrossRefPubMed Maggi F, Fornai C, Zaccaro L, Morrica A, Vatteroni ML, Isola P, et al. TT virus (TTV) loads associated with different peripheral blood cell types and evidence for TTV replication in activated mononuclear cells. J Med Virol. 2001;64:190–4.CrossRefPubMed
24.
Zurück zum Zitat Mariscal LF, López-Alcorocho JM, Rodríguez-Iñigo E, Ortiz-Movilla N, de Lucas S, Bartolomé J, et al. TT virus replicates in stimulated but not in nonstimulated peripheral blood mononuclear cells. Virology. 2002;301:121–9.CrossRefPubMed Mariscal LF, López-Alcorocho JM, Rodríguez-Iñigo E, Ortiz-Movilla N, de Lucas S, Bartolomé J, et al. TT virus replicates in stimulated but not in nonstimulated peripheral blood mononuclear cells. Virology. 2002;301:121–9.CrossRefPubMed
25.
Zurück zum Zitat Focosi D, Macera L, Boggi U, Ceccherini Nelli L, Maggi F. Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T-lymphocytes as the main replication-competent cells. J Gen Virol. 2015;96:115–7.CrossRefPubMed Focosi D, Macera L, Boggi U, Ceccherini Nelli L, Maggi F. Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T-lymphocytes as the main replication-competent cells. J Gen Virol. 2015;96:115–7.CrossRefPubMed
26.
Zurück zum Zitat Goto K, Sugiyama K, Ando T, Mizutani F, Terabe K, Tanaka K, Nishiyama M, Wada Y. Detection rates of TT virus DNA in serum of umbilical cord blood, breast milk and saliva. Tohoku J Exp Med. 2000;191(4):203–7.CrossRefPubMed Goto K, Sugiyama K, Ando T, Mizutani F, Terabe K, Tanaka K, Nishiyama M, Wada Y. Detection rates of TT virus DNA in serum of umbilical cord blood, breast milk and saliva. Tohoku J Exp Med. 2000;191(4):203–7.CrossRefPubMed
Metadaten
Titel
Torque teno virus dynamics during the first year of life
verfasst von
Elena A. Tyschik
Anastasiya S. Rasskazova
Anna V. Degtyareva
Denis V. Rebrikov
Gennady T. Sukhikh
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2018
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1007-6

Weitere Artikel der Ausgabe 1/2018

Virology Journal 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.