Skip to main content
Erschienen in:

05.05.2024 | Original Article

Toward confident prostate cancer detection using ultrasound: a multi-center study

verfasst von: Paul F. R. Wilson, Mohamed Harmanani, Minh Nguyen Nhat To, Mahdi Gilany, Amoon Jamzad, Fahimeh Fooladgar, Brian Wodlinger, Purang Abolmaesumi, Parvin Mousavi

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 5/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Deep learning-based analysis of micro-ultrasound images to detect cancerous lesions is a promising tool for improving prostate cancer (PCa) diagnosis. An ideal model should confidently identify cancer while responding with appropriate uncertainty when presented with out-of-distribution inputs that arise during deployment due to imaging artifacts and the biological heterogeneity of patients and prostatic tissue.

Methods

Using micro-ultrasound data from 693 patients across 5 clinical centers who underwent micro-ultrasound guided prostate biopsy, we train and evaluate convolutional neural network models for PCa detection. To improve robustness to out-of-distribution inputs, we employ and comprehensively benchmark several state-of-the-art uncertainty estimation methods.

Results

PCa detection models achieve performance scores up to \(76\%\) average AUROC with a 10-fold cross validation setup. Models with uncertainty estimation obtain expected calibration error scores as low as \(2\%\), indicating that confident predictions are very likely to be correct. Visualizations of the model output demonstrate that the model correctly identifies healthy versus malignant tissue.

Conclusion

Deep learning models have been developed to confidently detect PCa lesions from micro-ultrasound. The performance of these models, determined from a large and diverse dataset, is competitive with visual analysis of magnetic resonance imaging, the clinical benchmark to identify PCa lesions for targeted biopsy. Deep learning with micro-ultrasound should be further studied as an avenue for targeted prostate biopsy.
Fußnoten
1
Because the RF signal is band-limited, no loss of information occurs in resampling.
 
Literatur
1.
Zurück zum Zitat Ahmed HU, Bosaily AE-S, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham A, Oldroyd R, Parker C, Emberton M (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. The Lancet 389(10071):815–822CrossRef Ahmed HU, Bosaily AE-S, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham A, Oldroyd R, Parker C, Emberton M (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. The Lancet 389(10071):815–822CrossRef
2.
Zurück zum Zitat Drost F-JH, Osses D, Nieboer D, Bangma CH, Steyerberg EW, Roobol MJ, Schoots IG (2020) Prostate magnetic resonance imaging, with or without magnetic resonance imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a Cochrane systematic review and meta-analysis. Eur Urol 77(1):78–94CrossRefPubMed Drost F-JH, Osses D, Nieboer D, Bangma CH, Steyerberg EW, Roobol MJ, Schoots IG (2020) Prostate magnetic resonance imaging, with or without magnetic resonance imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a Cochrane systematic review and meta-analysis. Eur Urol 77(1):78–94CrossRefPubMed
3.
Zurück zum Zitat Correas J-M, Halpern EJ, Barr RG, Ghai S, Walz J, Bodard S, Dariane C, Rosette J (2021) Advanced ultrasound in the diagnosis of prostate cancer. World J Urol 39:661–676CrossRefPubMed Correas J-M, Halpern EJ, Barr RG, Ghai S, Walz J, Bodard S, Dariane C, Rosette J (2021) Advanced ultrasound in the diagnosis of prostate cancer. World J Urol 39:661–676CrossRefPubMed
4.
Zurück zum Zitat Ghai S, Eure G, Fradet V, Hyndman ME, McGrath T, Wodlinger B, Pavlovich CP (2016) Assessing cancer risk on novel 29 MHz micro-us images of the prostate: creation of the micro-us protocol for prostate risk identification. J Urol 196(2):562–569CrossRefPubMed Ghai S, Eure G, Fradet V, Hyndman ME, McGrath T, Wodlinger B, Pavlovich CP (2016) Assessing cancer risk on novel 29 MHz micro-us images of the prostate: creation of the micro-us protocol for prostate risk identification. J Urol 196(2):562–569CrossRefPubMed
5.
Zurück zum Zitat Sountoulides P, Pyrgidis N, Polyzos SA, Mykoniatis I, Asouhidou E, Papatsoris A, Dellis A, Anastasiadis A, Lusuardi L, Hatzichristou D (2021) Micro-ultrasound-guided vs multiparametric magnetic resonance imaging-targeted biopsy in the detection of prostate cancer: a systematic review and meta-analysis. J Urol 205(5):1254–1262CrossRefPubMed Sountoulides P, Pyrgidis N, Polyzos SA, Mykoniatis I, Asouhidou E, Papatsoris A, Dellis A, Anastasiadis A, Lusuardi L, Hatzichristou D (2021) Micro-ultrasound-guided vs multiparametric magnetic resonance imaging-targeted biopsy in the detection of prostate cancer: a systematic review and meta-analysis. J Urol 205(5):1254–1262CrossRefPubMed
6.
Zurück zum Zitat Cloutier G, Destrempes F, Yu F, Tang A (2021) Quantitative ultrasound imaging of soft biological tissues: a primer for radiologists and medical physicists. Insights Imaging 12:1–20CrossRef Cloutier G, Destrempes F, Yu F, Tang A (2021) Quantitative ultrasound imaging of soft biological tissues: a primer for radiologists and medical physicists. Insights Imaging 12:1–20CrossRef
7.
Zurück zum Zitat Linmans J, Elfwing S, Laak J, Litjens G (2023) Predictive uncertainty estimation for out-of-distribution detection in digital pathology. Med Image Anal 83:102655CrossRefPubMed Linmans J, Elfwing S, Laak J, Litjens G (2023) Predictive uncertainty estimation for out-of-distribution detection in digital pathology. Med Image Anal 83:102655CrossRefPubMed
8.
Zurück zum Zitat Turkbey B, Haider MA (2022) Deep learning-based artificial intelligence applications in prostate MRI: brief summary. Br J Radiol 95(1131):20210563CrossRefPubMed Turkbey B, Haider MA (2022) Deep learning-based artificial intelligence applications in prostate MRI: brief summary. Br J Radiol 95(1131):20210563CrossRefPubMed
9.
Zurück zum Zitat Fooladgar F, To MNN, Javadi G, Samadi S, Bayat S, Sojoudi S, Eshumani W, Hurtado A, Chang S, Black P, Mousavi P, Abolmaesumi P (2022) Uncertainty-aware deep ensemble model for targeted ultrasound-guided prostate biopsy. In: 2022 IEEE 19th international symposium on biomedical imaging (ISBI), pp 1–5 Fooladgar F, To MNN, Javadi G, Samadi S, Bayat S, Sojoudi S, Eshumani W, Hurtado A, Chang S, Black P, Mousavi P, Abolmaesumi P (2022) Uncertainty-aware deep ensemble model for targeted ultrasound-guided prostate biopsy. In: 2022 IEEE 19th international symposium on biomedical imaging (ISBI), pp 1–5
10.
Zurück zum Zitat Javadi G, Samadi S, Bayat S, Sojoudi S, Hurtado A, Chang S, Black P, Mousavi P, Abolmaesumi P (2021) Training deep networks for prostate cancer diagnosis using coarse histopathological labels. In: International conference on medical image computing and computer-assisted intervention, pp 680–689 Javadi G, Samadi S, Bayat S, Sojoudi S, Hurtado A, Chang S, Black P, Mousavi P, Abolmaesumi P (2021) Training deep networks for prostate cancer diagnosis using coarse histopathological labels. In: International conference on medical image computing and computer-assisted intervention, pp 680–689
11.
Zurück zum Zitat Feng Y, Yang F, Zhou X, Guo Y, Tang F, Ren F, Guo J, Ji S (2018) A deep learning approach for targeted contrast-enhanced ultrasound based prostate cancer detection. IEEE/ACM Trans Comput Biol Bioinf 16(6):1794–1801CrossRef Feng Y, Yang F, Zhou X, Guo Y, Tang F, Ren F, Guo J, Ji S (2018) A deep learning approach for targeted contrast-enhanced ultrasound based prostate cancer detection. IEEE/ACM Trans Comput Biol Bioinf 16(6):1794–1801CrossRef
12.
Zurück zum Zitat Shao Y, Wang J, Wodlinger B, Salcudean SE (2020) Improving prostate cancer (PCA) classification performance by using three-player minimax game to reduce data source heterogeneity. IEEE Trans Med Imaging 39(10):3148–3158CrossRefPubMed Shao Y, Wang J, Wodlinger B, Salcudean SE (2020) Improving prostate cancer (PCA) classification performance by using three-player minimax game to reduce data source heterogeneity. IEEE Trans Med Imaging 39(10):3148–3158CrossRefPubMed
13.
Zurück zum Zitat Gilany M, Wilson P, Jamzad A, Fooladgar F, To MNN, Wodlinger B, Abolmaesumi P, Mousavi P (2022) Towards confident detection of prostate cancer using high resolution micro-ultrasound. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 411–420 Gilany M, Wilson P, Jamzad A, Fooladgar F, To MNN, Wodlinger B, Abolmaesumi P, Mousavi P (2022) Towards confident detection of prostate cancer using high resolution micro-ultrasound. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 411–420
14.
Zurück zum Zitat Wilson PF, Gilany M, Jamzad A, Fooladgar F, To MNN, Wodlinger B, Abolmaesumi P, Mousavi P (2022) Self-supervised learning with limited labeled data for prostate cancer detection in high frequency ultrasound. arXiv:2211.00527 Wilson PF, Gilany M, Jamzad A, Fooladgar F, To MNN, Wodlinger B, Abolmaesumi P, Mousavi P (2022) Self-supervised learning with limited labeled data for prostate cancer detection in high frequency ultrasound. arXiv:​2211.​00527
15.
Zurück zum Zitat Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of modern neural networks. In: International conference on machine learning. PMLR, pp 1321–1330 Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of modern neural networks. In: International conference on machine learning. PMLR, pp 1321–1330
16.
Zurück zum Zitat Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in neural information processing systems, vol 30 Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in neural information processing systems, vol 30
17.
Zurück zum Zitat Ikromjanov K, Bhattacharjee S, Sumon RI, Hwang Y-B, Rahman H, Lee M-J, Kim H-C, Park E, Cho N-H, Choi H-K (2023) Region segmentation of whole-slide images for analyzing histological differentiation of prostate adenocarcinoma using ensemble EfficientNetB2 U-Net with transfer learning mechanism. Cancers 15(3):762CrossRefPubMedPubMedCentral Ikromjanov K, Bhattacharjee S, Sumon RI, Hwang Y-B, Rahman H, Lee M-J, Kim H-C, Park E, Cho N-H, Choi H-K (2023) Region segmentation of whole-slide images for analyzing histological differentiation of prostate adenocarcinoma using ensemble EfficientNetB2 U-Net with transfer learning mechanism. Cancers 15(3):762CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Xu X, Sanford T, Turkbey B, Xu S, Wood BJ, Yan P (2022) Polar transform network for prostate ultrasound segmentation with uncertainty estimation. Med Image Anal 78:102418CrossRefPubMedPubMedCentral Xu X, Sanford T, Turkbey B, Xu S, Wood BJ, Yan P (2022) Polar transform network for prostate ultrasound segmentation with uncertainty estimation. Med Image Anal 78:102418CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sensoy M, Kaplan L, Kandemir M (2018) Evidential deep learning to quantify classification uncertainty. In: Advances in neural information processing systems, vol 31 Sensoy M, Kaplan L, Kandemir M (2018) Evidential deep learning to quantify classification uncertainty. In: Advances in neural information processing systems, vol 31
20.
Zurück zum Zitat Rohrbach D, Wodlinger B, Wen J, Mamou J, Feleppa E (2018) High-frequency quantitative ultrasound for imaging PCA using a novel micro-us scanner. Ultrasound Med Biol 44(7):1341–1354CrossRefPubMed Rohrbach D, Wodlinger B, Wen J, Mamou J, Feleppa E (2018) High-frequency quantitative ultrasound for imaging PCA using a novel micro-us scanner. Ultrasound Med Biol 44(7):1341–1354CrossRefPubMed
21.
Zurück zum Zitat Javadi G, Bayat S, Kazemi Esfeh MM, Samadi S, Sedghi A, Sojoudi S, Hurtado A, Chang S, Black P, Mousavi P, Abolmaesumi P (2022) Towards targeted ultrasound-guided prostate biopsy by incorporating model and label uncertainty in cancer detection. Int J Comput Assist Radiol Surg 17(1):121–128CrossRefPubMed Javadi G, Bayat S, Kazemi Esfeh MM, Samadi S, Sedghi A, Sojoudi S, Hurtado A, Chang S, Black P, Mousavi P, Abolmaesumi P (2022) Towards targeted ultrasound-guided prostate biopsy by incorporating model and label uncertainty in cancer detection. Int J Comput Assist Radiol Surg 17(1):121–128CrossRefPubMed
22.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
23.
Zurück zum Zitat Liu J, Lin Z, Padhy S, Tran D, Bedrax Weiss T, Lakshminarayanan B (2020) Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. Adv Neural Inf Process Syst 33:7498–7512 Liu J, Lin Z, Padhy S, Tran D, Bedrax Weiss T, Lakshminarayanan B (2020) Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. Adv Neural Inf Process Syst 33:7498–7512
24.
Zurück zum Zitat Macêdo D, Ludermir T (2021) Enhanced isotropy maximization loss: seamless and high-performance out-of-distribution detection simply replacing the softmax loss. arXiv:2105.14399 Macêdo D, Ludermir T (2021) Enhanced isotropy maximization loss: seamless and high-performance out-of-distribution detection simply replacing the softmax loss. arXiv:​2105.​14399
25.
Zurück zum Zitat Klotz L, Lughezzani G, Maffei D, Sánchez A, Pereira JG, Staerman F, Cash H, Luger F, Lopez L, Sanchez-Salas R et al (2021) Comparison of micro-ultrasound and multiparametric magnetic resonance imaging for prostate cancer: a multicenter, prospective analysis. Can Urol Assoc J 15(1):11 Klotz L, Lughezzani G, Maffei D, Sánchez A, Pereira JG, Staerman F, Cash H, Luger F, Lopez L, Sanchez-Salas R et al (2021) Comparison of micro-ultrasound and multiparametric magnetic resonance imaging for prostate cancer: a multicenter, prospective analysis. Can Urol Assoc J 15(1):11
26.
Zurück zum Zitat Dias N, Colandrea G, Botelho F, Rodriguez-Sanchez L, Lanz C, Macek P, Cathelineau X (2023) Diagnostic accuracy and clinical utility of micro-ultrasound guided biopsies in patients with suspected prostate cancer. Cent Eur J Urol 76(1):25 Dias N, Colandrea G, Botelho F, Rodriguez-Sanchez L, Lanz C, Macek P, Cathelineau X (2023) Diagnostic accuracy and clinical utility of micro-ultrasound guided biopsies in patients with suspected prostate cancer. Cent Eur J Urol 76(1):25
27.
Zurück zum Zitat Arafa MA, Rabah DM, Khan K, Farhat KH, Ibrahim NK, Albekairi AA (2022) False-positive magnetic resonance imaging prostate cancer correlates and clinical implications. Urol Ann 15:54–59PubMedPubMedCentral Arafa MA, Rabah DM, Khan K, Farhat KH, Ibrahim NK, Albekairi AA (2022) False-positive magnetic resonance imaging prostate cancer correlates and clinical implications. Urol Ann 15:54–59PubMedPubMedCentral
Metadaten
Titel
Toward confident prostate cancer detection using ultrasound: a multi-center study
verfasst von
Paul F. R. Wilson
Mohamed Harmanani
Minh Nguyen Nhat To
Mahdi Gilany
Amoon Jamzad
Fahimeh Fooladgar
Brian Wodlinger
Purang Abolmaesumi
Parvin Mousavi
Publikationsdatum
05.05.2024
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 5/2024
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-024-03119-w

Neu im Fachgebiet Radiologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

PMBCL mit CMR: Radiatio kann ohne Risiko weggelassen werden

Patienten mit primär mediastinalem B-Zell-Lymphom (PMBCL), die nach der Induktionstherapie eine komplette metabolische Remission (CMR) erreichen und keine konsolidierende Bestrahlung erhalten, müssen offenbar keine Überlebensnachteile fürchten.

Hypoxisch-ischämische Enzephalopathie: Indikatoren für eine ungünstige Prognose

Eine US-amerikanische Studie widmete sich der Identifizierung prognostischer Parameter bei Neugeborenen mit mittelschwerer oder schwerer hypoxisch-ischämischer Enzephalopathie (HIE), die mittels induzierter Hypoxie behandelt wurden. Besonders im 24-Stunden-EEG und der MRT konnten relevante Hinweise gefunden werden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.