Skip to main content

01.12.2017 | Original research | Ausgabe 1/2017 Open Access

EJNMMI Research 1/2017

Tracking dendritic cell migration into lymph nodes by using a novel PET probe 18F-tetrafluoroborate for sodium/iodide symporter

EJNMMI Research > Ausgabe 1/2017
Sang Bong Lee, Ho Won Lee, Hongje Lee, Yong Hyun Jeon, Sang-Woo Lee, Byeong-Cheol Ahn, Jaetae Lee, Shin Young Jeong
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13550-017-0280-5) contains supplementary material, which is available to authorized users.



Recently, 18F-tetrafluoroborate (TFB) was used as a substrate for the human sodium/iodide symporter (hNIS) reporter gene. This study evaluated the feasibility of performing molecular-genetic imaging by using the new radiotracer (18F-TFB) for the hNIS gene, to track dendritic cell (DC) migration in live mice. A murine dendritic cell line (DC2.4) co-expressing the hNIS and effluc genes (DC/NF) was established. To confirm the functional cellular expression of both effluc and NIS in the inoculated DC/NF cells by bio-medical imaging, combined bioluminescence imaging (BLI) and 18F-TFB positron emission tomography/computed tomography (PET/CT) imaging was performed after intramuscular injection with parental DCs and DC/NF cells. For DC-tracking, parental DCs or DC/NF cells were injected in the left or right mouse footpad, respectively, and 18F-TFB PET/CT and BLI were performed to monitor these cells in live mice.


In vivo PET/CT and BLI showed a clear signal in DC/NF injection sites but not in parental DC injection sites. The signal intensity in DC/NF cells was correlated with time. In vivo 18F-TFB PET/CT imaging showed higher radiotracer activity in the draining popliteal lymph nodes (DPLNs) in DC/NF injection sites than those in DC injection sites on day 2. BLI also showed DC/NF cell migration to the DPLNs on day 2 after the injection.


Migration of DCs to the lymph nodes was successfully monitored using 18F-TFB PET/CT imaging of the NIS gene and optical imaging of the effluc gene in live mice. These data support the feasibility of using 18F-TFB as a substrate for hNIS reporter gene imaging to track the migration of DCs to the lymph nodes in live animals. The use of 18F-TFB may facilitate enhanced PET imaging of the hNIS reporter gene in small animals and humans in future studies.
Additional file 1: Figure S1. Schematic diagram for the in vivo monitoring of reporter DC/NF cells after their intramuscular injection. Briefly, combined BLI and 18F-TFB PET/CT imaging was performed on day 1 or 4 after the injection of DC and DC/NF cells into the right and left thighs of mice, respectively. Figure S2. Schematic diagram for the in vivo monitoring of reporter DC/NF cell migration to the DPLNs. In vivo BLI and 18F-TFB PET/CT imaging were performed on day 2 after the injection of DC and DC/NF cells in the right and left footpads of mice, respectively. Figure S3. Synthesis and characterization of 18F-TFB. (A) Schematic representation of 18F-TFB synthesis. (B) Chromatograms of radio-TLC to monitor the radiolabeling reaction. (PPTX 1047 kb)
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

EJNMMI Research 1/2017 Zur Ausgabe