Introduction
Pancreatic islet transplantation provides a potential cure for type 1 diabetes. Short-term and longer-term outcomes are improving [
1‐
4] but most recipients still require islets from two or more donors to achieve insulin independence. Although the pancreas is conceptually attractive as the original ‘home’ of islets, it is not an easy or safe site [
5].
Hepatic infusion via the portal vein is the currently accepted clinical site since the success of the Edmonton protocol. This is partly based on the theoretical advantages of the portal vein [
6]. In a non-diabetic individual, circulating nutrient concentrations (including blood glucose levels) increase postprandially and the nutrients are delivered to the pancreas where beta cells respond by secreting insulin. Similarly, the liver is a conceptually attractive site for islet transplantation due to first-pass exposure to both nutrients and insulin [
1,
7]. Early studies in mice reported success using the portal vein site [
8] and subsequent refinements improved outcomes [
3,
4,
9]. However, this site has disadvantages including the potential complications of portal hypertension, bleeding, portal vein thrombosis and hepatic ischaemia [
10,
11]. These risks are low in the hands of experienced transplant centres with current protocols.
Another major problem with the portal vein is the rapid loss of many islets after transplantation. Contributing factors include instant blood-mediated inflammatory reaction, relative hypoxia and deleterious effects of immunosuppressive drugs which are absorbed from the gut (the liver is intermittently exposed to supra-therapeutic concentrations [
2,
12‐
18]). Most grafts show gradual functional decline [
9] and routine biopsies for graft monitoring are not feasible.
It is unclear to what degree the transplantation site influences outcomes. Few studies have compared the outcomes of human islet transplantation into different sites [
19]. Mouse islets have been successfully transplanted into several sites [
20] including the peritoneal cavity [
21,
22], spleen [
23,
24], portal vein [
25,
26] and the kidney subcapsular space [
27,
28]. However, there is a paucity of data concerning longer-term success rates [
20]. Successful autotransplantation of islets into the muscle of pigs, dogs, rats, mice and, more recently, humans has been reported [
19,
29‐
32].
We hypothesised that with its good arterial blood flow, and the successful autotransplantation cases mentioned above, skeletal muscle may be a viable site for human islet transplantation. In addition, if grafts were marked at placement, muscle would be amenable to low-risk protocol biopsies. Our study compares the outcomes for transplant sites including muscle, portal vein, and kidney-, liver- and spleen-capsule transplant sites in mouse and human islets. Most importantly, this study was performed under conditions that mimic human clinical protocols. In addition, increased islet dose experiments indicate improved outcomes for muscle grafts for both human and mouse transplants.
Discussion
Pancreatic islet transplantation is a potential cure for type 1 diabetes but there are several limitations to the current practice of portal vein infusion. Here, we investigated the ability of human and mouse pancreatic islet transplantation into a variety of sites to cure diabetes in murine recipients. This study is unique in that comparisons of these different graft sites for human islets have not been performed previously.
Our first major finding was that implanting human and murine islets into the kidney subcapsular space yielded the best outcomes, with success rates of >75% and 100%, respectively. This was consistent with findings of our previous study [
12]. The kidney has many advantages, including easy graft retrieval for exclusion of endogenous beta cell regeneration and histological assessment. It is worth noting that although the oxygen tension in islets placed beneath the kidney capsule is markedly lower than in native islets [
14], this is true of all transplant sites investigated to date. Unfortunately, in humans, the kidney capsule has a relatively poor blood supply and is not readily amenable to creation of the >5 ml of anatomical space required to insert the islet mass [
14,
36]. There are also theoretical concerns regarding damage to the kidney in individuals susceptible to diabetic nephropathy. However, attempts using the renal subcapsular space with modern islet transplant protocols have not been reported.
There is a published preclinical model in which a combined kidney and islet graft was transplanted [
37]. The islet grafts showed resilience to hypoxic injury, the dual procedure saved time and there was a short time to islet graft function.
In the present study, we also tested the spleen and liver capsule as transplant sites, due to their good vascular supply and theoretical potential for direct laparoscopic graft visualisation. However, the liver and spleen-capsule transplants showed inferior results for both mouse and human islets.
Next, we found that the skeletal muscle and portal vein sites were equally successful in the 1:1 transplant model. The portal vein is currently the preferred site for clinical islet transplantation, although some investigators are now studying other sites [
38]. The portal vein is relatively accessible but requires cannulation radiologically or under direct visualisation. This site delivers insulin to at least some of the portal system. The islets are exposed to intermittently high levels of immunosuppressive drugs, which are absorbed from the gut [
17]. There is a risk of bleeding, portal hypertension and portal vein thrombosis [
10]. Routine biopsies to monitor the graft are not feasible because the islets are dispersed throughout the liver. Furthermore, the liver can be a pro-thrombotic and pro-inflammatory environment [
15,
16,
39].
Our success rates (29%) for human islets were not dissimilar to those reported for human clinical programmes. We note that most human recipients receive more than one islet transplant in the clinical setting. With transplants involving more than one donor, outcomes vary from 15% to 38% insulin independence at 1 year and 27% at 5 years after transplant [
40,
41]. There is little data regarding single-donor transplant success rates for insulin independence. To address this question, we also performed dose–response studies to determine success rates with transplantation of increasing amounts of islets.
For the skeletal muscle site, we found that the success rate could be further increased by implanting more islets. With increasing islet dose, we achieved a 100% cure rate in recipients of mouse islet transplants into muscle (two donors, one recipient); the rate was 56% in recipients of human islets (3000 IEQ). In contrast, there was no improvement in outcome, with increasing islet dose, for recipients of transplants into the portal vein. Our data for intraportal transplantation show a similar success rate to that achieved in muscle grafts in 1:1 models, with no improved success observed with increasing doses as seen with muscle grafts.
For the kidney capsule, muscle and portal vein, there were no transplant failures up to 100 days in mice, which were normoglycaemic at day 28, showing that good graft function is maintained over the long term. Notably, glucose levels showed a continuing mild improvement up to day 60 for both muscle- and portal vein-sited mouse and human islet transplants.
One weakness of our study is that we could not remove the transplant to confirm diabetes recurrence in the portal vein group. However, this may have led to overestimation of the success rate of our portal vein group and does not undermine the conclusions.
The body weight of recipient mice may be a confounding variable in islet transplant studies. Loganathan et al [
42] reported higher survival rates in recipient mice weighing ≥25 g. The weight range of our recipient mice was 20–25 g and generally we also found somewhat better results in heavier mice. However, the weight of recipient mice did not differ between the human islet transplant sites: 2000 IEQ into kidney capsule–23 g; 2000 IEQ into portal vein–23 g; 2000 IEQ into muscle–22 g, 3000 IEQ into portal vein–20.3 g, 4000 IEQ into portal vein–19.2 g, 3000 IEQ into muscle–21.6 g and 4000 IEQ into muscle–20.4 g. Our data also supported those of Loganathan et al [
42], in that increased IEQ achieved better glucose control in muscle but not the portal vein. Because there is not a capsule like in the kidney, both portal vein and muscle sites lead to greater dispersal of islets. This dispersal may be beneficial to the recipient, although it makes quantification of beta cell volume more difficult. While it is not possible to quantify beta cell volume in the portal vein, individual islets and insulin intensity appeared to be similar to those in muscle.
The muscle as an islet transplant site has potential advantages, including access for biopsies [
43]. In our study, we also noted shorter procedural time. There was a superior success rate compared with portal vein with increased graft mass. In cured recipients, long-term glucose control was similar for muscle and portal vein sites [
19]. Our findings for muscle are supported by an earlier study showing successful transplantation of a larger volume of rat islets into muscle [
30].
Other potential sites have also been investigated. Guan and colleagues showed good results for rat islets transplanted into the portal vein or omental pouch in the 1990s [
44] (omentum is another potential site for islet transplants). Our study chose similar sites to Kim et al (2010) [
20], however with emphasis on the importance of clinical adaptation. However, Kim et al reported that transplantation into the omental pouch produced a higher mortality rate and required a longer operative time, so we did not assess it in the present study. Epididymal fat pad and intestinal submucosa in large animals have been investigated for encapsulated islets with good success rates [
45,
46].
Potential clinical relevance was achieved by using human islets and gaining an analysis of islet function by using immunodeficient recipient mice. This allowed us to examine engraftment at different sites, without the complication of immune rejection. While these mice have immune limitations, in our study transplant into muscle provided better glycaemic control than that found by Kim et al using C57BL/6 recipients. The use of an increased islet dose in the portal vein showed relatively poor outcomes, probably due to physical factors (i.e. increased mass of islets per blood vessel volume within the liver). Engraftment at the various tissue sites will be affected by blood flow, oxygen tension and tissue characteristics. However, it is important to note that engraftment may differ in humans and, further, may be influenced by immunosuppressive drugs.
Islet transplantation is a rapidly progressing field, with improvements in the isolation process, donor and recipient selection and very active investigation of optimal immunosuppressive protocols [
3,
47,
48]. The optimal site for the transplant could have a major effect on long-term outcome as well as short-term complications, as has been seen in whole-pancreas transplantation [
49‐
51]. Islet encapsulation technology is progressing rapidly and there are now implantable devices that can be inserted and allowed to revascularise prior to transplantation. It would be feasible to insert these devices under muscle capsules when the devices are optimised.
The intramuscular site avoids some of these issues and shows potential for successful outcomes for up to at least 100 days. The combination of good outcomes in human intramuscular autotransplantation case reports and these study results suggest that consideration of a multicentre human clinical trial is warranted.