Skip to main content
Erschienen in: Cardiovascular Ultrasound 1/2009

Open Access 01.12.2009 | Research

Transesophageal echocardiography in patients with cryptogenic cerebral ischemia

verfasst von: Fabian Knebel, Florian Masuhr, Wolfram von Hausen, Torsten Walde, Henryk Dreger, Vanessa Raab, Mahsun Yuerek, Gert Baumann, Adrian C Borges

Erschienen in: Cardiovascular Ultrasound | Ausgabe 1/2009

Abstract

Background

In about one third of all patients with cerebral ischemia, no definite cause can be identified (cryptogenic stroke). In many patients with initially suspected cryptogenic stroke, however, a cardiogenic etiology can eventually be determined. Hence, the aim of this study was to describe the prevalence of abnormal echocardiographic findings in a large number of these patients.

Method

Patients with cryptogenic cerebral ischemia (ischemic stroke, IS, and transient ischemic attack, TIA) were included. The initial work-up included a neurological examination, EEG, cCT, cMRT, 12-lead ECG, Holter-ECG, Doppler ultrasound of the extracranial arteries, and transthoracic echocardiography. A multiplane transeophageal echocardiography (TEE, including i.v. contrast medium application [Echovist], Valsalva maneuver) was performed in all patients

Results

702 consecutive patients (380 male, 383 IS, 319 TIA, age 18–90 years) were included. In 52.6% of all patients, TEE examination revealed relevant findings. Overall, the most common findings in all patients were: patent foramen ovale (21.7%), previously undiagnosed valvular disease (15.8%), aortic plaques, aortic valve sclerosis, atrial septal aneurysms, regional myocardial dyskinesia, dilated left atrium and atrial septal defects. Older patients (> 55 years, n = 291) and patients with IS had more relevant echocardiographic findings than younger patients or patients with TIA, respectively (p = 0.002, p = 0.003). The prevalence rates of PFO or ASD were higher in younger patients (PFO: 26.8% vs. 18.0%, p = 0.005, ASD: 9.6% vs. 4.9%, p = 0.014).

Conclusion

A TEE examination in cryptogenic stroke reveals contributing cardiogenic factors in about half of all patients. Younger patients had a higher prevalence of PFO, whereas older patients had more frequently atherosclerotic findings. Therefore, TEE examinations seem indicated in all patients with cryptogenic stroke – irrespective of age – because of specific therapeutic consequences.

Background

Cerebral ischemia is among the most common causes of hospitalization, morbidity and mortality in western civilizations. Stroke databases suggest that despite intensive evaluation, approximately 40% of all patients suffering ischemic strokes have no clearly identifiable cause and 15–20% of the ischemic events occur in younger patients (<55 years). In the literature, however, there is no consensus on the percentage of ischemic strokes caused by cardioembolic events [1].
Interatrial communications (ASD, PFO with and without atrial septal aneurysms [ASA]) can lead to paradoxical stroke and increase the risk for recurrent thrombembolic cerebral events. [24].
In an autopsy study, the overall prevalence of a PFO was 27.3%. [5] A meta-analysis has shown that a PFO is more common in patients younger than < 55 years with suspected cryptogenic stroke than in healthy controls [6]. Hence, a PFO is considered as a risk factor for ischemic cerebral events in younger patients. In older patients (i.e. > 55 years), the association between strokes and prevalence of a PFO is much weaker [7].
In clinical practice, it is not easy to verify paradoxical embolism. In current guidelines, there is no consensus on the clinical relevance of a PFO in cryptogenic stroke and on the indication for the closure of a PFO after a stroke [8].
The aim of this study was to determine the prevalence of echocardiographic findings by TEE in a large number of patients with cryptogenic cerebral ischemia with a focus on pre-defined subgroups (age, sex, stroke vs. TIA).

Methods

In this single center retrospective study, 702 consecutive patients with acute cerebral ischemia were examined by TEE (1996–2001). All patients underwent neurological clinical examination, electroencephalogram, cCT or cMRT, and laboratory tests. All patients had a 12-lead-ECG, Holter-ECG, extracranial color-coded sonography, transthoracic echocardiography with no explanations for cerebral ischemia.
Exclusion criteria were: hemodynamically relevant stenoses of the intra- and extracranial arteries, cerebral hemorrhage, atrial fibrillation, migraine, epilepsy, intracranial tumors, acute myocardial infarction in the previous four weeks, previously diagnosed chronic heart failure and left ventricular aneurysms and less than 18 years of age.
Ischemic stroke was defined as a cerebrovascular event with symptoms lasting longer than 24 hours. Diagnosis of ischemic stroke or TIA was confirmed by a study neurologist based on clinical syndrome and results of diagnostic tests, including CT/MRI scans.
Transesophageal echocardiography was performed with a multiplane probe (5–7 MHz) on a Vivid 5 (TEE probe MPTE 5MHz 6A, GE Vingmed, Horton, Norway) and a HP Sonos 5500 (TEE probe HP 21369A; Hewlett-Packard, Paolo Alto, California, USA).
Before transesophageal echocardiography, intraoral xylocaine spray and intravenous midazolam were administered according to the requirements of the patient. The heart rhythm was monitored by ECG during the examination.
Each TEE examination included the standard views and measurement of blood velocities in the left atrial appendage, intravenous administration of contrast agent and Valsalva manoeuvre to exclude interatrial communications (according to [9]).
The images were stored digitally and analyzed off-line by EchoPac PC Dimension (GE Vingmed, Horton Norway) and additionally on video. Echovist 300 was used as contrast medium (Galactose; Schering, Berlin, Germany). Echovist is approved for the diagnosis of intra-atrial communications.
Written consent was obtained from each patient for the TEE, and the ethics committee of the Charité University Hospital approved the protocol.

Statistics

Statistics were calculated by Statgraphics plus (Version 6, Herndon, Virginia USA). Results are expressed as mean (± standard deviation). Comparisons of parametric variables between the responders and the non-responders were calculated by paired Student's t-test. The comparison of echocardiographic parameters between groups was calculated by unpaired Whitney-Mann test. Dichotomized data were analyzed by the Chi2-test. The level of significance was p ≤ 0.05.

Results

702 consecutive patients were included. 380 (54.1%) were male, 322 (45.9%) female. 383 (54.6%) of the patients had an IS and 319 (45.4%) had a TIA. 411 patients were younger than 55 years (58.5%) and 291 patients were older than 55 years (41.5%).
The stroke subgroup was significantly older and had more frequently pathological TEE findings than the patients suffering from a TIA. (Table 1).
Table 1
Patient characteristics (median, ± SD, n [%])
 
All (n = 702)
Ischemic stroke (n = 383, 54.6%)
TIA (n = 319, 45.4%))
p
Age
57.1 (± 15.7)
61.5 (± 12.3)
51.3 (± 16.2)
<0.001
Male Sex (%)
380 (54.1%)
222 (57.9%)
158 (49.5%)
0.043
Diabetes mellitus
13.0%
21.2%
7.0%
0.17
Arterial hypertension
39.5%
59.4%
25.6%
0.09
Hyperlipidemia
35.5%
50.0%
25.6%
0.07
Smoker
26.0%
27.6%
25.6%
0.82
Coronary artery disease
14.3%
21.2%
9.3%
0.31
Any pathological echo finding
369 (52.6%)
225 (58.7%)
144 (45.1%)
0.02
Number of pathological findings if any
2.24
2.43
1.92
0.003
The prevalence of abnormal echocardiographic findings is listed in (Table 2). Neither the presence of a PFO (p = 0.053), nor of an ASD (p = 0.65) or an atrial septal aneurysm (p = 0.21) was significantly different in the IS and TIA groups. However, findings attributable to atherosclerosis (valvular abnormalities including mitral valve calcification, aortic calcification, aortic valve sclerosis, aortic plaque) were significantly more frequent in the ischemic stroke group (Table 3).
Table 2
Echocardiographic findings in all patients.
Finding
n
%
Any echocardiographic finding
369
52.6
Patent Foramen ovale (PFO)
152
21.7
Valvular abnormalities
111
15.8
Aortic plaques
102
14.5
Aortic valve sclerosis
66
9.4
Atrial septal aneurysm
51
7.3
regional myocardial dyskinesia in > 2 segments
50
7.1
Left atrial dilatation
47
6.7
Atrial septal defect
28
4.0
Spontaneous echo contrast (SEC)
18
2.6
Mitral valve prolapse
15
2.1
Valvular vegetations
14
2.0
Aortic valve strands
14
2.0
Intracardial thrombi
13
1.9
mitral valve annulus calcification
10
1.4
Chiari networkt
6
0.9
Aortic valve stenosis
5
0.7
Mitral valve strands
5
0.7
Aortic thrombi
4
0.6
Aortic aneurysm
3
0.4
Prosthetic valve
3
0.43
Left ventricular dilatation
3
0.43
Intracardiac tumor
1
0.14
Mitral valve stenosis
1
0.14
Table 3
The 10 most frequent findings in the stroke and TIA subgroups
Rank
Ischemic stroke (n = 383)
TIA (n = 319)
P (Chi2 Pearson)
1
PFO (94; 24.5%)
PFO (58; 18.2%)
0.053
2
Valvular abnormalities (73; 19.1%)
Valvular abnormalities (38; 11.9%)
0.014
3
Aortic calcification (73; 19.1%)
Aortic calcification (32; 10.0%)
0.001
4
Aortic plaque (71; 18.5%)
Aortic plaque (31; 9.7%)
0.002
5
Aoric valve aclerosis (45; 11.7%)
Aoric valve aclerosis (21; 6.6%)
0.029
6
Atrial septal aneurysm (36; 9.4%)
Left atrial dilatation (20; 6.3%)
LA dilatation: 0.807
7
regional myocardial dyskinesia in > 2 segments (33; 8.6%)
regional myocardial dyskinesia in > 2 segments (17; 5.3%)
0.131
8
Left atrial dilatation (27; 7.0%)
Atrial septal aneurysm (15; 4.7%)
ASA 0.213
9
ASD (17; 4.4%)
ASD (11; 3.4%)
0.65
10
SEC(16; 4.2%)
Mitral valve prolapse (6; 1.9%)
 
In the older patients (> 55 years, n = 291, according to [2, 10]) pathological echocardiographic findings were more frequent (p = 0.0023) than in the younger patients. The prevalence of a PFO was higher in the younger patients (< 55 years: n = 78; 26.8%, > 55 years: n = 75; 18.0%, Pearson's Chi square p = 0.005). The frequency of a ASD was lower in the older patients (< 55 years: n = 28; 9.6%, > 55 years: n = 20; 4.9%, Pearson's Chi square p = 0.014); see Figure 1, for examples see Figure 2, Figure 3 and Figure 4 and Additional file 1, Additional file 2 and Additional file 3
The most frequent combination of two findings was PFO+ASA (2.63% male with IS, 2.71% male with TIA, 2.63% female with TIA, 2.71% female with IS).

Discussion

This study is to our knowledge the largest TEE study in patients with cryptogenic cerebral ischemia allowing the analysis of the full spectrum of findings and especially the prevalence of a PFO.
In half of all patients, a possible cardiogenic cause was identified by TEE. The most frequent finding was a PFO. The frequency of positive TEE findings that might explain cerebral ischemia is comparable to previous smaller studies [11, 12].
Cardiogenic causes of ischemic stroke can be divided into major (annual incidence of embolic events > 1%) and minor risk factors (annual incidence < 1%) [13]. The major risk factors are atrial fibrillation (1–12%/year), intracardiac thrombi (0–35%), atrial myxoma (30–40%), mitral valve stenosis (8–14% in sinus rhythm, 31–65% with concomitant atrial fibrillation), recent myocardial infarction (1–2%), anticoagulated mechanical heart valves (1.5–3%), infective endocarditis (12–40%), dilated cardiomyopathy (4%) and aortic arch atheromatous plaques (4–16% especially if ≥ 4 mm in diameter, [14]). The minor risk factors include mitral valve prolapse (<0.02%) and left ventricular aneurysm (<1%). Rare causes of cardioembolism include Chiari network, Lambl's excrescences [15], and valvular abnormalities [16, 17]. Spontaneous echo contrast (SEC) is seen in areas of blood stasis with a slowly moving, cloud-like swirling pattern of "smoke" or increased echogenicity recorded in TEE. However, there is little data on the precise embolic risk of mitral valve annular calcification, spontaneous echo contrast, atrial septal aneurysm, and calcific aortic stenosis [13].
A substantial subset of the cardiogenic factors diagnosed by TEE could have been found with TTE (in combination with trans-cranial Doppler) as well. However, there are no prospective studies showing equivalent diagnostic accuracy of TTE compared to TEE in this setting. Despite the semi-invasivity of TEE, it is still the gold standard for the detection of inter-atrial communications.

TIA vs. stroke

Patients with TIA had less frequently a pathological finding in the TEE. This could be due to the fact that the initially suspected diagnosis "TIA" has a lower specificity with a broader range of other possible non-vascular etiologies such as migraine or focal seizures.

Age

We found a higher prevalence of PFO and ASD in the younger patients (< 55 years). In contrast, Handke [10] reported that PFO are equally distributed in all age groups of patients with cryptogenic stroke. Despite these differences, relevant causes for cerebral ischemia can be identified in all age-groups. Therefore, a restriction of a TEE examination to younger patients with TIA/stroke is not supported by our data.
The current data does not allow a clear recommendation for PFO closure in patients with cryptogenic stroke. Further prospective studies are needed to decide on the clinical advantage of PFO closure, especially in patients > 55 years of age.

Cardioembolic factors – consequences

The TEE findings can have specific therapeutic consequences in all age groups (see table 4). Specifically, as the therapeutic consequence of LA-appendage thrombus is oral anticoagulation, its presence should be ruled out before further treatment is limited to platelet aggregation inhibition alone [13, 18].
Table 4
TEE findings in patients with ischemic stroke and their possible therapeutic consequences.
TEE finding
Possible therapeutic consequence
PFO and ASD
ASS, anticoagulation, operative or interventional device closure
aortic plaques
ASS, statin therapy
reduced LVEF
oral anticoagulation, ASS, coronary angiography, heart failure therapy
left atrial dilatation
further cardiological work-up
Spontaneous echo contrast
search for intermittent atrial fibrillation, oral anticoagulation
left atrial thrombus
anticoagulation, operation
thoracic aneurysm of the aorta
echo control, operation
mitral valve prolapse
antiarrhythmic therapy, echo follow-up, anticoagulation
aortic/mitral valve stenosis
timing of valve replacement
LA-appendage thrombus
oral anticoagulation

PFO-ASA

The association of ischemic stroke and PFO is still controversial: A recent large study in a multiethnic population did not confirm an association of PFO and the risk for an ischemic stroke [19]. However, two studies [20, 21]have seen a clear association of PFO and ASA in ischemic stroke.
The diagnosis of a PFO or ASA depends on experienced echocardiographers and has – even among experienced examiners – a high inter- and intra-observer variability [3]. Clear diagnostic criteria for intra-atrial defects could reduce the variability [9].
Surgical [22] or percutaneous closure of a PFO is a therapeutic strategy with somewhat inconsistent results [23, 24]. The percutaneous closure of a PFO after recurrent cerebral ischemia is a safe procedure and leads to a reduction of recurrence rates in the long-term follow-up. Only in a small number of patients, there was a residual shunt with subsequent TIA within the first six months after closure [25]. The recurrent ischemic events in these studies were attributed to a residual post-procedural shunt. Hence, improvement of occluder devices may further reduce the recurrence rates after PFO closure.
Conservative strategies (i.e. antithrombotic therapy) in patients with a PFO are also associated with comparable recurrence rates [26]. However, the risks of antithrombotic therapy (platelet inhibition, oral anticoagulation) include bleeding and low compliance rates. A randomized study (PICSS) did not reveal a significant difference in recurrence rates in medically treated patients with or without a PFO [4]. Especially in younger patients on medical therapy, the presence of a PFO did not increase the risk of stroke recurrence [27].
In addition to cardiogenic factors, recently, genetic polymorphisms of a variety of genes have been associated with cryptogenic stroke. However, the degree of association and the diagnostic relevance of these genetic polymorphisms is currently not clear [28].
On the background of our study, we recommend the following diagnostic algorithm for patients with cryptogenic stroke, which as applied in this study: clinical examination, electroencephalogram, cCT or cMRT, 12-lead-ECG, Holter-ECG, extracranial color-coded sonography, transcranial Doppler, transthoracic echocardiography. Only if these examinations do not reveal a cause for the stroke, a TEE seems indicated.

Conclusion

In conclusion, in this large study in patients with cryptogenic stroke, a TEE reveals in about half of the patients cardiogenic factors that might explain the stroke. Especially, the prevalence of a PFO is higher in the younger patients (< 55 years of age). Therefore, a TEE seems indicated in all patients with cryptogenic stroke – irrespective of age – because of specific therapeutic consequences.

Limitations

This study was observational. The quality of observational studies seems to be comparable to randomized controlled trials [29, 30]. There was no follow-up of the patients concerning recurrence of cerebral ischemia or mortality.
We did not analyze the prevalence of abnormal TEE findings in single-vessel and lacunar strokes in comparison to multi-vessel strokes. The data of our study is historical (1996–2001). Currently, the indication for a TEE in cryptogenic stroke is more selective.

Author's contributions

FK and FM equally contributed to the study. FK, FM, WVH, ACB have designed the study, and have performed the examinations. FK, ACB, FM analyzed the data and have written the manuscript. MY, VR, TW, HD performed the TEE examination, collected and interpreted the acquired data. GB has supervised the study and contributed by revising the manuscript critically.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.
Literatur
1.
Zurück zum Zitat Amarenco P: Cryptogenic stroke, aortic arch atheroma, patent foramen ovale, and the risk of stroke. Cerebrovasc Dis. 2005, 20 (Suppl 2): 68-74. 10.1159/000089358.CrossRefPubMed Amarenco P: Cryptogenic stroke, aortic arch atheroma, patent foramen ovale, and the risk of stroke. Cerebrovasc Dis. 2005, 20 (Suppl 2): 68-74. 10.1159/000089358.CrossRefPubMed
2.
Zurück zum Zitat Mas JL, Arquizan C, Lamy C, Zuber M, Cabanes L, Derumeaux G, Coste J: Patent Foramen Ovale and Atrial Septal Aneurysm Study Group. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med. 2001, 345 (24): 1740-6. 10.1056/NEJMoa011503.CrossRefPubMed Mas JL, Arquizan C, Lamy C, Zuber M, Cabanes L, Derumeaux G, Coste J: Patent Foramen Ovale and Atrial Septal Aneurysm Study Group. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med. 2001, 345 (24): 1740-6. 10.1056/NEJMoa011503.CrossRefPubMed
3.
Zurück zum Zitat Cabanes L, Coste J, Derumeaux G, Jeanrenaud X, Lamy C, Zuber M, Mas JL: Patent Foramen Ovale and Atrial Septal Aneurysm Study Group. Interobserver and intraobserver variability in detection of patent foramen ovale and atrial septal aneurysm with transesophageal echocardiography. J Am Soc Echocardiogr. 2002, 15 (5): 441-6. 10.1067/mje.2002.116718.CrossRefPubMed Cabanes L, Coste J, Derumeaux G, Jeanrenaud X, Lamy C, Zuber M, Mas JL: Patent Foramen Ovale and Atrial Septal Aneurysm Study Group. Interobserver and intraobserver variability in detection of patent foramen ovale and atrial septal aneurysm with transesophageal echocardiography. J Am Soc Echocardiogr. 2002, 15 (5): 441-6. 10.1067/mje.2002.116718.CrossRefPubMed
4.
Zurück zum Zitat Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP: PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: patent foramen ovale in Cryptogenic Stroke Study. Circulation. 2002, 105 (22): 2625-31. 10.1161/01.CIR.0000017498.88393.44.CrossRefPubMed Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP: PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: patent foramen ovale in Cryptogenic Stroke Study. Circulation. 2002, 105 (22): 2625-31. 10.1161/01.CIR.0000017498.88393.44.CrossRefPubMed
5.
Zurück zum Zitat Hagen PT, Scholz DG, Edwards WD: Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984, 59: 17-20.CrossRefPubMed Hagen PT, Scholz DG, Edwards WD: Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984, 59: 17-20.CrossRefPubMed
6.
Zurück zum Zitat Lechat P, Mas JL, Lascault G, Loron P, Theard M, Klimczac M, Drobinski G, Thomas D, Grosgogeat Y: Prevalence of patent foramen ovale in patients with stroke. N Engl J Med. 1988, 318 (18): 1148-1152.CrossRefPubMed Lechat P, Mas JL, Lascault G, Loron P, Theard M, Klimczac M, Drobinski G, Thomas D, Grosgogeat Y: Prevalence of patent foramen ovale in patients with stroke. N Engl J Med. 1988, 318 (18): 1148-1152.CrossRefPubMed
7.
Zurück zum Zitat Overell JR, Bone I, Lees KR: Interatrial septal abnormalities and stroke: a meta-analysis of case-control studies. Neurology. 2000, 55 (8): 1172-1179.CrossRefPubMed Overell JR, Bone I, Lees KR: Interatrial septal abnormalities and stroke: a meta-analysis of case-control studies. Neurology. 2000, 55 (8): 1172-1179.CrossRefPubMed
8.
Zurück zum Zitat Sacco RL, Adams R, Albers G, Alberts MJ, Benavente O, Furie K, Goldstein LB, Gorelick P, Halperin J, Harbaugh R, Johnston SC, Katzan I, Kelly-Hayes M, Kenton EJ, Marks M, Schwamm LH, Tomsick T, American Heart Association; American Stroke Association Council on Stroke; Council on Cardiovascular Radiology and Intervention; American Academy of Neurology: Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. Stroke. 2006, 37 (2): 577-617. 10.1161/01.STR.0000199147.30016.74.CrossRefPubMed Sacco RL, Adams R, Albers G, Alberts MJ, Benavente O, Furie K, Goldstein LB, Gorelick P, Halperin J, Harbaugh R, Johnston SC, Katzan I, Kelly-Hayes M, Kenton EJ, Marks M, Schwamm LH, Tomsick T, American Heart Association; American Stroke Association Council on Stroke; Council on Cardiovascular Radiology and Intervention; American Academy of Neurology: Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. Stroke. 2006, 37 (2): 577-617. 10.1161/01.STR.0000199147.30016.74.CrossRefPubMed
9.
Zurück zum Zitat Attaran RR, Ata I, Kudithipudi V, Foster L, Sorrell VL: Protocol for optimal detection and exclusion of a patent foramen ovale using transthoracic echocardiography with agitated saline microbubbles. Echocardiography. 2006, 23 (7): 616-622. 10.1111/j.1540-8175.2006.00272.x.CrossRefPubMed Attaran RR, Ata I, Kudithipudi V, Foster L, Sorrell VL: Protocol for optimal detection and exclusion of a patent foramen ovale using transthoracic echocardiography with agitated saline microbubbles. Echocardiography. 2006, 23 (7): 616-622. 10.1111/j.1540-8175.2006.00272.x.CrossRefPubMed
10.
Zurück zum Zitat Handke M, Harloff A, Olschewski M, Hetzel A, Geibel A: Patent foramen ovale and cryptogenic stroke in older patients. N Engl J Med. 2007, 357 (22): 2262-2268. 10.1056/NEJMoa071422.CrossRefPubMed Handke M, Harloff A, Olschewski M, Hetzel A, Geibel A: Patent foramen ovale and cryptogenic stroke in older patients. N Engl J Med. 2007, 357 (22): 2262-2268. 10.1056/NEJMoa071422.CrossRefPubMed
11.
Zurück zum Zitat Ulrich JN, Hesse B, Schuele S, Vlassak I, Sila CA, Jaber WA: Single-vessel versus multivessel territory acute ischemic stroke: value of transesophageal echocardiography in the differentiation of embolic stroke. J Am Soc Echocardiogr. 2006, 19 (9): 1165-1169. 10.1016/j.echo.2006.04.004.CrossRefPubMed Ulrich JN, Hesse B, Schuele S, Vlassak I, Sila CA, Jaber WA: Single-vessel versus multivessel territory acute ischemic stroke: value of transesophageal echocardiography in the differentiation of embolic stroke. J Am Soc Echocardiogr. 2006, 19 (9): 1165-1169. 10.1016/j.echo.2006.04.004.CrossRefPubMed
12.
Zurück zum Zitat de Bruijn SF, Agema WR, Lammers GJ, Wall van der EE, Wolterbeek R, Holman ER, Bollen EL, Bax JJ: Transesophageal echocardiography is superior to transthoracic echocardiography in management of patients of any age with transient ischemic attack or stroke. Stroke. 2006, 37 (10): 2531-2534. 10.1161/01.STR.0000241064.46659.69.CrossRefPubMed de Bruijn SF, Agema WR, Lammers GJ, Wall van der EE, Wolterbeek R, Holman ER, Bollen EL, Bax JJ: Transesophageal echocardiography is superior to transthoracic echocardiography in management of patients of any age with transient ischemic attack or stroke. Stroke. 2006, 37 (10): 2531-2534. 10.1161/01.STR.0000241064.46659.69.CrossRefPubMed
13.
Zurück zum Zitat Kapral MK, Silver FL: Preventive health care, 1999 update: 2. Echocardiography for the detection of a cardiac source of embolus in patients with stroke. Canadian Task Force on Preventive Health Care. CMAJ. 1999, 161 (8): 989-996.PubMedPubMedCentral Kapral MK, Silver FL: Preventive health care, 1999 update: 2. Echocardiography for the detection of a cardiac source of embolus in patients with stroke. Canadian Task Force on Preventive Health Care. CMAJ. 1999, 161 (8): 989-996.PubMedPubMedCentral
14.
Zurück zum Zitat Amarenco P, Duyckaerts C, Tzourio C, Henin D, Bousser MG, Hauw JJ: The prevalence of ulcerated plaques in the aortic arch in patients with stroke. N Engl J Med. 1992, 326 (4): 221-225.CrossRefPubMed Amarenco P, Duyckaerts C, Tzourio C, Henin D, Bousser MG, Hauw JJ: The prevalence of ulcerated plaques in the aortic arch in patients with stroke. N Engl J Med. 1992, 326 (4): 221-225.CrossRefPubMed
15.
Zurück zum Zitat Siles Rubio JR, Ruiz de Castroviejo del Campo J, Tirado Miranda R, Jansen Chaparro S, Pavlovic D: [Transient ischemic attack due to Lambl's excrescence. Report of a case and review of the literature]. An Med Interna. 2006, 23 (4): 181-183.PubMed Siles Rubio JR, Ruiz de Castroviejo del Campo J, Tirado Miranda R, Jansen Chaparro S, Pavlovic D: [Transient ischemic attack due to Lambl's excrescence. Report of a case and review of the literature]. An Med Interna. 2006, 23 (4): 181-183.PubMed
16.
Zurück zum Zitat Freedberg RS, Goodkin GM, Perez JL, Tunick PA, Kronzon I: Valve strands are strongly associated with systemic embolization: a transesophageal echocardiographic study. J Am Coll Cardiol. 1995, 26 (7): 1709-1712. 10.1016/0735-1097(95)00394-0.CrossRefPubMed Freedberg RS, Goodkin GM, Perez JL, Tunick PA, Kronzon I: Valve strands are strongly associated with systemic embolization: a transesophageal echocardiographic study. J Am Coll Cardiol. 1995, 26 (7): 1709-1712. 10.1016/0735-1097(95)00394-0.CrossRefPubMed
17.
Zurück zum Zitat Tice FD, Slivka AP, Walz ET, Orsinelli DA, Pearson AC: Mitral valve strands in patients with focal cerebral ischemia. Stroke. 1996, 27 (7): 1183-1186.CrossRefPubMed Tice FD, Slivka AP, Walz ET, Orsinelli DA, Pearson AC: Mitral valve strands in patients with focal cerebral ischemia. Stroke. 1996, 27 (7): 1183-1186.CrossRefPubMed
18.
Zurück zum Zitat Agmon Y, Khandheria BK, Gentile F, Seward JB: Clinical and echocardiographic characteristics of patients with left atrial thrombus and sinus rhythm: experience in 20 643 consecutive transesophageal echocardiographic examinations. Circulation. 2002, 105 (1): 27-31. 10.1161/hc0102.101776.CrossRefPubMed Agmon Y, Khandheria BK, Gentile F, Seward JB: Clinical and echocardiographic characteristics of patients with left atrial thrombus and sinus rhythm: experience in 20 643 consecutive transesophageal echocardiographic examinations. Circulation. 2002, 105 (1): 27-31. 10.1161/hc0102.101776.CrossRefPubMed
19.
Zurück zum Zitat Di Tullio MR, Sacco RL, Sciacca RR, Jin Z, Homma S: Patent foramen ovale and the risk of ischemic stroke in a multiethnic population. J Am Coll Cardiol. 2007, 49 (7): 797-802. 10.1016/j.jacc.2006.08.063.CrossRefPubMed Di Tullio MR, Sacco RL, Sciacca RR, Jin Z, Homma S: Patent foramen ovale and the risk of ischemic stroke in a multiethnic population. J Am Coll Cardiol. 2007, 49 (7): 797-802. 10.1016/j.jacc.2006.08.063.CrossRefPubMed
20.
Zurück zum Zitat Bonati LH, Kessel-Schaefer A, Linka AZ, Buser P, Wetzel SG, Radue EW, Lyrer PA, Engelter ST: Diffusion-weighted imaging in stroke attributable to patent foramen ovale: significance of concomitant atrial septum aneurysm. Stroke. 2006, 37 (8): 2030-2034. 10.1161/01.STR.0000231655.52686.ab.CrossRefPubMed Bonati LH, Kessel-Schaefer A, Linka AZ, Buser P, Wetzel SG, Radue EW, Lyrer PA, Engelter ST: Diffusion-weighted imaging in stroke attributable to patent foramen ovale: significance of concomitant atrial septum aneurysm. Stroke. 2006, 37 (8): 2030-2034. 10.1161/01.STR.0000231655.52686.ab.CrossRefPubMed
21.
Zurück zum Zitat Force M, Massabuau P, Larrue V: Prevalence of atrial septal abnormalities in older patients with cryptogenic ischemic stroke or transient ischemic attack. Clin Neurol Neurosurg. 2008, 110 (8): 779-783. 10.1016/j.clineuro.2008.04.012.CrossRefPubMed Force M, Massabuau P, Larrue V: Prevalence of atrial septal abnormalities in older patients with cryptogenic ischemic stroke or transient ischemic attack. Clin Neurol Neurosurg. 2008, 110 (8): 779-783. 10.1016/j.clineuro.2008.04.012.CrossRefPubMed
22.
Zurück zum Zitat Dearani JA, Ugurlu BS, Danielson GK, Daly RC, McGregor CG, Mullany CJ, Puga FJ, Orszulak TA, Anderson BJ, Brown RD, Schaff HV: Surgical patent foramen ovale closure for prevention of paradoxical embolism-related cerebrovascular ischemic events. Circulation. 1999, 100 (19 Suppl): II171-75.PubMed Dearani JA, Ugurlu BS, Danielson GK, Daly RC, McGregor CG, Mullany CJ, Puga FJ, Orszulak TA, Anderson BJ, Brown RD, Schaff HV: Surgical patent foramen ovale closure for prevention of paradoxical embolism-related cerebrovascular ischemic events. Circulation. 1999, 100 (19 Suppl): II171-75.PubMed
23.
Zurück zum Zitat Windecker S, Wahl A, Chatterjee T, Garachemani A, Eberli FR, Seiler C, Meier B: Percutaneous closure of patent foramen ovale in patients with paradoxical embolism: long-term risk of recurrent thromboembolic events. Circulation. 2000, 101 (8): 893-898.CrossRefPubMed Windecker S, Wahl A, Chatterjee T, Garachemani A, Eberli FR, Seiler C, Meier B: Percutaneous closure of patent foramen ovale in patients with paradoxical embolism: long-term risk of recurrent thromboembolic events. Circulation. 2000, 101 (8): 893-898.CrossRefPubMed
24.
Zurück zum Zitat Braun M, Gliech V, Boscheri A, Schoen S, Gahn G, Reichmann H, Haass M, Schraeder R, Strasser RH: Transcatheter closure of patent foramen ovale (PFO) in patients with paradoxical embolism. Periprocedural safety and mid-term follow-up results of three different device occluder systems. Eur Heart J. 2004, 25 (5): 424-430. 10.1016/j.ehj.2003.10.021.CrossRefPubMed Braun M, Gliech V, Boscheri A, Schoen S, Gahn G, Reichmann H, Haass M, Schraeder R, Strasser RH: Transcatheter closure of patent foramen ovale (PFO) in patients with paradoxical embolism. Periprocedural safety and mid-term follow-up results of three different device occluder systems. Eur Heart J. 2004, 25 (5): 424-430. 10.1016/j.ehj.2003.10.021.CrossRefPubMed
25.
Zurück zum Zitat Windecker S, Meier B: Is closure recommended for patent foramen ovale and cryptogenic stroke? Patent foramen ovale and cryptogenic stroke: to close or not to close? Closure: what else!. Circulation. 2008, 118 (19): 1989-1998. 10.1161/CIRCULATIONAHA.107.757013.CrossRefPubMed Windecker S, Meier B: Is closure recommended for patent foramen ovale and cryptogenic stroke? Patent foramen ovale and cryptogenic stroke: to close or not to close? Closure: what else!. Circulation. 2008, 118 (19): 1989-1998. 10.1161/CIRCULATIONAHA.107.757013.CrossRefPubMed
26.
Zurück zum Zitat Bogousslavsky J, Garazi S, Jeanrenaud X, Aebischer N, Van Melle G: Stroke recurrence in patients with patent foramen ovale: the Lausanne Study. Lausanne Stroke with Paradoxal Embolism Study Group. Neurology. 1996, 46 (5): 1301-1305.CrossRefPubMed Bogousslavsky J, Garazi S, Jeanrenaud X, Aebischer N, Van Melle G: Stroke recurrence in patients with patent foramen ovale: the Lausanne Study. Lausanne Stroke with Paradoxal Embolism Study Group. Neurology. 1996, 46 (5): 1301-1305.CrossRefPubMed
27.
Zurück zum Zitat Homma S, DiTullio MR, Sacco RL, Sciacca RR, Mohr JP, PICSS Investigators: Age as a determinant of adverse events in medically treated cryptogenic stroke patients with patent foramen ovale. Stroke. 2004, 35 (9): 2145-2149. 10.1161/01.STR.0000135773.24116.18.CrossRefPubMed Homma S, DiTullio MR, Sacco RL, Sciacca RR, Mohr JP, PICSS Investigators: Age as a determinant of adverse events in medically treated cryptogenic stroke patients with patent foramen ovale. Stroke. 2004, 35 (9): 2145-2149. 10.1161/01.STR.0000135773.24116.18.CrossRefPubMed
28.
Zurück zum Zitat Bersano A, Ballabio E, Bresolin N, Candelise L: Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat. 2008, 29 (6): 776-795. 10.1002/humu.20666.CrossRefPubMed Bersano A, Ballabio E, Bresolin N, Candelise L: Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat. 2008, 29 (6): 776-795. 10.1002/humu.20666.CrossRefPubMed
29.
Zurück zum Zitat Benson K, Hartz AJ: A comparison of observational studies and randomized, controlled trials. N Engl J Med. 2000, 342 (25): 1878-1886. 10.1056/NEJM200006223422506.CrossRefPubMed Benson K, Hartz AJ: A comparison of observational studies and randomized, controlled trials. N Engl J Med. 2000, 342 (25): 1878-1886. 10.1056/NEJM200006223422506.CrossRefPubMed
30.
Zurück zum Zitat Concato J, Shah N, Horwitz RI: Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000, 342 (25): 1887-1892. 10.1056/NEJM200006223422507.CrossRefPubMedPubMedCentral Concato J, Shah N, Horwitz RI: Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000, 342 (25): 1887-1892. 10.1056/NEJM200006223422507.CrossRefPubMedPubMedCentral
Metadaten
Titel
Transesophageal echocardiography in patients with cryptogenic cerebral ischemia
verfasst von
Fabian Knebel
Florian Masuhr
Wolfram von Hausen
Torsten Walde
Henryk Dreger
Vanessa Raab
Mahsun Yuerek
Gert Baumann
Adrian C Borges
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Cardiovascular Ultrasound / Ausgabe 1/2009
Elektronische ISSN: 1476-7120
DOI
https://doi.org/10.1186/1476-7120-7-15

Weitere Artikel der Ausgabe 1/2009

Cardiovascular Ultrasound 1/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.