Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 6/2019

19.03.2019 | Original Article

Toward an automatic preoperative pipeline for image-guided temporal bone surgery

verfasst von: Johannes Fauser, Igor Stenin, Markus Bauer, Wei-Hung Hsu, Julia Kristin, Thomas Klenzner, Jörg Schipper, Anirban Mukhopadhyay

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Minimally invasive surgery is often built upon a time-consuming preoperative step consisting of segmentation and trajectory planning. At the temporal bone, a complete automation of these two tasks might lead to faster interventions and more reproducible results, benefiting clinical workflow and patient health.

Methods

We propose an automatic segmentation and trajectory planning pipeline for image-guided interventions at the temporal bone. For segmentation, we use a shape regularized deep learning approach that is capable of automatically detecting even the cluttered tiny structures specific for this anatomy. We then perform trajectory planning for both linear and nonlinear interventions on these automatically segmented risk structures.

Results

We evaluate the usability of segmentation algorithms for planning access canals to the cochlea and the internal auditory canal on 24 CT data sets of real patients. Our new approach achieves similar results to the existing semiautomatic method in terms of Dice but provides more accurate organ shapes for the subsequent trajectory planning step. The source code of the algorithms is publicly available.

Conclusion

Automatic segmentation and trajectory planning for various clinical procedures at the temporal bone are feasible. The proposed automatic pipeline leads to an efficient and unbiased workflow for preoperative planning.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Becker M, Kirschner M, Sakas G (2014) Segmentation of risk structures for otologic surgery using the probabilistic active shape model (pasm). Proc SPIE 9036:9036–7 Becker M, Kirschner M, Sakas G (2014) Segmentation of risk structures for otologic surgery using the probabilistic active shape model (pasm). Proc SPIE 9036:9036–7
2.
Zurück zum Zitat Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Int 14(2):239–256CrossRef Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Int 14(2):239–256CrossRef
3.
Zurück zum Zitat Caversaccio M, Gavaghan K, Wimmer W, Williamson T, Ansò J, Mantokoudis G, Gerber N, Rathgeb C, Feldmann A, Wagner F, Scheidegger O, Kompis M, Weisstanner C, Zoka-Assadi M, Roesler K, Anschuetz L, Huth M, Weber S (2017) Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Oto Laryngol 137(4):447–454CrossRef Caversaccio M, Gavaghan K, Wimmer W, Williamson T, Ansò J, Mantokoudis G, Gerber N, Rathgeb C, Feldmann A, Wagner F, Scheidegger O, Kompis M, Weisstanner C, Zoka-Assadi M, Roesler K, Anschuetz L, Huth M, Weber S (2017) Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Oto Laryngol 137(4):447–454CrossRef
4.
Zurück zum Zitat Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59CrossRef Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59CrossRef
5.
Zurück zum Zitat Dahroug B, Tamadazte B, Weber S, Tavernier L, Andreff N (2018) Review on otological robotic systems: toward microrobot-assisted cholesteatoma surgery. IEEE Rev Biomed Eng 11:125–142CrossRefPubMed Dahroug B, Tamadazte B, Weber S, Tavernier L, Andreff N (2018) Review on otological robotic systems: toward microrobot-assisted cholesteatoma surgery. IEEE Rev Biomed Eng 11:125–142CrossRefPubMed
6.
Zurück zum Zitat Fauser J, Stenin I, Kristin J, Klenzner T, Schipper J, Sakas G (2016) A software tool for planning and evaluation of non-linear trajectories for minimally invasive lateral skull base surgery. In: Tagungsb. der 15. Jahrestag. der Dtsch. Ges. f. Comput.- und Roboterass. Chirurgie e.V. (CURAC), pp 125–126 Fauser J, Stenin I, Kristin J, Klenzner T, Schipper J, Sakas G (2016) A software tool for planning and evaluation of non-linear trajectories for minimally invasive lateral skull base surgery. In: Tagungsb. der 15. Jahrestag. der Dtsch. Ges. f. Comput.- und Roboterass. Chirurgie e.V. (CURAC), pp 125–126
7.
Zurück zum Zitat Fauser J, Sakas G, Mukhopadhyay A (2018) Planning nonlinear access paths for temporal bone surgery. Int J Comput Assist Radiol Surg 13(5):637–646CrossRefPubMed Fauser J, Sakas G, Mukhopadhyay A (2018) Planning nonlinear access paths for temporal bone surgery. Int J Comput Assist Radiol Surg 13(5):637–646CrossRefPubMed
8.
Zurück zum Zitat Fauser J, Stenin I, Kristin J, Klenzner T, Schipper J, Fellner D, Mukhopadhyay A (2018) Generalized trajectory planning for nonlinear interventions. In: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis, Springer International Publishing, Cham, pp 46–53 Fauser J, Stenin I, Kristin J, Klenzner T, Schipper J, Fellner D, Mukhopadhyay A (2018) Generalized trajectory planning for nonlinear interventions. In: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis, Springer International Publishing, Cham, pp 46–53
9.
Zurück zum Zitat Ferreira A, Tavares JMRS, Gentil F (2012) A review of segmentation algorithms for ear image data. In: 7th Iberian conference on information systems and technologies (CISTI 2012), pp 1–6 Ferreira A, Tavares JMRS, Gentil F (2012) A review of segmentation algorithms for ear image data. In: 7th Iberian conference on information systems and technologies (CISTI 2012), pp 1–6
10.
Zurück zum Zitat Fichera L, Dillon NP, Zhang D, Godage IS, Siebold MA, Hartley BI, Noble JH, Russell PT, Labadie RF, Webster RJ (2017) Through the eustachian tube and beyond: a new miniature robotic endoscope to see into the middle ear. IEEE Robot Autom Lett 2(3):1488–1494CrossRefPubMedCentralPubMed Fichera L, Dillon NP, Zhang D, Godage IS, Siebold MA, Hartley BI, Noble JH, Russell PT, Labadie RF, Webster RJ (2017) Through the eustachian tube and beyond: a new miniature robotic endoscope to see into the middle ear. IEEE Robot Autom Lett 2(3):1488–1494CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S (2014) Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assist Radiol Surg 9(1):11–20CrossRefPubMed Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S (2014) Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assist Radiol Surg 9(1):11–20CrossRefPubMed
12.
Zurück zum Zitat Gerber N, Reyes M, Barazzetti L, Kjer HM, Vera S, Stauber M, Mistrik P, Ceresa M, Mangado N, Wimmer W, Stark T, Paulsen RR, Weber S, Caversaccio M, Ballester MAG (2017) A multiscale imaging and modelling dataset of the human inner ear. Sci Data 4:170132CrossRefPubMedCentralPubMed Gerber N, Reyes M, Barazzetti L, Kjer HM, Vera S, Stauber M, Mistrik P, Ceresa M, Mangado N, Wimmer W, Stark T, Paulsen RR, Weber S, Caversaccio M, Ballester MAG (2017) A multiscale imaging and modelling dataset of the human inner ear. Sci Data 4:170132CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Kirschner M (2013) The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. thesis, Technische Universität, Darmstadt Kirschner M (2013) The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. thesis, Technische Universität, Darmstadt
14.
Zurück zum Zitat Kjer HM, Fagertun J, Vera S, Gil D, Ángel González Ballester M, Paulsen RR (2016) Free-form image registration of human cochlear mu ct data using skeleton similarity as anatomical prior. Pattern Recogn Lett 76:76–82 (special issue on Skeletonization and its application) CrossRef Kjer HM, Fagertun J, Vera S, Gil D, Ángel González Ballester M, Paulsen RR (2016) Free-form image registration of human cochlear mu ct data using skeleton similarity as anatomical prior. Pattern Recogn Lett 76:76–82 (special issue on Skeletonization and its application) CrossRef
15.
Zurück zum Zitat Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. The Laryngoscope 124(8):1915–1922CrossRefPubMedCentralPubMed Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. The Laryngoscope 124(8):1915–1922CrossRefPubMedCentralPubMed
16.
Zurück zum Zitat Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’87, pp 163–169 Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’87, pp 163–169
17.
Zurück zum Zitat Lu P, Barazzetti L, Chandran V, Gavaghan K, Weber S, Gerber N, Reyes M (2018) Highly accurate facial nerve segmentation refinement from CBCT/CT imaging using a super-resolution classification approach. IEEE Trans Biomed Eng 65(1):178–188CrossRefPubMed Lu P, Barazzetti L, Chandran V, Gavaghan K, Weber S, Gerber N, Reyes M (2018) Highly accurate facial nerve segmentation refinement from CBCT/CT imaging using a super-resolution classification approach. IEEE Trans Biomed Eng 65(1):178–188CrossRefPubMed
18.
Zurück zum Zitat Moghaddam B, Pentland A (1997) Probabilistic visual learning for object representation. IEEE Trans Pattern Anal Mach Intell 19(7):696–710CrossRef Moghaddam B, Pentland A (1997) Probabilistic visual learning for object representation. IEEE Trans Pattern Anal Mach Intell 19(7):696–710CrossRef
19.
Zurück zum Zitat Noble JH, Dawant BM (2011) An atlas-navigated optimal medial axis and deformable model algorithm (nomad) for the segmentation of the optic nerves and chiasm in mr and ct images. Med Image Anal 15(6):877–884CrossRefPubMedCentralPubMed Noble JH, Dawant BM (2011) An atlas-navigated optimal medial axis and deformable model algorithm (nomad) for the segmentation of the optic nerves and chiasm in mr and ct images. Med Image Anal 15(6):877–884CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani in ct images using spatially dependent feature values. Med Phys 35(12):5375–5384CrossRefPubMedCentralPubMed Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani in ct images using spatially dependent feature values. Med Phys 35(12):5375–5384CrossRefPubMedCentralPubMed
21.
Zurück zum Zitat Noble JH, Labadie RF, Majdani O, Dawant BM (2011) Automatic segmentation of intracochlear anatomy in conventional ct. IEEE Trans Biomed Eng 58(9):2625–2632CrossRefPubMedCentralPubMed Noble JH, Labadie RF, Majdani O, Dawant BM (2011) Automatic segmentation of intracochlear anatomy in conventional ct. IEEE Trans Biomed Eng 58(9):2625–2632CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Powell KA, Liang T, Hittle B, Stredney D, Kerwin T, Wiet GJ (2017) Atlas-based segmentation of temporal bone anatomy. Int J Comput Assist Radiol Surg 12(11):1937–1944CrossRefPubMedCentralPubMed Powell KA, Liang T, Hittle B, Stredney D, Kerwin T, Wiet GJ (2017) Atlas-based segmentation of temporal bone anatomy. Int J Comput Assist Radiol Surg 12(11):1937–1944CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Springer, Cham, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Springer, Cham, pp 234–241
24.
Zurück zum Zitat Ruiz Pujadas E, Piella G, Kjer HM, González Ballester MA (2018) Random walks with statistical shape prior for cochlea and inner ear segmentation in micro-ct images. Mach Vis Appl 29(3):405–414CrossRef Ruiz Pujadas E, Piella G, Kjer HM, González Ballester MA (2018) Random walks with statistical shape prior for cochlea and inner ear segmentation in micro-ct images. Mach Vis Appl 29(3):405–414CrossRef
25.
Zurück zum Zitat Stenin I, Hansen S, Becker M, Sakas G, Fellner D, Klenzner T, Schipper J (2014) Minimally invasive multi-port surgery of the lateral skull base. BioMed Res Int 2014:7CrossRef Stenin I, Hansen S, Becker M, Sakas G, Fellner D, Klenzner T, Schipper J (2014) Minimally invasive multi-port surgery of the lateral skull base. BioMed Res Int 2014:7CrossRef
26.
Zurück zum Zitat Tack A, Mukhopadhyay A, Zachow S (2018) Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative. Osteoarthr Cartil 26(5):680–688CrossRefPubMed Tack A, Mukhopadhyay A, Zachow S (2018) Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative. Osteoarthr Cartil 26(5):680–688CrossRefPubMed
27.
Zurück zum Zitat Torres R, Kazmitcheff G, De Seta D, Ferrary E, Sterkers O, Nguyen Y (2017) Improvement of the insertion axis for cochlear implantation with a robot-based system. Eur Arch Oto-Rhino-Laryngol 274(2):715–721CrossRef Torres R, Kazmitcheff G, De Seta D, Ferrary E, Sterkers O, Nguyen Y (2017) Improvement of the insertion axis for cochlear implantation with a robot-based system. Eur Arch Oto-Rhino-Laryngol 274(2):715–721CrossRef
28.
Zurück zum Zitat Voormolen E, van Stralen M, Woerdeman PA, Pluim JJ, Noordman H, Viergever MM, Regli L, van der Sprenkel JB (2012) Determination of a facial nerve safety zone for navigated temporal bone surgery. Neurosurgery 70(1):50PubMed Voormolen E, van Stralen M, Woerdeman PA, Pluim JJ, Noordman H, Viergever MM, Regli L, van der Sprenkel JB (2012) Determination of a facial nerve safety zone for navigated temporal bone surgery. Neurosurgery 70(1):50PubMed
29.
Zurück zum Zitat Weber S, Gerber N, Gavaghan KA, Williamson T, Wimmer W, Anso J, Brogna-Salas L, Chen D, Weisstanner C, Caversaccio M, Bell B (2013) Image guided and robotic assisted minimally invasive cochlear implantation. In: The Hamlyn symposium on medical robotics, pp 17–18 Weber S, Gerber N, Gavaghan KA, Williamson T, Wimmer W, Anso J, Brogna-Salas L, Chen D, Weisstanner C, Caversaccio M, Bell B (2013) Image guided and robotic assisted minimally invasive cochlear implantation. In: The Hamlyn symposium on medical robotics, pp 17–18
30.
Zurück zum Zitat Xianfen D, Siping C, Changhong L, Yuanmei W (2005) 3d semi-automatic segmentation of the cochlea and inner ear. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp 6285–6288 Xianfen D, Siping C, Changhong L, Yuanmei W (2005) 3d semi-automatic segmentation of the cochlea and inner ear. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp 6285–6288
31.
Zurück zum Zitat Zhu S, Gao W, Zhang Y, Zheng J, Liu Z, Yuan G (2017) 3D automatic mri level set segmentation of inner ear based on statistical shape models prior. In: 2017 10th International congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI), pp 1–6 Zhu S, Gao W, Zhang Y, Zheng J, Liu Z, Yuan G (2017) 3D automatic mri level set segmentation of inner ear based on statistical shape models prior. In: 2017 10th International congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI), pp 1–6
Metadaten
Titel
Toward an automatic preoperative pipeline for image-guided temporal bone surgery
verfasst von
Johannes Fauser
Igor Stenin
Markus Bauer
Wei-Hung Hsu
Julia Kristin
Thomas Klenzner
Jörg Schipper
Anirban Mukhopadhyay
Publikationsdatum
19.03.2019
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 6/2019
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01937-x

Weitere Artikel der Ausgabe 6/2019

International Journal of Computer Assisted Radiology and Surgery 6/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.