Skip to main content
Erschienen in: Journal of Neuro-Oncology 1/2016

18.05.2016 | Clinical Study

Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma

verfasst von: Yasuo Iwadate, Tomoo Matsutani, Seiichiro Hirono, Natsuki Shinozaki, Naokatsu Saeki

Erschienen in: Journal of Neuro-Oncology | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Invasion into surrounding normal brain and resistance to genotoxic therapies are the main devastating aspects of glioblastoma (GBM). These biological features may be associated with the stem cell phenotype, which can be induced through a dedifferentiation process known as epithelial-mesenchymal transition (EMT). We show here that tumor cells around pseudopalisading necrotic areas in human GBM tissues highly express the most important EMT inducer, transforming growth factor (TGF-β), concurrently with the EMT-related transcriptional factor, TWIST. In addition, the stem cell markers CD133 and alkaline phosphatase (ALPL) were also highly expressed around necrotic foci in GBM tissues. The high expression of TGF-β around necrotic regions was significantly correlated with shorter progression-free survival and overall survival in patients with GBM. High expression of stem cell markers, ALPL, CD133, and CD44 was also correlated with poor outcomes. These results collectively support the hypothesis that tissue hypoxia induces the stem cell phenotype through TGF-β-related EMT and contributes to the poor outcome of GBM patients.
Literatur
1.
Zurück zum Zitat Aldape K, Zadeh G, von Deimling A et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848CrossRefPubMed Aldape K, Zadeh G, von Deimling A et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848CrossRefPubMed
3.
Zurück zum Zitat Iwadate Y, Sakaida T, Hiwasa T et al (2004) Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res 64:2496–2501CrossRefPubMed Iwadate Y, Sakaida T, Hiwasa T et al (2004) Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res 64:2496–2501CrossRefPubMed
4.
Zurück zum Zitat Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173CrossRefPubMed Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173CrossRefPubMed
5.
Zurück zum Zitat Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Zarkoob H, Taube JH, Singh SK, Mani SA, Kohandel M (2013) Investigating the link between molecular subtype of glioblastoma, epithelial- mesenchymal transition, and CD133 cell surface protein. PLoS One 8:e64169CrossRefPubMedPubMedCentral Zarkoob H, Taube JH, Singh SK, Mani SA, Kohandel M (2013) Investigating the link between molecular subtype of glioblastoma, epithelial- mesenchymal transition, and CD133 cell surface protein. PLoS One 8:e64169CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284CrossRefPubMedPubMedCentral Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Cooper LAD, Gutman DA, Chisolm C et al (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Path. 180:2108–2118CrossRefPubMedPubMedCentral Cooper LAD, Gutman DA, Chisolm C et al (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Path. 180:2108–2118CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia. 59:1169–1180CrossRefPubMed Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia. 59:1169–1180CrossRefPubMed
10.
Zurück zum Zitat Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335CrossRefPubMed Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335CrossRefPubMed
11.
12.
Zurück zum Zitat Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed
13.
Zurück zum Zitat Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K et al (2013) Mesenchymal differentiation mediated by NF-kB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346CrossRefPubMed Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K et al (2013) Mesenchymal differentiation mediated by NF-kB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346CrossRefPubMed
14.
Zurück zum Zitat Zhang X, Zhang W, Mao XG, Zhen HN, Cao WD, Hu SJ (2013) Targeting role of glioma stem cells for glioblastoma multiforme. Curr Med Chem 20:1974–1984CrossRefPubMed Zhang X, Zhang W, Mao XG, Zhen HN, Cao WD, Hu SJ (2013) Targeting role of glioma stem cells for glioblastoma multiforme. Curr Med Chem 20:1974–1984CrossRefPubMed
15.
Zurück zum Zitat Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024CrossRefPubMed Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024CrossRefPubMed
16.
Zurück zum Zitat Ye X-Z, Xu S-L, Xin Y-H et al (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol 189:444–453CrossRefPubMed Ye X-Z, Xu S-L, Xin Y-H et al (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol 189:444–453CrossRefPubMed
17.
Zurück zum Zitat Piao Y, Liang J, Holmes L et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology 14:1379–1392CrossRefPubMedPubMedCentral Piao Y, Liang J, Holmes L et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology 14:1379–1392CrossRefPubMedPubMedCentral
20.
21.
Zurück zum Zitat Shinojima N, Hossain A, Takezaki T et al (2012) TGF-β mediated homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer Res 73:2333–2344CrossRef Shinojima N, Hossain A, Takezaki T et al (2012) TGF-β mediated homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer Res 73:2333–2344CrossRef
22.
Zurück zum Zitat Kahlert UD, Nikkhah G, Maciaczyk J (2013) Epithelial-to-mesenchymal (-like) transition as a relevant molecular event in malignant gliomas. Cancer Let. 33:131–138CrossRef Kahlert UD, Nikkhah G, Maciaczyk J (2013) Epithelial-to-mesenchymal (-like) transition as a relevant molecular event in malignant gliomas. Cancer Let. 33:131–138CrossRef
23.
Zurück zum Zitat Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropath Exp Neurol 65:529–539CrossRefPubMed Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropath Exp Neurol 65:529–539CrossRefPubMed
24.
Zurück zum Zitat Bruna A, Darken RS, Rojo F et al (2007) High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cnacer Cell 11:147–160CrossRef Bruna A, Darken RS, Rojo F et al (2007) High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cnacer Cell 11:147–160CrossRef
25.
Zurück zum Zitat Theys J, Jutten B, Habets R et al (2011) E-cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radioth Oncol 99:392–397CrossRef Theys J, Jutten B, Habets R et al (2011) E-cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radioth Oncol 99:392–397CrossRef
26.
27.
Zurück zum Zitat Hardee ME, Marciscano AE, Medina-Ramirez CM et al (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 72:4119–4129CrossRefPubMedPubMedCentral Hardee ME, Marciscano AE, Medina-Ramirez CM et al (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 72:4119–4129CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Kim Y-H, Yoo K-C, Cui Y-H et al (2014) Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett 354:132–141CrossRefPubMed Kim Y-H, Yoo K-C, Cui Y-H et al (2014) Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett 354:132–141CrossRefPubMed
29.
Zurück zum Zitat Zhou YC, Liu JY, Li J et al (2011) Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial- mesenchymal transition. Int J Radiat Oncol Biol Phys 81:1530–1537CrossRefPubMed Zhou YC, Liu JY, Li J et al (2011) Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial- mesenchymal transition. Int J Radiat Oncol Biol Phys 81:1530–1537CrossRefPubMed
30.
Zurück zum Zitat Zhang M, Kleber S, Rohrich M et al (2011) Blockade of TGF-beta signaling by the TGFbetaR-1 kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167CrossRefPubMed Zhang M, Kleber S, Rohrich M et al (2011) Blockade of TGF-beta signaling by the TGFbetaR-1 kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167CrossRefPubMed
31.
Zurück zum Zitat Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improve radiation tumor therapy. Clin Cancer Res 14:2210–2219CrossRefPubMed Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improve radiation tumor therapy. Clin Cancer Res 14:2210–2219CrossRefPubMed
32.
Zurück zum Zitat Mahabir R, Tanino M, Elmansuri A et al (2014) Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-Oncology 16:671–685CrossRefPubMed Mahabir R, Tanino M, Elmansuri A et al (2014) Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-Oncology 16:671–685CrossRefPubMed
33.
Zurück zum Zitat Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62CrossRefPubMed Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62CrossRefPubMed
34.
Zurück zum Zitat Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502CrossRefPubMedPubMedCentral Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Evans SM, Judy KD, Dunphy I et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184 Evans SM, Judy KD, Dunphy I et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184
36.
37.
Zurück zum Zitat Kaur B, Khwaja FW, Severson EA et al (2005) Hypoxia and hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7:134–153CrossRefPubMedPubMedCentral Kaur B, Khwaja FW, Severson EA et al (2005) Hypoxia and hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7:134–153CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2:119–129CrossRefPubMed Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2:119–129CrossRefPubMed
39.
Zurück zum Zitat Skowronki K, Andrews J, Rodenhiser DI, Coomber BL (2014) Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PlosOne 9: e103243 Skowronki K, Andrews J, Rodenhiser DI, Coomber BL (2014) Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PlosOne 9: e103243
40.
Zurück zum Zitat Schonberg DL, Lubelski D, Miller TE, Rich JN (2014) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med 39:82–101CrossRefPubMed Schonberg DL, Lubelski D, Miller TE, Rich JN (2014) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med 39:82–101CrossRefPubMed
41.
Zurück zum Zitat Bechnan J, Isakson P, Joel M et al (2014) Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 32:1110–1123CrossRef Bechnan J, Isakson P, Joel M et al (2014) Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 32:1110–1123CrossRef
Metadaten
Titel
Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma
verfasst von
Yasuo Iwadate
Tomoo Matsutani
Seiichiro Hirono
Natsuki Shinozaki
Naokatsu Saeki
Publikationsdatum
18.05.2016
Verlag
Springer US
Erschienen in
Journal of Neuro-Oncology / Ausgabe 1/2016
Print ISSN: 0167-594X
Elektronische ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2145-6

Weitere Artikel der Ausgabe 1/2016

Journal of Neuro-Oncology 1/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.